Wabashpress.ru

Техника Гидропрессы
53 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать скорость вращения шпинделя

Как рассчитать скорость вращения шпинделя?

V = πDN/1000 (мм/мин). Частота вращения шпинделя N (об/мин) равняется числу оборотов фрезы в минуту. Вычисляется в соответствии с рекомендованной для данного типа обработки скоростью резания: N = 1000V/nD (об/мин).

Как устанавливается определенная частота вращения шпинделя?

пр = 1000 ·Vр /p·D, где 1000 – коэффициент перевода миллиметров в метры, Vр – расчетная скорость резания, м/мин; D – диаметр заготовки по обрабатываемой поверхности при точении и диаметр фрезы или сверла при фрезеровании или сверлении, мм; p = 3,14. Расчетная частота вращения шпинделя корректируется по паспорту станка.

Что осуществляет изменение частоты вращения шпинделя?

Частота вращения шпинделя такого типа регулируется с помощью изменения как частоты, так и напряжения подводимого к статору тока. … Скорость вращения шпинделя изменяется за счет регулирования частоты (fвых.) и напряжения (Uвых.) на выходе, с помощью высокочастотного широтно-импульсного управления.

Какие обороты шпинделя?

шпиндели высокой мощности от 5 кВт и более: применяются в основном на обрабатывающих центрах или крупных станках, имеют диапазон оборотов до 12000…18000 об/мин и предназначены для высокопроизводительной обработки, в том числе труднообрабатываемых материалов.

Как обозначается частота вращения шпинделя?

Частота вращения шпинделя относится к характеристикам фрезерного станка и имеет обозначение в об/мин. Это скорость, с которой вращается шпиндель вместе с цанговым патроном и фрезой.

Что такое скорость резания?

СКОРОСТЬ РЕЗАНИЯ [V] – это путь точки режущего лезвия инструмента относительно заготовки в направлении главного движения в единицу времени. Скорость резания измеряется в метрах в минуту (м/мин). В ленточном пилении скорость резания есть скорость движения (вращения) ленточного полотна (м/мин).

Как определить частоту вращения вала?

Выберите из всей записи наиболее удачный отрезок и посчитайте количество пиков в 1-ой секунде. Допустим, их получилось 25шт. В минуту это дает 25*60=1500 оборотов. Это и есть ваша синхронная частота вращения вала.

Как определить частоту вращения ротора двигателя?

Исходя из формулы n = (1 — S)60f/p где n — скорость вращения ротора, S — скольжение, f- частота питающей сети, p — количество пар полюсов.

Как посчитать обороты шпинделя?

Частота вращения шпинделя N (об/мин) равняется числу оборотов фрезы в минуту. Вычисляется в соответствии с рекомендованной для данного типа обработки скоростью резания: N = 1000V/nD (об/мин). При фрезеровании различают минутную подачу, подачу на зуб и подачу наоборот фрезы.

Как рассчитать скорость резания при точении?

V = p ·D·п/1000, где D – диаметр заготовки по обрабатываемой поверхности (при токарной обработке), диаметр сверла (при сверлении) или диаметр фрезы (при фрезеровании), мм; п – частота вращения заготовки или инструмента, об/мин; 1000 – коэффициент перевода миллиметров в метры; p = 3,14.

Какие обороты на токарном станке?

Заготовка при работе (сама токарка) должна крутится от 1000 до 1500 об/мин при шлифовании и 3000об/мин не предел. Проще сделать конечно когда передняя бабка это сам двигатель. Минусы значит такие: 1)Чтобы регулировать обороты нужен частотник.

Скорость вращения шпинделя

Частота вращения шпинделя относится к характеристикам фрезерного станка и имеет обозначение в об/мин. Это скорость, с которой вращается шпиндель вместе с цанговым патроном и фрезой.

