Как сделать зарядное для шуруповерта
Как сделать зарядное для шуруповерта
Все шуруповерты, работающие от аккумуляторов комплектуются зарядными устройствами. Однако некоторые из них очень медленно выполняют зарядку аккумулятора, что при интенсивном использовании инструмента создает определенные неудобства. В этом случае даже два аккумулятора, входящие в комплект, не позволяют настроить нормальный рабочий цикл. Наилучшим выходом из подобной ситуации будет зарядное для шуруповерта, изготовленное своими руками, по наиболее подходящей схеме.
Устройство шуруповерта
Несмотря на разнообразие моделей, общее устройство шуруповертов довольно универсальное, а принцип действия практически одинаковый. Они могут различаться только внешним видом, компоновкой отдельных деталей, наличием или отсутствием дополнительных функций.
Питание шуруповертов может быть сетевым от напряжения 220В или аккумуляторным. Общая конструкция шуруповерта включает следующие элементы и составляющие:
- Корпус. Изготавливается из твердых пластмасс, что способствует облегчению конструкции и снижению себестоимости. В некоторых моделях применяются металлические сплавы, придающие конструкции повышенную прочность. Представляет собой пистолет с удобной рукояткой, при разборке разделяется на две половинки.
- Патрон. В нем закрепляются насадки, которым затем передается вращательное движение. Обычно используется трехкулачковое, самозажимное и самоцентрирующееся устройство. Внутри имеется шестигранное углубление, куда вставляется хвостовик насадки. Для закрепления в патроне насадки вставляются между кулачками и зажимаются вращением муфты.
- Электрическая часть. Состоит из малогабаритного электрического двигателя коллекторного типа. В устройствах, работающих от сети используются двухфазные двигатели переменного тока, рассчитанные на 220В. Их запуск осуществляется с помощью пускового конденсатора. В аккумуляторных шуруповертах устанавливаются электродвигатели постоянного тока. Постоянный ток поступает от аккумулятора, выполненного в виде набора элементов, объединенных в общем корпусе. Мощность шуруповерта определяется по выходному напряжению батареи.
- Элементы цепи. Для включения используется специальная кнопка, расположенная на рукоятке. Обычно кнопочные выключатели работают в паре с регуляторами напряжения. То есть, величина напряжения, подаваемого на двигатель, зависит от усилия, прилагаемого при нажатии кнопки. Здесь же устанавливается и рычаг переключения, обеспечивающий реверс вращения вала за счет изменения полярности электрического сигнала. От кнопки сигнал поступает непосредственно на ротор через коллектор. Электрический контакт обеспечивается графитными щетками определенных размеров.
- Механические части и детали. Основой конструкции является редуктор планетарного типа, с помощью которого крутящий момент передается от вала к выходному шпинделю. В качестве дополнительных элементов используются водило, кольцевая шестерня и сателлиты. Все детали находятся внутри корпуса и по очереди взаимодействуют друг с другом.
Важной составной частью считается муфта регулировки вращения, устанавливающая определенный крутящий момент. С ее помощью прекращается вращение вала после вкручивания шурупа. Остановка происходит из-за увеличения сопротивления вращению. Данная мера предотвращает срыв резьбовой части шурупа и выход из строя самого шуруповерта.
Схемы зарядных устройств для шуруповертов
В одних и тех же шуруповертах могут использоваться различные типы аккумуляторов, отличающихся параметрами и техническими характеристиками. В связи с этим, к ним требуются разные зарядные устройства. Поэтому перед тем как приобрести или сделать зарядник для шуруповерта своими руками, нужно определить тип батареи и условия эксплуатации. Кроме того, рекомендуется изучить основные схемы, чаще всего используемые в зарядных устройствах.
Зарядка на микроконтроллере. Размещается в обычном корпусе, оборудована звуковой и световой сигнализацией о начале и окончании заряда. Данная схема обеспечивает корректную зарядку батареи. В начале работы загораются а затем гаснут светодиоды. Индикация сопровождается звуковым сигналом. Таким образом выполняется тестирование работоспособности устройства. После этого светодиод красного цвета начинает равномерно мигать, что указывает на нормальный процесс зарядки.