Шпиндели принято разделять на ременные и моторшпиндели (электрошпиндели). Первые характеризуются меньшим крутящим моментом. Конструкция классического шпинделя с ременным приводом имеет в составной части шпиндельный вал с подшипниками. Данный вал способен зажимать либо разжимать фрезу. Мощность и динамика передаются шпинделю от наружного мотора, который инсталлирован рядом с приспособлением посредством ременной передачи. Мощность, вращающий момент и скорость шпинделя зависят от характеристик внешнего двигателя и самой ременной передачи. За счет внешней инсталляции можно варьировать размеры мотора, тем самым изменяя обороты и мощность шпинделя, как в меньшую, так и в большую сторону. Применение шпинделей с ременной передачей возможно для задач, где требуемая скорость вращения шпинделя не превышает значение 12 000 – 15 000 об/мин. Из минусов – это ограничение по скорости в сравнении с электрошпинделем. Также натяжение ремня формирует излишнюю нагрузку на задние подшипники шпинделя, тем самым исчерпывая их ресурс.

Читайте так же:
Ушм 150 с регулировкой оборотов

Электрошпиндель — это приспособление, которое имеет в своей конструкции три ключевых звена: электрический асинхронный двигатель, патрон для зажима фрезы и подшипник. Предельные частоты вращения электрошпинделей — до 180 тысяч об/мин. Эти шпиндели являются более дорогостоящими по сравнению с ременными.

Жидкостный шпиндель

Как определить количество оборотов шпинделя

По количеству оборотов, шпиндели подразделяются:

  • Высокой мощности от 5 кВт и более: применяются в основном на крупногабаритных станках. Обороты составляют 12000…18000 об/мин. Предназначены для высокопроизводительных работ. Такое количество оборотов является большим минусом при работе с твёрдосплавными фрезами при фрезеровании тонкими фрезами, что существенно снижает общий КПД фрезерного станка.
  • Средней мощности 1.2…5 кВт: используются во фрезерных станках средних габаритов. Применяются для фрезерования пластиков, дерева и мягких металлов. Обороты составляют 18000…24000 об/мин. Идеально подходят для мелких гравировальных работ.
  • Малой мощности 0.8 кВт и менее: используются во фрезерных станках малых габаритов. Обороты составляют до 60000…70000 об/мин.

Скорость вращения вычисляется по формуле:

Расчет скорости вращения шпинделя

Формула для расчета

d – диаметр режущей части инструмента (мм),

П – число Пи, постоянная величина равная 3.14;

V – скорость резания (м/мин) – это путь, пройденный точкой режущей кромки фрезы в единицу времени.

d – диаметр режущей части инструмента (мм),

П – число Пи, постоянная величина равная 3.14;

V – скорость резания (м/мин) – это путь, пройденный точкой режущей кромки фрезы в единицу времени.

Если у станка есть преимущество в виде преобразователя частоты (т.е. можно с легкостью варьировать скорость вращения шпинделя), то скорость мотора выбирается исходя из выбора диаметра фрезы и материала заготовки. Но важно знать, что при стремительном снижении скорости вращения потерю момента не миновать. В некоторой степени эта потеря возмещается инвертором благодаря функции поддержания крутящего момента при понижении скорости вращения шпинделя. Можно использовать данные из таблицы при выборе параметров соотношения количества оборотов двигателя к диаметру фрезы:

Диаметр фрезы

Скорость вращения

Опытным путем было установлено, что заявленные максимальные обороты в паспорте шпинделя не являются физической границей – абсолютно все высокоскоростные шпиндели без труда разгоняются до 120% от номинальных оборотов, и даже выше. Но при этом следует помнить, что ресурс подшипников может резко снизиться. И очень быстрое вращение не всегда хорошо, так как, например, дерево при фрезеровании образует мелкую пыль, которая затирается между материалом и режущим инструментом, и начинает подгорать. Как следствие, происходит перегрев фрезы и заготовки.