По достижении аккумулятором полного заряда, красный светодиод перестает мигать, а вместо него загорается зеленый, сопровождающийся звуковым сигналом. Это означает, что зарядка окончена.
Установка уровня напряжения, который должен быть при полной зарядке, осуществляется с помощью переменного резистора. При этом значение входного напряжения равно напряжению полностью заряженной батареи плюс один вольт. В схеме используется любой полевой транзистор, имеющий Р-канал и наиболее подходящий по токовым характеристикам.
Для того чтобы обеспечить зарядку на уровне 14В, напряжение, подаваемое на вход должно составлять не менее 15-16В. Порог срабатывания, отключающий зарядное устройство, устанавливается с помощью переменного резистора на уровне 14,4В. Сам процесс зарядки протекает в виде импульсов, отображаемых на светодиоде. В промежутках между импульсами контролируется напряжение на батарее и по достижении нужного значения происходит подача звукового сигнала совместно с миганием светодиода об окончании зарядки.
Существуют и другие схемы зарядных устройств. Например, зарядка для дрели-шуруповерта работает с напряжением 18 вольт. При зарядке батареи на 14,4В зарядный ток подбирается с помощью резистора.
Зарядка для шуруповерта своими руками
Проблема собственноручного изготовления зарядного устройства возникает не так уж и часто, в связи с большим количеством вариантов, подходящих практически для всех моделей шуруповертов. Просто иногда возникают ситуации, когда зарядка отсутствует, или она неожиданно вышла из строя, а приобрести новую нет возможности. В этом случае можно попытаться самостоятельно изготовить зарядное устройство.
Предварительно следует запастись всеми необходимыми материалами. Потребуется батарея в нерабочем состоянии, стакан от аккумулятора, паяльник, термопистолет, обычная крестовая отвертка, дрель и острый нож со сменными лезвиями. После этого можно приступать к изготовлению зарядного устройства. В первую очередь выполняется вскрытие зарядного стакана, после этого от клемм отпаиваются все проводники. Далее производится удаление внутренней электроники. При выполнении этой операции нужно соблюдать полярность клемм, чтобы в дальнейшем не возникло путаницы и ошибок.
Корпус нерабочей батареи нужно вскрыть и аккуратно отпаять провода от клемм. Для дальнейшей работы потребуется разъем и верхняя крышка. Плюс и минус на клеммах отмечаются карандашом или маркером. В основании зарядного стакана намечаются отверстия, через которые будет крепиться заготовленная крышка и выводы питающих проводов. Проводники аккуратно пропускаются через отверстия с соблюдением полярности, после чего они соединяются с клеммами и разъемами методом пайки.
Далее корпус нужно скрепить специальным термоклеем, крепление нижней крышки к основанию стакана осуществляется с помощью саморезов. Получившуюся конструкцию нужно вставить в аккумулятор и начинать процесс зарядки. Мигающий индикатор будет указывать на правильную сборку устройства. Лишь немногие зарядники укомплектованы так называемыми умными системами, существенно продлевающими срок эксплуатации батареи. Эту проблему может решить зарядное устройство для шуруповерта 18 вольт.
В конструкцию обычной зарядки добавляется система стабилизации напряжения и ограничение заряжающего тока. В итоге получается конструкция никель-кадмиевого аккумулятора, емкость которого составляет 1200 мАч. Зарядка будет выполняться в безопасном режиме, максимальным током не выше 120 мА, но времени для этого будет затрачиваться больше, чем обычно.
Зарядное устройство 12.6В 3А, или продолжение разговора на тему переделки батареи шуруповерта
В конце прошлого года я публиковал пару обзоров на тему переделки батарей шуруповертов. Сегодня я расскажу о альтернативном варианте заряда переделанной батареи при помощи готового зарядного устройства.
В общем как всегда, осмотр, разборка, схемы, тесты.
В прошлый раз я предлагал использовать для заряда старое зарядное с отдельной платой преобразователя. Вариант в общем то неплохой, но мне стали задавать вопросы, а что делать если старое зарядное разбито, поломано, съела кошка.
И вот я случайно наткнулся в одном из магазинов на вариант зарядного устройства, которое подойдет для батарей 3S, т.е. 12.6 Вольта. Так как такой вариант является одним из самых распространенных при переделке старых шуруповертов, то я решил заказать его для обзора.
Упаковка весьма аскетичная, впрочем как и надпись, указывающая напряжение и ток заряда.
Комплект поставки весьма прост, кабель и собственно зарядное устройство.
Кабель в принципе неплохой, вот только вилка подкачала, варианты — резать, менять или искать переходник.
Зарядное устройство выполнено в формате блока питания, довольно увесистое, корпус прочный.
На одном из торцов корпуса расположен двухконтактный сетевой разъем, на второй стороне кабель с привычным 5.5/2.1мм штекером. Длина кабеля около 1 метра.
Так как это именно зарядное устройство, а не блок питания, которым вы заряжаете свой смартфон/планшет, то здесь присутствует индикатор окончания заряда. Светит правда он не очень ярко, при ярком солнце его не будет заметно, как например и в свете вспышки.
Снизу присутствует наклейка с указанием характеристик, ничего нового, помимо того что было указано на упаковке, я не увидел.
Как я выше писал, корпус довольно прочный, но против молотка и ножа он устоять не смог, а других способов разобрать данное изделие нет.
Плата внутри сидит очень крепко. Частично на двухстороннем скотче, частично приклеена силиконом в районе силовых элементов. На фото видно внутренности корпуса, в дополнение там осталась какая-то клейкая масса.
На вид экономно, но вполне качественно. Радиаторы имеют изоляцию и удерживаются за счет самого силового элемента, дополнительного лепестка и силиконовым герметиком.
Также к корпусу приклеен трансформатор и входной дроссель. В общем вынималась плата довольно тяжело.
На входе присутствует предохранитель, а также входной фильтр. К сожалению нет термистора, вместо него перемычка.
1. Входной конденсатор имеет емкость 68мкФ, для мощности около 40 Ватт вполне достаточно.
2. Высоковольтный транзистор CS7N60F в полностью изолированном корпусе.
3, 4. С одной стороны трансформатора спрятался оптрон обратной связи, с другой — правильный помехоподавляющий конденсатор Y класса, так что током вас не убьет.
5. Выходная диодная сборка 10 Ампер 100 Вольт, с запасом как по току, так и по напряжению.
6. Выходные конденсаторы имеют емкость 1000мкФ и напряжение до 25 Вольт, здесь также вопросов нет. Попутно есть место для установки помехоподавляющего дросселя и третьего конденсатора.
Снизу платы компонентов еще больше.
"Горячая" сторона блока питания. Здесь у меня также не возникло вопросов, ну почти не возникло 🙂
"Холодная" сторона. Здесь расположены элементы стабилизации напряжения, тока, а также индикации окончания заряда.
Претензия к "горячей" стороне у меня была только в плане пайки, а точнее ее качества. Такое ощущение, что ШИМ контроллер перепаивали, так как остальные компоненты запаяны аккуратно.
К выходной стороне вопросов нет, все аккуратно, элементы дополнительно зафиксированы при помощи клея. Операционный усилитель LM358.
Так как обзора подобного устройства у меня еще нет, то не перерисовать схему было нельзя.
Впрочем первичная часть блока питания оказалась практически один в один с блоком питания, который я уже обозревал — Блок питания 12 Вольт 1 Ампер. Блок весьма надежный и качественный.
Отличие только в номиналах некоторых компонентов, а также их количестве, микросхема имеет одинаковую распиновку.
Так как схема большая, то чтобы было более понятно, я разбил ее на две части, первичную и вторичную.
Вторичная сторона отличается от привычных схем блоков питания, так как содержит больше узлов.
Распишу отдельно узлы.
1. Зеленый — Узел стабилизации выходного напряжения, отвечающий за режим CV.
2. Красный — Стабилизация тока, режим СС.
3. Синий — узел индикации.