Пример влияния количества оборотов шпинделя при фрезеровании заготовки:

Влияние оборотов шпинделя на результат

Обороты шпинделя при фрезеровании

Исходя из вышеизложенного, подытожим, что многоцелевого шпинделя с большим диапазоном оборотов, увы, не существует. И важно оптимальное соотношение размера, мощности и максимальных оборотов шпинделя для решения той или иной задачи. Скорость подачи важно распределять равномерно, так как это существенно влияет на качество обработки. При вычислении оборотов шпинделя для того или иного материала необходимо обращать внимание на скорость резания и диаметр режущей части фрезы для оптимальной работы станка без погрешностей. При «закрытом» фрезеровании, где отвод стружки затруднен (пазы, шпунты, гнезда), миновать прижогов возможно, если на порядок уменьшить частоту вращения. Также необходимо учитывать ресурс подшипников при фрезеровании и искусственно не увеличивать число оборотов шпинделя, в зависимости от номинальных, с целью получения большей производительности.

Читайте так же:
Самодельный сварочный аппарат постоянного тока своими руками

О частоте вращения фрезы

Вопрос о частоте вращения фрезы заслуживает отдельного рассмотрения, ибо в последнее время появилось много противоречивых публикаций на эту тему, а некоторые «писатели», то ли по недомыслию, то ли со злым умыслом дезинформируют читателей.

Рассмотрим две схемы: консольного мотоблока с навесным фрезерным культиватором (слева) и осевого мотоблока (мотокультиватора) с фрезами, установленными на силовом валу:

В первом случае ножи фрезерного культиватора участвуют в двух движениях: вместе с мотоблоком поступательно движутся вперед со скоростью V0, которая задается мотоблоком, и относительно оси культиватора вращаются со скоростью V1, которая зависит от частоты вращения ротора и диаметра фрезы D.

Если скорость V0, будет меньше скорости V1, то культиватор нормально обрабатывает («фрезерует», культивирует) грунт.

Если же V0 > V1, то культиватор из активного орудия превратится в пассивное, т.е. — в «соху» и будет не рыхлить, а царапать грунт.
Поэтому все консольные мотоблоки обеспечивают такую частоту вращения фрезы, при которой скорость V1 превышает скорость V0, благодаря чему происходит нормальная культивация грунта.

Например, универсальный фрезерный культиватор «Мотор Сич» КВ-1С», устанавливаемый на мотоблоки АРТАНИЯ МА 300, Супер 600, Гольдони, МТЗ-05, МБ-4,05 и др., имея фрезу диаметром 310 мм, вращающуюся с частотой 300 об/мин., обеспечивает скорость ее вращения V1= 4,2 м/с.

При этом мотоблок во время работы фрезы перемещается поступательно со скоростью до 1 м/с.

Такое существенное превышение скорости вращения над скоростью поступательного движения обеспечивает стабильную и эффективную культивацию почвы.
То же касается и консольного мотоблока RTT 2, который обеспечивает при вращении фрезы с частотой 275 об/мин. и ее диаметре 320 мм почти такое же соотношение скоростей вращательного и поступательного движения.

Во втором случае скорость поступательного движения мотокультиватора определяется исключительно скоростью вращения ротора и плотностью фрезеруемого грунта. V2 всегда меньше V1 и в данном случае, независимо от частоты вращения n фрезерный культиватор всегда является активным орудием.
С этой точки зрения ротор осевого мотоблока может вращаться с любой частотой.

Однако в данном случае следует руководствоваться иными соображениями: если сравнительно легкий мотокультиватор обеспечит вращение фрезы с частотой 200 — 300 об/мин., то через час работы у оператора от вибрации «занемеют» руки! Это, во-первых.

Во-вторых, мотокультиватор — как правило, односкоростная машина. Если вместо фрез установить колеса и присоединить окучиватель или картофелекопатель, и при этом частота вращения колес составит 200 — 300 об/мин., то даже при диаметре колеса 200 мм скорость движения мотокультиватора достигнет 9 — 10 км/час. Никакое пробуксовывание не поможет — работать оператор не сможет.

В-третьих, увеличение частоты вращения фрезы до 200 — 300 об/мин. действительно приводит к чрезмерному измельчению почв.

Вывод: частота вращения фрезы, присоединяемой к консольному мотоблоку должна быть не менее 275 об/мин., а частота вращения фрезы мотокультиватора не должна превышать 130 — 140 об/мин.