Слева вверху два выпрямителя, основной и дополнительный (D3, С5) для питания операционного усилителя и светодиода. Дополнительное питания необходимо чтобы эти элементы не потребляли ток когда подключен аккумулятор, а зарядное не включено в розетку.
Между красным и синим узлом источник опорного напряжения для узла индикации и стабилизации тока.
И хотя большей частью все сделано вполне корректно, но есть особенность. Параллельно первому конденсатору подключен резистор номиналом 2.2к (R13A), потому потребление в выключенном состоянии есть все равно. Попробовать исправить эту ситуацию можно установкой диода (отмечен красным) вместо перемычки, которая в свою очереди стоит на месте отсутствующего помехоподавляющего дросселя. Но есть проблема, этот диод будет греться, причем заметно, потому я бы рекомендовал оставить как есть.
Теперь что менять если надо другое напряжение/ток.
1. Зеленый — делитель по цепи измерения напряжения, увеличение номинала верхнего резистора увеличит выходное напряжение, нижнего — уменьшит.
2. Синий — Увеличение номинала шунта уменьшит ток, уменьшение — увеличит. Изменение будет пропорционально изменению номинала. Также изменение этого резистора влияет и на индикацию.
R19, R13, увеличение верхнего резистора — уменьшение выходного тока, изменение нижнего действует наоборот.
3. Оранжевый — Делитель порога переключения индикации. Все то же самое как в п.2, только для индикации. Кстати отмечу, что этот узел имеет гистерезис, потому переключение красный/зеленый происходит скачкообразно, а не плавно, мелочь, но приятно.
Отдельно фотка для перфекционистов, здесь я перечислил то, что можно установить на плату.
1. Y- конденсаторы, так как подключение без заземления, то смысла не имеют. Если заменить гнездо на трехконтактное, уменьшат помехи в сеть.
2. Термистор, уменьшит пусковой ток. Например NTC 5D-9
3. Выходной дроссель. Уменьшит уровень пульсаций на выходе, ток более 3 Ампер, индуктивность 1-10мкГн.
4. Варистор, увеличит защищенность блока питания при подаче высокого напряжения на вход. Диаметр 10мм, напряжение 470 Вольт.
5. Х-конденсатор, уменьшит уровень помех в сеть, место под 22-33нФ.
6. Двухобмоточный дроссель, обычно на небольшом колечке, также для уменьшения помех в сеть.
7. Диодная сборка. Можно поставить параллельно первой, немного увеличит КПД и поднимет надежность, лучше ставить такую же как уже используется, 10 Ампер 100 Вольт.
8. Выходной конденсатор. На уровне пульсаций скажется мало, но может поднять надежность работы. 1000мкФ 25 Вольт.
Переходим к тестам.
Для начала пройду по основным позициям
1. Выходное напряжение — завышено примерно на 30мВ, считаю что вполне в норме.
2. Ток от аккумулятора при отключенном питании, около 7мА. Довольно много, разрядит аккумулятор примерно через 2-3 недели. Лучше использовать аккумуляторы с защитой, впрочем защита обязательна в любом случае.
3. Зарядный ток 2.9 Ампера, немного ниже заявленного, но я считаю что ничего страшного.
4. Индикация настроена на ток 270мА, при падении тока заряда ниже этой величины включается зеленый светодиод и погасает красный.
5, 6. Так как устройство не умеет полностью обесточивать аккумулятор, то дальше вы увидите падение тока почти до нуля. К примеру с 66мА до 28мА ток упал примерно за 8 минут.
Режим без полного снятия тока допустим, хотя и не очень желателен. Если аккумулятор исправен, то проблем не будет, но я бы советовал просто не оставлять его на большое время, например день-два.
Дальше я подключил зарядное к электронной нагрузке. Но так как электронная нагрузка не имеет режима CV, то пришлось подключиться минуя цепь стабилизации тока.
Был задан ток нагрузки в 3 Ампера и закрыт корпус для термопрогрева. Попутно контролировался уход напряжения, здесь также проблем нет, 5мВ через час термопрогрева это просто отлично, сказывается то, что большей частью применены точные резисторы.
Так как это зарядное, а не блок питания и большую часть времени оно работает с максимальным током, то я сразу зада ток 3 Ампера. Время теста было 1 час, за это время оно полностью зарядит аккумулятор емкостью 2400-2600мАч. Дальше в любом случае ток начнет падать и тестировать нагрев смысла нет.
1. Спустя час я проверил температуру корпуса, в самом горячем месте прибор показал 59 градусов, хотя на ощупь корпус был не горячий, возможно сказывается то, что пластмасса частично прозрачна в ИК диапазоне.
2. Открыл корпус и измерил температуру, самая высокая была в районе снаббера и шунта первичной стороны, около 80 градусов, транзистор имел температуру 70-72 градуса.
3. Закрыл корпус на пару минут, повернул на 180 градусов, чтобы были видны остальные компоненты и измерил еще раз. В этот раз самую высокую температуру имела выходная диодная сборка, около 85 градусов.
Из тестов могу заключить, что с температурным режимом все нормально, до критических температур есть запас еще около 20-30 градусов.
Что можно сказать в качестве резюме, сначала по пунктам:
Преимущества
Крепкая и аккуратная конструкция
Применены компоненты с запасом
Хорошая стабильность параметров
Отсутствие перегрева
Четкая работа индикации окончания заряда
Недостатки
Отсутствие полного отключения заряда
Собственное потребление в 7мА.
Вилка кабеля имеет плоские штыри.
Мое мнение. На мой взгляд устройство имеет только один существенный недостаток, оно не снимает зарядный ток полностью. правильный заряд идет до снижения тока ниже 1/10 от установленного, затем отключение и последующее включение если напряжение опять снизится. Конечно можно подумать и сделать какую нибудь схемку с гистерезисом, которая будет не отключать заряд, а снижать выходное напряжение так, чтобы прекращался зарядный ток. Но на мой взгляд, если не оставлять подключенный аккумулятор надолго, то вполне пройдет и вариант как сделано сейчас.
Порадовала довольно неплохая сборка и то, что компоненты установлены с запасом. Также стоит отметить отсутствие перегрева, чем грешит довольно большое количество блоков питания. Мне вообще показалось, что устройство собрали на базе БП 12 Вольт 5 Ампер, подняв немного напряжение и снизив ток, потому получился такой результат.
В общем если вы переделали батареи своего шуруповерта и они имеют напряжение 12.6 Вольта (три последовательных аккумулятора), а родное зарядное не подлежит восстановлению, то довольно неплохой вариант.
На момент заказа зарядное стоило около 13.7 доллара, для обзора менеджер снизил цену до 11 долларов, что на мой взгляд вполне адекватно за данное устройство с учетом его функционала и качества сборки.
На этом все, надеюсь что обзор был полезен.
<spoiler title="'Небольшой">
А не протестировать ли нам аккумулятор смартфона.
</spoiler>
Как заряжать аккумулятор шуруповерта
Шуруповерт – один из самых популярных электрических инструментов для ремонта и отделочных работ. Этот прибор можно встретить практически в каждом доме и используется он для закручивания крепежа или сверления отверстий разного диаметра, применяют его в работе как профессионалы на строительных или монтажных объектах, так и любители в домашнем ремонте.
Все электрические шуруповерты делятся на 2 типа: сетевые и аккумуляторные. Сетевые получают питание от источника тока через розетку и кабель, а аккумуляторные – через батарею. В этой статье речь пойдет только об аккумуляторных шуруповертах, а именно, как правильно зарядить шуруповерт с батареей того или иного типа.
Типы аккумуляторов
Химический состав устройства – одна из главных характеристик, которая определяет тип заряда. От металла, который используется в аккумуляторе, зависит то, как правильно заряжать шуруповерт (правильная последовательность цикла заряда-разрядки), что продляет срок эксплуатации прибора. Все аккумуляторы в шуруповертах представлены тремя типами: литий-ионные, никель-кадмиевые и никель-металл-гидридные.