Определение частоты вращения шпинделя по расчетной

При составлении технологической карты токарной или фрезерной обработки специалисту нужно найти оптимальный баланс между производительностью станка и требованиями к чистоте поверхности готовой детали. Основные параметры, на которые он может повлиять — это частота вращения шпинделя и скорость подачи. Выбор режимов обработки проводится расчетным или опытным путем.

Читайте так же:
Точильный аппарат для заточки ножей

Сложность работы на портальных фрезерно-гравировальных станках состоит в их многозадачности. В одной управляющей программе может быть несколько видов обработки: контурная резка, фрезерование пазов и сквозных отверстий, гравирование. При этом материалы — дерево, пластик и композиты, различаются сопротивлением резанию и структурой. Многие начинающие операторы сталкиваются с такими неприятными моментами как прижог, недостаточная чистота обработки, преждевременный износ режущей кромки. Ниже мы постараемся дать общие рекомендации о настройке скорости шпинделя и подачи без сложных расчетов.

Что такое скорость вращения шпинделя и подача?

Что такое скорость вращения шпинделя и подача?

Скорость вращения — один из основных параметров шпинделя. Он выражается в оборотах в минуту (об/мин) или герцах (Гц). В портальных станках с ЧПУ не используется сложных по конструкции механических коробок передач и скорость регулируется электронными компонентами. С увеличением скорости вращения растет производительность станка и снижается ресурс режущего инструмента. Последнее связано с выделением избыточного количества тепла, которое не успевает рассеиваться. В результате перегрева падает твердость режущих кромок, и они теряют свою остроту.

Скорость подачи, или линейного перемещения, измеряется в миллиметрах в минуту (мм/мин) и влияет на объем снимаемого материала в единицу времени. На портальных станках без механизма вращения заготовки регулируются скорости перемещения портала, каретки и вертикального движения шпинделя. При составлении управляющих программ стараются задать максимально возможные подачи, при этом должно выполняться условие сохранения целостности фрезы. Избыточная скорость приводит к появлению сколов на режущих кромках поломка или деформация хвостовика.

Ряд частот вращения шпинделя

За предельными значениями частот вращения шпинделя станка определяют его диапазон регуляции. На станке используется двухскоростной электродвигатель. В таком случае он рассматривается как электрическая группа с числом передач и характеристикой

Электродвигатель выступает как первая преодолимая группа.

Промежуточные значения частот вращения шпинделя располагают по закону геометрической прогрессии со знаменателем:

где – число степеней регуляции частот вращения шпинделя, .

Полученное за этой формулой значение знаменателя округляем к ближайшему значению, которое предусмотрено нормалью станкостроения НІІ-І: 1,06; 1,12; 1,26; 1,41; 1,58; 1,78; 2,0. Для нашего случая принимаем .

Из нормали НІІ-І выписываем 21 значение частот вращения шпинделя, приняв в качестве наибольшего ближайшее стандартное значение, что характерное для такого станка – 2500 об/мин.: 2500; 2000; 1600; 1250; 1000; 800; 630; 500; 400; 315; 250; 200; 160; 125; 100; 80; 63; 50; 40; 31,5; 25.

Распространенные ошибки при выборе режимов резания

Одно из важных условий правильной работы станка — согласование скоростей вращения и подачи фрезы между собой. Некоторые начинающие станочники при выборе режимов резания допускают ошибки в попытках сохранить инструмент.

Работа на минимальных скоростях приводит к снижению качества обработки. Если величина подачи сопоставима с толщиной режущей кромки, то вместо снятия стружки фреза надавит на заготовку и будет только шлифовать ее своей поверхностью. Чтобы понять, что в этот момент происходит с обрабатываемой поверхностью, представьте, что вы включили реверс на шпинделе, в котором зажато спиральное сверло, и пытаетесь «продавить» отверстие. На высоких оборотах будет наблюдаться прижог обрабатываемой поверхности и режущей кромки, отгибание фрезы.

Обратная ситуация, когда при высокой подаче шпиндель работает на малых оборотах, заставит фрезу снимать слишком толстую стружку. Из-за высокой нагрузки откалываются режущие кромки, а на обрабатываемой поверхности будут оставаться заметные «следы».