Литий-ионный аккумулятор
Считается одним из современных типов с использованием новейших технологий. Отличается достаточной емкостью батареи. Не имеет эффекта памяти и рассчитан на интенсивное и частое применение. Быстро заряжается, циклов зарядки насчитывается до 1000.
Однако литий-ионные модели отличаются высокой стоимостью и плохо работают при низких температурах: быстрее разряжаются и дают нестабильный поток энергии. Хранить такие батареи нужно в полуразряженном состоянии и периодически производить зарядку.
Никель-кадмиевый аккумулятор
Самый первый тип аккумуляторов, долго держит зарядку и имеет достаточно хорошую емкость. Однако имеет эффект памяти, который запрещает ставить на зарядку при неполном разряде батареи. Поэтому частая подзарядка недопустима, это ведет к сокращению емкости АКБ. Перед первым использованием также необходимо сначала полностью зарядить аккумулятор, а потом уже начать работу с инструментом.
Никель-кадмиевые аккумуляторы обычно используются в шуруповертах бюджетного класса из-за выгодной цены и оптимального режима нечастого использования.
Никель-металл-гидридный аккумулятор
Этот тип пришел на смену никель-кадмиевым, он более экологичен и легче по весу. Однако он хуже сохраняет зарядку в спокойном режиме и может быстро снизиться емкость батареи. Поэтому агрегат желательно ставить на зарядку перед каждым применением и всегда брать с собой зарядное устройство.
Как правильно зарядить аккумулятор шуруповерта
Очень важным этапом является первая зарядка аккумулятора после покупки инструмента. Она влияет на то, будет ли активной вся емкость батареи. Каждый тип аккумулятора имеет свои характерные черты первого заряда.
Литий-ионные первый раз можно заряжать до любого уровня, так как они не имеют эффекта памяти.
Никель-кадмиевые имеют сложный процесс первой зарядки: их следует подзаряжать 3 раза подряд до заполнения всей емкости, а только потом включать в работу.
Никель-металл-гидридные сперва нужно разрядить целиком, а потом зарядить по максимуму. Следует выполнить 5 таких полных циклов
Сколько времени нужно для зарядки аккумулятора
Перед тем, как зарядить аккумуляторную дрель или шуруповерт, нужно определить, сколько времени потребуется для этой процедуры. Как правило, период прописан в инструкции, прилагающейся к инструменту. Некоторые модели аккумуляторов имеют световую индикацию, которая показывает, когда прибор полностью заряжен. После завершения зарядки сразу же отсоедините батарею от зарядного устройства.
Обычно время заряда составляет от получаса до 7 часов, в зависимости от типа самой батареи и зарядного устройства. Дольше всего подпитываются энергией никель-кадмиевые аккумуляторы – 3-7 ч.
Влияние внешних факторов на аккумулятор
В этом разделе представлена подробная информация, как правильно заряжать аккумулятор шуруповерта и использовать оборудование в условиях улицы. Несмотря на то, что к каждой модели шуруповерта прилагается инструкция, есть общие правила применения аккумуляторных инструментов вне помещения:
- Процесс заряда аккумулятора должен осуществляться в особом температурном режиме: от +10 0 до +35 0 С. Нежелательно заряжать АКБ на холоде при температуре ниже +5 0 С.
- Избегайте контакта самого инструмента или аккумулятора со влагой: дождем или снегом, высокой влажностью. Это может привести к развитию ржавчины и нарушению электропроводимости. В этом случае придется покупать новый прибор и потратить время на поиски подходящего аккумулятора.
- Прямые солнечные лучи также вредны для аккумулятора и всего инструмента в целом! Особенно летом, когда температура высокая. Это чревато перегревом устройства и нарушением контактов, ведь в результате высоких температур ионы металлов начинают вступать друг с другом в реакцию. Этот процесс не виден сразу, со временем вы обнаружите, что зарядка стала медленнее, а индикатор будет показывать всегда одно положение.
Типы зарядных устройств
Для шуруповертов существует 2 типа устройств для зарядки аккумуляторов:
- обычный;
- импульсный.
Обычные зарядные устройства занимают 3-7 часов на полную зарядку АКБ. Обычно используются с шуруповертами бытового класса, где емкость батареи не расходуется интенсивно и не требуется частая зарядка аккумулятора.
Импульсные приборы полностью заряжают аккумулятор менее чем за 1 час. Как правило, они идут в комплекте к профессиональным моделям с высокой мощностью, которые используются непрерывно в течение долгого времени и требуют быстрой подзарядки сменной батареи.
Помимо этого, не забудьте проверить совместимость зарядного устройства и вашей электросети. Необходимое напряжение для прибора должно быть прописана в инструкции к нему. Если показатели не совпадают и напряжение самой сети выше, чем нужно, то следует использовать трансформатор или адаптер, чтобы компенсировать дисбаланс. Иначе может произойти короткое замыкание или устройство просто перегорит. Наличие предохранителя внутри прибора просто не позволит ему зарядить аккумулятор.
Как зарядить аккумулятор шуруповерта без зарядного устройства
Существуют нестандартные методы, как зарядить шуруповерт без зарядного устройства: зарядка от автомобиля, от универсального зарядного устройства или от внешнего источника энергии. Эффективность таких действий, возможно, высока, если нет под рукой фирменного зарядного устройства, но безопасность аккумулятора при этом сомнительна, так как может привести к перезарядке аккумулятора. Мы не рекомендуем использовать данные методы, так как они могут не только привести к выходу из строя или поломке самой аккумуляторной батареи, но и попросту опасны для человека. Лучше приобрести фирменный прибор той же марки, что и шуруповерт, или подходящий по характеристикам.
Убираем аккумулятор на хранение
Перед тем, как убрать прибор на хранение, следует выполнить некоторые действия в зависимости от типа вашего аккумулятора.
Литий-ионные не имеют эффекта памяти и их можно заряжать на любой стадии, однако не стоит допускать полного разряда, это может привести к отключению защитных контроллеров, которые предотвращают перегрузки. В результате этого аккумулятор в дальнейшем может не выдержать интенсивную эксплуатацию и выйти из строя. Поэтому на хранение литий-ионный аккумулятор нужно убирать с зарядом в 50% и периодически (раз в 1-2 мес.) доставать и подзаряжать его.
Никель-кадмиевые перед хранением разряжают практически полностью (до состояния нерабочего инструмента). Чтобы убрать аккумулятор на долгое хранение (более 6 месяцев), следует выполнить от 3 до 5 полных курсов заряда-разрядки. Хранить так же в разряженном состоянии.
Никель-металл-гидридные больше остальных типов подвержены быстрому саморазряду, поэтому нужно постоянно поддерживать уровень зарядки и периодически ее восполнять. После длинного срока хранения нужно поставить АКБ на зарядку минимум на сутки, чтобы восполнить запасы энергии. Также отмечается снижение емкости после 300 циклов заряда-разрядки.
Зарядное для аккумуляторов шуруповерта
Здравствуйте уважаемые посетители. Хочу предложить несложную схемку зарядного устройства для герметичных аккумуляторов шуруповерта. Схема представлена на рисунке 1.
Основой схемы является трехвыводной интегральный регулируемый стабилизатор положительного напряжения КР142ЕН12А. Стабилизатор допускает работу с током нагрузки до 1,5А. Этим параметром и ограничивается максимальный ток заряда аккумуляторов.
Схема работает следующим образом. Переменное напряжение величиной 12,6 – 13В, снимаемое с вторичной обмотки сетевого трансформатора, выпрямляется диодным мостом VD1 – D3SBA40. Его можно заменить на RC201, RS201, KBP005, BR305, KBPC1005 или собрать мост из отдельных диодов с прямым выпрямленным током не менее двух ампер. На выходе выпрямителя стоит конденсатор фильтра С1, который уменьшает пульсации выпрямленного напряжения. На конденсаторе уже присутствует постоянное напряжение равное амплитудному значению переменного напряжения 12,6… 13В. Т.е. 12,6 • √2 ≈ 17,7В. Такое напряжение будет, если в качестве сетевого трансформатора будут применены готовые накальные трансформаторы, например ТН17, ТН18, ТН19 с соответствующим подключением вторичных обмоток. У меня трансформатор – перемотанный ТВК-110Л1. Действующее напряжение его вторичной обмотки – 14В.
С выпрямителя напряжение подается на интегральный стабилизатор DA1, выходное напряжение, которого устанавливается с помощью резистора R4 на уровне, необходимом для вашего конкретного аккумулятора. Например, вы знаете, что напряжение полностью заряженной батареи равно 14,1В, то такое напряжение и надо выставить на выходе стабилизатора. Датчиком тока зарядки служит резистор R3, параллельно которому включен подстроечный резистор R2, с помощью этого резистора устанавливается уровень ограничения зарядного тока, который равен 0,1 от емкости аккумулятора. Мощность, выделяемая на резисторе R3 равна I2 заряда • R3 = 1,52 • 1 = 2,25Вт, так что можно применить двухваттный резистор номиналом 1Ом, но при этом зарядный ток надо немного уменьшить. Вообще данная схема является стабилизатором напряжения с ограничением по току нагрузки. На первом этапе аккумулятор заряжается стабильным током, потом, когда ток заряда станет меньше величины тока ограничения, аккумулятор будет заряжаться уменьшающимся током до напряжения стабилизации микросхемы DA1.
Датчиком зарядного тока для индикатора HL1 служит диод VD2. В этом случае светодиод HL1 будет индицировать прохождение тока вплоть до, ? 50 миллиампер. Если в качестве датчика тока использовать все тот же R3, то светодиод будет гаснуть уже при токе ≈0,6А, т.е. конец зарядки аккумуляторов, судя по погасшему светодиоду, наступал бы слишком рано. Аккумулятор не был бы полностью заряжен. Этим устройством можно заряжать и шестивольтовые аккумуляторы. Кстати можно прикинуть, возможно ли заряжать аккумуляторы с напряжением 1,25В. Напряжение на входе стабилизатора DA1 – 20В, ток заряда допустим — 1,5А. первоначальное напряжение на аккумуляторе равно одному вольту, значит, в этом случае на микросхеме упадет 20В – 1В = 19В. При этом на ней выделится мощность равная U•I = 19В • 1,5А = 28,5Вт. Максимально допустимая мощность рассеивания для КР142ЕН12А равна 30Вт. Т.е. при условии применения соответствующего радиатора возможна зарядка и отдельного аккумуляторного элемента с напряжением 1,25В. Площадь радиатора для данной мощности можно прикинуть по диаграмме здесь.
Зарядное устройство собрано на печатной плате, рисунок которой можно скачать здесь. Специфические детали, которые применил я, показаны на фото1. Ну, я думаю, что имея топологию платы в формате лау, вы можете применить и другие комплектующие, изменив рисунок проводников. Если в качестве сетевого трансформатора будете использовать ТВК-110Л1, то первичную обмотку можно оставить полностью, т.е. 3000витков. Значит, в этом случае количество витков на один вольт будет равно W1вольт = W1/U1 = 3000/220 ≈ 13,7. Количество витков вторичной обмотки будет равно W2 = U2 • W1вольт = 12,6 • 13,7 ≈ 173 витка. Диаметр провода D = 0,7√I = 0,7 • √1 = 0,7мм – для тока заряда в 1А. Если вторичная обмотка не будет убираться в окне сердечника, то придется пожертвовать небольшим током холостого хода трансформатора и пересчитать количество витков первичной обмотки для другого коэффициента. Считаем. Площадь сечения сердечника ТВК-110Л1 Sс = 6,4см2 (ШЛ20×32), W1вольт = 50/Sс = 50/6,4 ≈ 8витков на вольт, тогда количество витков первичной обмотки будет равно 220 • 8 =1760витков. Придется смотать 3000 — 1760 = 1240витков. Ну, вторичную обмотку пересчитаете уже сами. Если возникнут вопросы, то у меня есть просьба, задавайте их на форуме. Возможно ответы на них будут интересны и другим посетителям сайта. До свидания. К.В.Ю.
Скачать схему и рисунок печатной платы.