Читайте так же:
Обозначения в электронике схемах

Для каждой фрезерной операции существует оптимальное соотношение скоростей подачи и вращения инструмента, на которых обработка будет проходить с достаточной скоростью и точностью. Это не фиксированные величины, а диапазоны. Поломка или преждевременный износ будут наблюдаться при критической ошибке.

Обработка чаще всего состоит из двух этапов: чернового, направленного на максимальный съем материала и чистового, при котором достигается требуемая шероховатость поверхности. Для чистового прохода снижают скорость подачи при сохранении оборотов шпинделя, а в станках со сменой режущего инструмента его выполняют другой, чистовой, фрезой.

Рекомендации по выбору режимов резания

Существует несколько типичных ситуаций, при которых можно воспользоваться общими рекомендациями.

Слишком большие обороты шпинделя

Иногда минимальные обороты станка все равно оказываются слишком высокими. Обычно это наблюдается при обработке твердых материалов фрезами больших диаметров. Можно использовать следующие варианты решения:

  1. Заменить фрезу из быстрорежущей стали на твердосплавную, по возможности — с покрытием, которое работает при повышенных температурах.
  2. Уменьшить диаметр фрезы. При этом снизится окружная скорость, с которой движется режущая кромка.
  3. Использовать технологию HSM. Высокоскоростная обработка позволяет повысить частоту вращения шпинделя и скорость подачи без увеличения износа режущего инструмента. Первый проход выполняется на полную ширину фрезы, а все последующие — на ¼ диаметра.

Слишком малая скорость подачи

В ситуациях, когда привода перемещения не могут обеспечить требуемую скорость подачи, можно поступить следующим образом:

  1. Уменьшать скорость вращения шпинделя вплоть до минимально допустимой мощности.
  2. Использовать фрезу с меньшим количеством зубьев. Такое решение дает хорошие результаты при работе с вязкими материалами, поскольку улучшаются условия отвода стружки с обрабатываемой поверхности. Замена фрезы с 3 зубьями (заходами) на однозаходную фактически означает увеличение скорости подачи в 3 раза (на каждый зуб).
  3. Использовать фрезу большего диаметра.

Алюминий имеет свойство налипать на поверхность фрезы

Налипание стружки при фрезеровании алюминия

Из-за относительно низкой температуры плавления алюминий имеет свойство налипать на поверхность фрезы. Многие начинающие фрезеровщики пытаются решить эту проблему регулированием оборотов шпинделя или скоростей перемещения. В результате оптимальный для фрезы режим резания становится неоптимальным для владельца предприятия: скорость обработки оказывается слишком низкой.

Главная причина налипания стружки — недостаточная подача или неправильный состав СОЖ. Если у станка нет возможности подавать смазочно-охлаждающую жидкость, необходимо организовать вакуумное удаление стружки или продувку сжатым воздухом.

Работа с глубокими отверстиями

Если глубина отверстия в 6 и более раз превышает его диаметр, оно считается глубоким. Неопытные станочники часто сталкиваются с такими проблемами как уход инструмента с оси и его поломка. Существует несколько приемов, которые позволят выполнить обработку точно и без потерь:

  1. Пользоваться сверлами, а не фрезами. По возможности они должны иметь параболические канавки, которые обеспечивают лучший отвод стружки.
  2. Подавать СОЖ под давлением. Жидкость будет вымывать стружку из отверстия.
  3. По возможности производить последовательную обработку двумя сверлами с разными диаметрами: проходить половину глубины отверстия меньшим диаметром и рассверливать до чертежного. Затем пройти отверстие до конца.
  4. При работе одним сверлом как можно чаще вынимать его из отверстия для удаления стружки.
  5. Увеличить скорость подачи, чтобы стружка представляла собой непрерывную спираль.

Работа с глубокими отверстиями

Как фрезеровать пазы?

При фрезеровании торцов деталей и внутренних поверхностей пазов цилиндрическими фрезами важно выбрать правильное соотношение ширины и глубины снимаемого материала в соответствии с максимальными скоростными возможностями станка. При увеличении глубины фрезерования нагрузка на канавки распределяется более равномерно, но вместе с этим наблюдается более сильный отгиб режущего инструмента. Кроме того, ухудшаются условия удаления стружки. При увеличении ширины снимаемого материала существует возможность увеличения скорости вращения шпинделя. Однако есть некоторые граничные значения частот, при которых скорость съема материала начинает падать.

Читайте так же:
Принцип работы однофазного двигателя переменного тока

Единственный способ получения оптимального сочетания этих двух параметров — тестирование станка в разных режимах. При этом материал «пробной» и «рабочей» заготовок должен быть одинаковым.

Сотрудники компании MULTICUT посвятили много времени изучению режимов обработки разных материалов. Выбор базовой комплектации станков собственного производства выполнялся с учетом полученного опыта. Сотрудники компании готовы оказать консультационную и практическую помощь в освоении оборудования и выборе оптимальных режимов резания. Любой желающий может поработать на действующем станке MULTICUT в демонстрационном центре и получить советы опытных мастеров. Получить консультации и справки можно, позвонив по контактному телефону.

Число оборотов в станках

Значение чисел оборотов современных металлорежущих станков колеблется в широких пределах, поскольку на них обрабатываются заготовки из различных материалов и различных диаметров.

Предельные числа оборотов станка находят по наибольшим и наименьшим обрабатываемым диаметрам и допускаемым предельным скоростям резания:

nmax = 1000 υmax / π Dmin; nmin = 1000 υmin / π Dmin,

где nmin и nmax — наименьшее и наибольшее числа оборотов шпинделя в об/мин; υmin и υmax — наименьшая и наибольшая допускаемые скорости резания в м/мин; Dmin и Dmax — наименьший и наибольший диаметры обрабатываемой заготовки или вращающегося инструмента в мм.

В станках, не имеющих бесступенчатого регулирования, числа оборотов изменяются по закону геометрического ряда, т. е.

n1 = nmin; n2 = n1 φ; n3 = n2 φ = n1 φ2; …; nmax.

В соответствии с этим наибольшее число оборотов при ступенях будет:

а знаменатель геометрического ряда будет

где D — диапазон регулирования чисел оборотов, т. е. отношение максимального числа оборотов шпинделя к минимальному; Z — число членов геометрической прогрессии (число скоростей).

Геометрический ряд чисел оборотов имеет то преимущество, что относительная потеря скорости резания (при использовании меньшего числа оборотов шпинделя против требуемого) остается постоянной для всех интервалов чисел оборотов. Действительно, относительная потеря Δυ скорости между двумя соседними (смежными) числами оборотов n2, и n1 представляет собой перепад скоростей:

где А — перепад скоростей; обычно определяется в процентах

A = φ – 1 / φ ּ 100%.

Числа оборотов шпинделей металлорежущих станков стандартизованы и назначаются по геометрической прогрессии, знаменатели которой и перепады чисел оборотов стандартизованы (см. табл. 12).

Таблица 12В промышленности применяются металлорежущие станки со ступенчатым и бесступенчатым регулированием чисел оборотов шпинделя и величины подач. Системы бесступенчатого регулирования позволяют устанавливать на станке более выгодные режимы резания, обычно осуществляемые без остановки станка (на ходу). Обслуживание станка с бесступенчатым регулированием легче и позволяет работать без резких ударных нагрузок, что особенно ценно при работе твердосплавным инструментом, плохо выдерживающим удары.

Бесступенчатое регулирование рабочих движении в станках выполняется разными способами: электрическим регулированием — путем изменения числа оборотов вала электродвигателя, который приводит в движение станок; с помощью гидравлического привода, широко применяемого для механизмов с прямолинейным движением и сравнительно редко для вращательного движения; с помощью механических бесступенчатых вариаторов.

Из большого количества типов механических вариаторов практическое применение получили лишь некоторые из них. В качестве примера на рис. 262, ж — и показан вариатор Светозарова с передаточным отношением i1 = 1/2 ÷ 2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector