Wabashpress.ru

Техника Гидропрессы
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Легирующие металлы и их характеристика. Легирующие металлы

Легирующие металлы и их характеристика. Легирующие металлы

Есть три степени легирования, согласно которым меняется процентное содержание добавочных веществ. Отсюда материал может быть:

  • низколегированным – до 2,5% примесей в составе;
  • среднелегированным – до 10%;
  • высоколегированным – до 50% добавок.

Различается также молекулярная структура, согласно ей все сплавы классифицируют на:

  • мартенситные – с полностью такой зернистостью;
  • ферритные;
  • аустенитные, а также различные виды комбинированных сталей.

Наиболее часто в качестве примеси используется углерод, он отвечает за повышенную прочность и стойкость к ударам. В связи с этим классифицируют сплавы:

  • низкоуглеродистые – до 0,25% содержания;
  • среднеуглеродистые – до 0,65%;
  • высокоуглеродистые – более 0,65%.

Структура также подразумевает деление на следующие классы:

  • доэвтектоидные – в сплаве есть участки феррита;
  • эвтектоидные – в основе перлит;
  • ледебуритные или заэвтектоидные – с первичными/вторичными карбидами.

Также мы уже отмечали, что по назначению все делятся на:

  • конструкционные – они, в свою очередь, подразделяются на строительные и машиностроительные;
  • инструментальные – для создания инструментов металлообработки;
  • с особыми свойствами, в том числе устойчивые к температурным перепадам, огнестойкие и другие.
  • жаропрочные – в них добавляют хром, ванадий, молибден, они используются в сфере энергетики, а также для других отраслей с высокими температурными показателями;
  • улучшаемые – их дополнительно подвергают термообработке, обычно закалке, они отличаются повышенной прочностью и чувствительностью к концентрации напряжения;
  • цементуемые – они сперва проходят цементацию, а уже после этого закалку, отлично подходят для производства шестерен, валов и прочих элементов, для которых важна износостойкость;
  • быстрорежущие – очень большая твердость и красностойкость до высокой температурной границы;
  • нержавеющие – имеют покрытие из оксидной пленки, предотвращающее ржавление;
  • с улучшенными магнитными или электрическими качествами.

Если более подробно классифицировать легированные стали строительного назначения, то различают:

  • массовые – применяются фактически всюду;
  • мостостроительные;
  • судостроительные – очень устойчивы ко хрупкому разрушению;
  • для горячего водоснабжения и пара – относится к жаропрочным;
  • низкоопущенные – активно используются в самолетостроении и пр.

Кроме того, все сплавы можно классифицировать по основной примеси, а также делить на двухкомпонентные, трехкомпонентные и так далее по конкретной рецептуре.

Маркировка легированных сталей

Так как данный класс материалов очень обширен, то возникла необходимость в обозначении отдельных элементов. К сожалению, нет единых во всем мире правил по тому, как ставить клеймо. Мы будем перечислять правила, характерные для российского производства.

В основе маркировке – цифры и буквы. Литеры могут означать особые свойства или принадлежность к узкому классу, но наиболее часто они отвечают за компонент, который находится в составе:

  • А – азот.
  • К – кобальт.
  • С – кремний.
  • Т – титан.
  • Е – селен.
  • Б – ниобий.
  • Г – марганец.
  • М – молибден.
  • П – фосфор.
  • Ф – ванадий.
  • Ц – цирконий.
  • В – вольфрам.
  • Д – медь.
  • Н – никель.
  • Х – хром.
  • Р – бор.
  • Ю – алюминий.

Российский государственный стандарт

За маркировку отвечает ГОСТ 4543-71. Согласно документу, по букве, которая стоит спереди, можно определить, к какому классу относится вещество:

  • Ж – нержавеющий сплав.
  • Х – хромистый.
  • Е – магнитный.
  • Я – хромоникелевая нержавейка.
  • Ш – шарикоподшипниковый.
  • Р – инструментальный быстрорежущий.
  • А – высококачественный.
  • Н – полученный нагартованным прокатом.
  • ТО – способ термической обработки.

Также следует смотреть на цифры. Первая позволяет понять, сколько в составе углерода, а затем вместе с буквой стоит процент содержания другой легирующей добавки.

Вот пример маркировки хромистого соединения:

Свойства и назначение: с какой целью осуществляется легирование сталей

С развитием промышленности активно увеличивается количество необходимых разновидностей металлических составов. В зависимости от того, какие свойства необходимо получить, могут быть добавлены разные элементы – хром, кремний, медь и пр. Насколько различные имеют свойства эти вещества, настолько и разнообразны полученные эффекты. Очень важно при этом достигнуть необходимых пропорций. Именно по этому свойству все сплавы классифицируются – по базовой примеси, а те компоненты, которые находятся в наименьшем количестве, называются вторичными ингредиентами.

Железо, которое берется за основу, на самом деле не очень прочное. Оно нуждается в обработке и улучшении. самый стандартный, привычный способ – это добавка углерода во время нагрева с последующим быстрым охлаждением. И в зависимости от того, какое процентное соотношение этого вещества (от 0,1 до 1,15 процента от состава, можно различать мягкую, полумягкую, полутвердую и твердую сталь.

Риски при легировании

К сожалению, любые химические добавки при определенных условиях могут быть не столько полезными, сколько воздействовать негативно. Так, например, один компонент, который увеличивает твердость одновременно может повысить хрупкость. Есть еще несколько угроз, вот они:

  • большинство ферросплавов изготавливается в очень мелких частицах, фактически это металлическая пыль, которая является взрывоопасной – пожар, токсичность, взрывы, это все может привести к повышенным рискам;
  • пары, которые могут образовываться во время производственных процессов, негативно воздействуют на здоровье – мельчайшие частицы пыли могут оседать на легких;
  • если в сплав добавлено олово в сочетании со свинцом, то нужно быть особенно осторожным при нагреве, поскольку состав является токсичным при воздействии высоких температур.

Практическое применение: что дает легирование стали

Получаемых характеристик настолько много, что все это зависит от конкретного случая. Мы приведем несколько конкретных ситуаций:

  • Повышение твердости. Это необходимо особенно для базовых металлических конструкций, чтобы они могли выдерживать очень высокие, особенно статичные нагрузки. Для этого зачастую добавляют платину.
  • Ферромагнитные свойства. Чтобы добиться того, чтобы железо потеряло свои магнитные качества, необходимо, чтобы сплав содержал кобальт.
  • Чтобы серебро не тускнело, а также не подвергалось коррозии, можно прибавить родий. Он может также быть дополнен палладием или платиной, чтобы увеличить его прочность.
  • Использование меди в качестве легирующей добавки – повышение коррозионной стойкости. Второе применение – для серебряных изделий, поскольку серебро само по себе слишком мягкое.
  • Повышение твердости и прочности без изменения уровня пластичности. Возможно, когда ионы кристаллической решетки железа замещаются атомами легирующего элемента.
  • Растворение в составе определенных неметаллов приводит к тому, что они буквально вытесняют вредные примеси, существенно влияющие на качества изделий.
  • Изменение зернистости сплава. Это может стать причиной увеличения пластичности, небольшой анизотропности после прокатки.

Это неполный перечень ситуаций, во время которых применяется данная процедура.

Назначение и применение очень разнообразно. Одним из основных можно отметить – изготовление инструмента для металлообработки. В зависимости от использования все способы легирования сталей делятся на три вида – это конструкционная, инструментальная и особого назначения.

Черные сплавы

Это металлы, которые имеют в основе железо. Распространенным вариантом является чугун, который из-за большого содержания углерода не только очень прочный, но и хрупкий. Вся эта категория имеет не самые высокие механические свойства (кроме отборной стали), но из-за своей невысокой стоимости, а также из-за достаточно простого изготовления путем отлива все черносплавные материалы обладают очень большим производством.

Читайте так же:
Стоимость песка для пескоструйного аппарата

Цветные сплавы

Это составы, в основе которых все остальные металлы, кроме железа. Все они подразделяются на легкие и тяжелые. Первые имеют невысокую плотность до 5 мг на кубический сантиметр. Они основываются на магние, титане и алюминие. Вторые, напротив, более плотные (от 5 мг/см3 и выше), они основываются на меди и цинке. В них входят бронзы – оловянные и безоловянные – и латуни. Практически все из перечисленных материалов имеют следующие характеристики:

  • устойчивость к коррозии, что позволяет использовать сплав даже в условиях повышенной влажности и при постоянном контакте с кислородом;
  • высокая теплопроводность и электропроводность – именно это позволяет использовать вещество при изготовлении электрических деталей, элементов, контактов, проводов;
  • малая плотность и, как следствие, вес;
  • простой и отлаженный процесс изготовления.

Нержавеющая сталь

Всем известная нержавейка также относится к легированным сталям. Она является настолько универсальной, что применяется буквально повсеместно – от изготовления обычной посуды для бытового использования до специфических отраслей металлургии. Основная особенность состава, которая лежит и в его названии, это устойчивость к коррозии. Но, кроме этого, есть еще несколько особых характеристик:

  • Эстетичный внешний вид. Так как можно использовать легирование стали с различной сущностью технологических процессов, то и получить можно поверхность качественно различных характеристик. Это может быть глянцевый блеск или матовое отражение, нанесенная гравировка. На верхний слой очень легко нанести узор, а также произвести окрашивание. Все это позволяет использовать материал не только в производственных целях, но и при декоративной отделке помещений, при создании мебели.
  • Отличные механические свойства. Высокая прочность, износостойкость, неподверженность сильным температурным перепадам, эластичность, ударопрочность – все это делает изделия применимыми в большой сфере производства. Особенно стоит отметить то, что при низких температурах (мороз) не увеличивается хрупкость,поэтому можно работать с нержавейкой даже зимой.
  • Огнеупорность. Это качество обнаруживается из-за высокой температуры плавления – до 800 градусов. Поэтому даже при постоянном контакте с огнем не выделяется токсичных испарений, а также не происходит деформаций.
  • Устойчивость к коррозии. Как мы отметили, одно из основных свойств. Оно достигается тем, что в сплаве находится хром в достаточно большом количестве – от 10,5%. Он вступает в химическую реакцию с кислородом и приводит к образованию оксидной пленки. Именно этот оксид и является защитой от ржавления.

Есть и некоторые недостатки. Так, например, достаточно сложно обрабатывать нержавейку. Многие отмечают сложности при образовании сварного шва.

Легирующие металлы и их характеристика. Легирующие металлы

Есть три степени легирования, согласно которым меняется процентное содержание добавочных веществ. Отсюда материал может быть:

  • низколегированным – до 2,5% примесей в составе;
  • среднелегированным – до 10%;
  • высоколегированным – до 50% добавок.

Различается также молекулярная структура, согласно ей все сплавы классифицируют на:

  • мартенситные – с полностью такой зернистостью;
  • ферритные;
  • аустенитные, а также различные виды комбинированных сталей.

Наиболее часто в качестве примеси используется углерод, он отвечает за повышенную прочность и стойкость к ударам. В связи с этим классифицируют сплавы:

  • низкоуглеродистые – до 0,25% содержания;
  • среднеуглеродистые – до 0,65%;
  • высокоуглеродистые – более 0,65%.

Структура также подразумевает деление на следующие классы:

  • доэвтектоидные – в сплаве есть участки феррита;
  • эвтектоидные – в основе перлит;
  • ледебуритные или заэвтектоидные – с первичными/вторичными карбидами.

Также мы уже отмечали, что по назначению все делятся на:

  • конструкционные – они, в свою очередь, подразделяются на строительные и машиностроительные;
  • инструментальные – для создания инструментов металлообработки;
  • с особыми свойствами, в том числе устойчивые к температурным перепадам, огнестойкие и другие.
  • жаропрочные – в них добавляют хром, ванадий, молибден, они используются в сфере энергетики, а также для других отраслей с высокими температурными показателями;
  • улучшаемые – их дополнительно подвергают термообработке, обычно закалке, они отличаются повышенной прочностью и чувствительностью к концентрации напряжения;
  • цементуемые – они сперва проходят цементацию, а уже после этого закалку, отлично подходят для производства шестерен, валов и прочих элементов, для которых важна износостойкость;
  • быстрорежущие – очень большая твердость и красностойкость до высокой температурной границы;
  • нержавеющие – имеют покрытие из оксидной пленки, предотвращающее ржавление;
  • с улучшенными магнитными или электрическими качествами.

Если более подробно классифицировать легированные стали строительного назначения, то различают:

  • массовые – применяются фактически всюду;
  • мостостроительные;
  • судостроительные – очень устойчивы ко хрупкому разрушению;
  • для горячего водоснабжения и пара – относится к жаропрочным;
  • низкоопущенные – активно используются в самолетостроении и пр.

Кроме того, все сплавы можно классифицировать по основной примеси, а также делить на двухкомпонентные, трехкомпонентные и так далее по конкретной рецептуре.

Свойства и назначение: с какой целью осуществляется легирование сталей

С развитием промышленности активно увеличивается количество необходимых разновидностей металлических составов. В зависимости от того, какие свойства необходимо получить, могут быть добавлены разные элементы – хром, кремний, медь и пр. Насколько различные имеют свойства эти вещества, настолько и разнообразны полученные эффекты. Очень важно при этом достигнуть необходимых пропорций. Именно по этому свойству все сплавы классифицируются – по базовой примеси, а те компоненты, которые находятся в наименьшем количестве, называются вторичными ингредиентами.

Железо, которое берется за основу, на самом деле не очень прочное. Оно нуждается в обработке и улучшении. самый стандартный, привычный способ – это добавка углерода во время нагрева с последующим быстрым охлаждением. И в зависимости от того, какое процентное соотношение этого вещества (от 0,1 до 1,15 процента от состава, можно различать мягкую, полумягкую, полутвердую и твердую сталь.

Риски при легировании

К сожалению, любые химические добавки при определенных условиях могут быть не столько полезными, сколько воздействовать негативно. Так, например, один компонент, который увеличивает твердость одновременно может повысить хрупкость. Есть еще несколько угроз, вот они:

  • большинство ферросплавов изготавливается в очень мелких частицах, фактически это металлическая пыль, которая является взрывоопасной – пожар, токсичность, взрывы, это все может привести к повышенным рискам;
  • пары, которые могут образовываться во время производственных процессов, негативно воздействуют на здоровье – мельчайшие частицы пыли могут оседать на легких;
  • если в сплав добавлено олово в сочетании со свинцом, то нужно быть особенно осторожным при нагреве, поскольку состав является токсичным при воздействии высоких температур.

Практическое применение: что дает легирование стали

Получаемых характеристик настолько много, что все это зависит от конкретного случая. Мы приведем несколько конкретных ситуаций:

  • Повышение твердости. Это необходимо особенно для базовых металлических конструкций, чтобы они могли выдерживать очень высокие, особенно статичные нагрузки. Для этого зачастую добавляют платину.
  • Ферромагнитные свойства. Чтобы добиться того, чтобы железо потеряло свои магнитные качества, необходимо, чтобы сплав содержал кобальт.
  • Чтобы серебро не тускнело, а также не подвергалось коррозии, можно прибавить родий. Он может также быть дополнен палладием или платиной, чтобы увеличить его прочность.
  • Использование меди в качестве легирующей добавки – повышение коррозионной стойкости. Второе применение – для серебряных изделий, поскольку серебро само по себе слишком мягкое.
  • Повышение твердости и прочности без изменения уровня пластичности. Возможно, когда ионы кристаллической решетки железа замещаются атомами легирующего элемента.
  • Растворение в составе определенных неметаллов приводит к тому, что они буквально вытесняют вредные примеси, существенно влияющие на качества изделий.
  • Изменение зернистости сплава. Это может стать причиной увеличения пластичности, небольшой анизотропности после прокатки.
Читайте так же:
Регулировка подшипников шпинделя 16к20

Это неполный перечень ситуаций, во время которых применяется данная процедура.

Назначение и применение очень разнообразно. Одним из основных можно отметить – изготовление инструмента для металлообработки. В зависимости от использования все способы легирования сталей делятся на три вида – это конструкционная, инструментальная и особого назначения.

Черные сплавы

Это металлы, которые имеют в основе железо. Распространенным вариантом является чугун, который из-за большого содержания углерода не только очень прочный, но и хрупкий. Вся эта категория имеет не самые высокие механические свойства (кроме отборной стали), но из-за своей невысокой стоимости, а также из-за достаточно простого изготовления путем отлива все черносплавные материалы обладают очень большим производством.

Цветные сплавы

Это составы, в основе которых все остальные металлы, кроме железа. Все они подразделяются на легкие и тяжелые. Первые имеют невысокую плотность до 5 мг на кубический сантиметр. Они основываются на магние, титане и алюминие. Вторые, напротив, более плотные (от 5 мг/см3 и выше), они основываются на меди и цинке. В них входят бронзы – оловянные и безоловянные – и латуни. Практически все из перечисленных материалов имеют следующие характеристики:

  • устойчивость к коррозии, что позволяет использовать сплав даже в условиях повышенной влажности и при постоянном контакте с кислородом;
  • высокая теплопроводность и электропроводность – именно это позволяет использовать вещество при изготовлении электрических деталей, элементов, контактов, проводов;
  • малая плотность и, как следствие, вес;
  • простой и отлаженный процесс изготовления.

Нержавеющая сталь

Всем известная нержавейка также относится к легированным сталям. Она является настолько универсальной, что применяется буквально повсеместно – от изготовления обычной посуды для бытового использования до специфических отраслей металлургии. Основная особенность состава, которая лежит и в его названии, это устойчивость к коррозии. Но, кроме этого, есть еще несколько особых характеристик:

  • Эстетичный внешний вид. Так как можно использовать легирование стали с различной сущностью технологических процессов, то и получить можно поверхность качественно различных характеристик. Это может быть глянцевый блеск или матовое отражение, нанесенная гравировка. На верхний слой очень легко нанести узор, а также произвести окрашивание. Все это позволяет использовать материал не только в производственных целях, но и при декоративной отделке помещений, при создании мебели.
  • Отличные механические свойства. Высокая прочность, износостойкость, неподверженность сильным температурным перепадам, эластичность, ударопрочность – все это делает изделия применимыми в большой сфере производства. Особенно стоит отметить то, что при низких температурах (мороз) не увеличивается хрупкость,поэтому можно работать с нержавейкой даже зимой.
  • Огнеупорность. Это качество обнаруживается из-за высокой температуры плавления – до 800 градусов. Поэтому даже при постоянном контакте с огнем не выделяется токсичных испарений, а также не происходит деформаций.
  • Устойчивость к коррозии. Как мы отметили, одно из основных свойств. Оно достигается тем, что в сплаве находится хром в достаточно большом количестве – от 10,5%. Он вступает в химическую реакцию с кислородом и приводит к образованию оксидной пленки. Именно этот оксид и является защитой от ржавления.

Есть и некоторые недостатки. Так, например, достаточно сложно обрабатывать нержавейку. Многие отмечают сложности при образовании сварного шва.

Маркировка легированных сталей

Так как данный класс материалов очень обширен, то возникла необходимость в обозначении отдельных элементов. К сожалению, нет единых во всем мире правил по тому, как ставить клеймо. Мы будем перечислять правила, характерные для российского производства.

В основе маркировке – цифры и буквы. Литеры могут означать особые свойства или принадлежность к узкому классу, но наиболее часто они отвечают за компонент, который находится в составе:

  • А – азот.
  • К – кобальт.
  • С – кремний.
  • Т – титан.
  • Е – селен.
  • Б – ниобий.
  • Г – марганец.
  • М – молибден.
  • П – фосфор.
  • Ф – ванадий.
  • Ц – цирконий.
  • В – вольфрам.
  • Д – медь.
  • Н – никель.
  • Х – хром.
  • Р – бор.
  • Ю – алюминий.

Российский государственный стандарт

За маркировку отвечает ГОСТ 4543-71. Согласно документу, по букве, которая стоит спереди, можно определить, к какому классу относится вещество:

  • Ж – нержавеющий сплав.
  • Х – хромистый.
  • Е – магнитный.
  • Я – хромоникелевая нержавейка.
  • Ш – шарикоподшипниковый.
  • Р – инструментальный быстрорежущий.
  • А – высококачественный.
  • Н – полученный нагартованным прокатом.
  • ТО – способ термической обработки.

Также следует смотреть на цифры. Первая позволяет понять, сколько в составе углерода, а затем вместе с буквой стоит процент содержания другой легирующей добавки.

Лекция 7 Легированные стали

Появление и широкое распространение легированных сталей обусловлено непрерывным ростом требований, предъявляемых к материалам.

Легированными называют стали, содержащие в своем составе кроме обычных примесей специально вводимые элементы, в количестве, обеспечивающем требуемые физические и механические свойства. Эти элементы называются легирующими.

Для легирования стали применяют хром (Cr), никель (Ni), марганец (Mn), кремний (Si), вольфрам (W), молибден (Mo), ванадий (V), кобальт (Co), титан (Ti), алюминий (Al), медь (Cu) и другие элементы. Марганец считается легирующим компонентом лишь при содержании его в стали более 1 %, а кремний – при содержании более 0,8 %. Легирующие элементы либо распределяются между фазами, существующими в обычной углеродистой стали (феррит и цементит) и, таким образом, изменяют их состав и свойства, либо образуют новые фазы, характерные только для легированных сталей

( интерметаллидные соединения, специальные карбиды и т. д.).

Легирующие элементы изменяют критические точки стали и оказывают существенное влияние на кинетику фазовых превращений, протекающих в стали при термической обработке.

По характеру влияния на критические температуры полиморфного превращения железа легирующие элементы разделяются на две группы. К первой группе относятся Ni, Mn, N, Cu и другие элементы, расширяющие область существования γ — твердого раствора (рис.1а). Эти элементы с Feα и Feγ образуют твердые растворы замещения (легированный феррит и легированный аустенит), повышают точку А4 и понижают точку А3. При содержании некоторых элементов этой группы выше n (рис.1а) критическая точка превращения γ-α находится ниже комнатной температуры. Такие сплавы даже при медленном охлаждении приобретают структуру γ — твердого раствора (легированного аустенита).

Читайте так же:
Расчет сечения кабеля по мощности калькулятор 220в

Содержание легирующего элемента, %

а)Ni, Mn, Cu, Co, N, C и др. б) Cr, Si, W, Mo, V, Al и др.

Рис.1. Влияние легирующих элементов на критические точки железа (схема).

Ко второй группе относятся Cr, Si, W, Mo, V и другие элементы, ограничивающие область существования γ -твердого раствора (рис.1б). Эти элементы понижают точку А4 и повышают точку А3. При содержании элемента этой группы в количествах, превышающих m (рис.1б), сплавы при всех температурах вплоть до температуры плавления имеют строение α -твердого раствора (легированного феррита).

Легирующие элементы оказывают существенное влияние на положение критических точек S и E диаграммы Fe-Fe3C. Большинство элементов(Ni, Si, Co, Cr, W, Mn) сдвигает их влево, т.е. в сторону уменьшения содержания углерода. Сильные карбидообразующие элементы (V, Ti, Nb), наоборот, повышают содержание углерода в эвтектоиде, т.е. сдвигают точку S вправо.

Все легирующие элементы, кроме алюминия и кобальта, увеличивают устойчивость переохлажденного аустенита (сдвигают С-образные кривые вправо) и, следовательно, уменьшают критическую скорость закалки. Поэтому закалка изделий из легированных сталей производится при относительно невысоких скоростях охлаждения (в масле или даже на воздухе).

Легирующие элементы за исключением алюминия, кобальта и кремния снижают температуру начала мартенситного превращения и тем самым способствуют увеличению количества остаточного аустенита в закаленной стали.

По отношению к углероду легирующие элементы также разделяются на две группы:

элементы, не образующие в сталях карбидов (Ni, Si, Co, Cu, Al);

элементы, образующие карбиды (Mn, Cr, W, Mo, V, Ti, Nb и др.).

элементы первой группы полностью растворяются в твердом растворе (феррите, аустените). Элементы второй группы частично растворяются в твердом растворе и частично идут на образование карбидов.

Карбидообразующие элементы обладают большим, чем железо, сродством к углероду. По возрастанию сродства к углероду, а следовательно устойчивости карбидных фаз, карбидообразующие элементы располагаются в следующий ряд: Fe-Mn-Cr-Mo-W-V-Nb-Zr-Ti. Чем устойчивее карбид, тем труднее он растворяется в аустените и выделяется при отпуске.

При введении в сталь в сравнительно небольшом количестве легирующий карбидообразующий элемент сначала растворяется в цементите, замещая часть атомов железа; при этом образуется легированный цементит, например (FeMn)3C. С увеличением содержания легирующего элемента сверх предела растворимости образуются специальные карбиды типа Сr7С3, Mn3C и др.

По строению кристаллической решетки различают карбиды двух типов. К карбидам первой группы относятся Fe3C, Mn3C, Сr7С3, Cr23C6. Такие карбиды недостаточно прочны и при нагреве в процессе термической обработки стали распадаются с образованием твердого раствора легирующих элементов в аустените.

Карбиды второй группы Mo2C, WC, TiC имеют простые кристаллические решетки. Они характеризуются большей прочностью и распадаются при более высоких температурах нагрева. Все карбиды обладают высокой твердостью, но твердость карбидов второй группы несколько выше твердости карбидов первой группы.

С повышением дисперсности карбидов растет твердость и прочность стали.

Маркировка легированных сталей.

В России принята буквенно-цифровая система маркировки легированных сталей. Обозначения состоят из цифр и букв, указывающих на примерный состав стали.

Каждому легирующему элементу присвоена буква русского алфавита: А-азот, Б- ниобий, В-вольфрам, Г-марганец, Д-медь, Е-селен, К-кобальт, М-молибден, Н-никель, П- фосфор, Р- бор, С-кремний, Т-титан, Ф-ванадий, Х-хром, Ц- цирконий, Ч-иттрий и редкоземельные металлы, Ю- алюминий.

В конструкционных сталях первые две цифры указывают среднее содержание углерода в сотых долях процента (например, в стали 30ХГСА- примерно 0,3%С).В инструментальных сталях цифры соответствуют десятым долям процента( сталь 5ХНМ- 0,5%С ). Если сталь имеет более 1% углерода, то

начальную цифру, характеризующую содержание углерода, обычно опускают (стали ХВГ, В1).

Цифры, стоящие после букв, обозначающих легирующие элементы, указывают приблизительное содержание легирующего элемента в целых процентах ( например, в стали 34ХН3М содержание никеля-3%). При содержании легирующего элемента менее 1% цифра после буквы не ставится.

Буква в конце марки означает: А — данная сталь относится к высококачественной, что в основном определяется количеством вредных примесей серы и фосфора; Л — сталь относится к литейным; Ш и ВД- особо высококачественная сталь, полученная электрошлаковым и вакуумно-дуговым переплавом.

Для сталей специального назначения применяют дополнительную индексацию. Буквы вначале марки стали обозначают: А — автоматная, Ш- шарикоподшипниковая, Р- быстрорежущая, Е- магнитотвердая, Э- электротехническая.

Классификация легированных сталей.

Легированные стали делятся:

1) по содержанию углерода: низкоуглеродистые (до 0,3%С); среднеуглеродистые (0,3-0,6 % С); высокоуглеродистые (более 0,6 % С).

2) по суммарному количеству легирующих элементов: низколегированные (до 2%), среднелегированные (2,5-10%), высоколегированные (более 10%);

3) по химическому составу: хромистые, хромоникелевые, марганцовистые и т.д.;

4) классификация легированных сталей по структуре:

По структуре в равновесном состоянии, т.е. после медленного охлаждения (отжига), стали разделяются на следующие группы:

доэвтектоидные стали, имеющие в структуре избыточный легированный феррит;

эвтектоидные, имеющие перлитную структуру;

заэвтектоидные, имеющие в структуре избыточные (вторичные) карбиды;

ледебуритные стали, имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. Образование карбидной эвтектики типа ледебурита в подобных сталях при их кристаллизации связано с тем, что ряд легирующих элементов сдвигает точку Е диаграммы Fe-Fe3C влево, т.е. в сторону меньшего содержания углерода. Так, например, в стали, содержащей 5% хрома, предельная растворимость углерода в аустените (точка Е) смещается до 1,3%, а при содержании хрома 10% — до 1,0% С.

Ледебуритные стали содержат таким образом, меньше углерода, чем белые чугуны, и поэтому могут подвергаться горячей обработке давлением. В результате ковки первичные карбиды принимают форму обособленных частиц.

К сталям ледебуритного класса принадлежат бысрорежущие стали (Р6М5, Р18)

К ферритному классу относятся малоуглеродистые стали, легированные большим количеством элементов, сокращающих область существования γ-твердого раствора. Стали этого класса имеют ферритную структуру с небольшим количеством карбидов. Феррит не претерпевает превращений (перекристаллизации) при нагреве вплоть до температуры плавления. Примерами таких сталей являются трансформаторные стали, высокохромистые коррозионностойкие и жаростойкие стали (08Х13, 08Х17Т, 15Х25Т и др.)

В зависимости от структуры, получаемой при охлаждении на воздухе (нормализации) принято разделять стали на три класса: перлитный мартенситный и аустенитный.

Для легированных сталей перлитного класса кривая охлаждения на воздухе пересекает область перлитного превращения переохлажденного аустенита (рис.2а), и после нормализации образуется структура феррито-карбидной смеси (перлита, сорбита, троостита). По структуре в равновесном состоянии (после отжига) перлитные стали разделяются на доэвтектоидные, эвтектоидные и заэвтектоидные стали. К этому классу относятся все конструкционные и некоторые инструментальные легированные стали с суммарным содержанием легирующих элементов 5-8%.

Читайте так же:
Соединение проводов в двухклавишном выключателе

Рис.2. Диаграмма изотермического распада аустенита различных классов стали:

а – перлитного; б – мартенситного; в – аустенитного

К мартенситному классу принадлежат стали, которые после охлаждения на воздухе (нормализации) приобретают структуру мартенсита с небольшим количеством остаточного аустенита. Суммарное содержание легирующих элементов в этих сталях составляет 10-15%. Повышенное содержание легирующих элементов обусловливает значительное смещение С-образных кривых вправо, и аустенит подобных сталей в условиях нормализации переохлаждается без распада до температуры мартенситного превращения (рис.2б). К мартенситному классу относятся хромистые нержавеющие стали (20Х13) и жаропрочные (15Х11МФ и др.), применяющиеся для лопаточного аппарата паровых и газовых турбин.

Аустенитный класс составляют стали с высоким содержанием никеля или марганца, т.е. элементов, расширяющих область существования γ -твердого раствора (легированного аустенита). При комнатной температуре эти стали имеют структуру аустенита. Общее содержание легирующих элементов в аустенитных сталях составляет 10-40% и более. Столь высокое содержание легирующих элементов приводит не только к резкому смещению С-образных кривых вправо, но и к снижению температуры начала мартенситного превращения в область отрицательных температур (рис.2.в).

К аустенитному классу принадлежат нержавеющие, кислотостойкие, жаропрочные и др. стали с особыми свойствами (стали 12Х18Н9Т, Х18Н10Т и др).

К промежуточным классам относятся: мартенсито-ферритный, аустенито-мартенситный, аустенитно-ферритный.

Классификация и область применения легированных сталей

Область применения легированных сталей распространяется на сферу машиностроения. Благодаря высокой прочности и временному сопротивлению от 800 до 2000 МПа их используют для производства наружных конструкций, функционирующих при низких отрицательных и высоких положительных температурах, под воздействием ударных знакопеременных нагрузок и агрессивных рабочих сред. Некоторый вид таких легированных сталей находит применение в армировании железобетонных рам.

Состав легированных сталей

Легированные стали помимо традиционных примесей имеют в своем составе специфические вещества, намеренно добавленные в регламентированном объеме с целью обеспечения конкретных физико-механических характеристик. Эти элементы называются легирующими.

Легирующие элементы стали значительно увеличивают прочностные свойства металла, его коррозийную устойчивость, уменьшают хрупкость. Среди таких добавок наиболее востребованы хром, никель, медь, азот (в химически связанном состоянии), ванадий и др. Смешиваясь с железом, они изменяют и рушат симметричное расположение кристаллической решетки, поскольку владеют иными атомными величинами и формой наружных оболочек электронов. Значительная конструкционная прочность приобретается за счет рационализированного подбора химического состава легированной стали, ее структуры, терморежимов обработки, способов упрочнения поверхности, повышением металлургических характеристик. Уровень содержания легирующих элементов увеличивает себестоимость стали, это обуславливает строгую обоснованность диапазона добавок.

Легированные стали

Ключевая роль в составе легированной стали принадлежит углероду, который повышает ее прочность, но понижает пластические и вязкие качества, из-за чего возрастает порог хладоломкости. В связи с этим его содержание сдерживается в определенных рамках и только в исключительных случаях бывает выше 60 %. По уровню легирования различают металл низко-, средне- и высоколегированный. Согласно этой классификации легированные стали в первом случае содержат менее 2,5 % добавок, во втором – 2,5…10 %, в третьем – 10…50 %. Кроме того, различают сталь коррозионно-устойчивую относительно электрохимической и межкристаллитной коррозии; окалино- и жароустойчивую относительно химического распада поверхности при 550 °С и выше; жаропрочную, которая отличается значительной жаростойкостью и способностью к работе под нагрузкой длительное время при 1000 °С и выше.

Жаропрочная высоколегированная сталь представляет собой такую категорию металла, которая может применяться при максимально критических температурах (1/3 от температуры плавления) под действием слабой нагрузки без явных остаточных деформаций и распада. Главными особенностями данного вида металла являются продолжительная пластическая деформация и прочность во времени, которая выражается в сопротивлении распаду при долгом влиянии температуры. Жаропрочные качества главным образом выделяются температурой плавления базового элемента сплава, его легированной добавки и параметрами предыдущей термической обработки, которые определяют структурную фазу сплава.

Существенное возрастание конструктивной прочности в легированном железе обуславливается высокой прокаливаемостью, снижением критической скорости закаливания, дроблением зерна. Использование упрочняющей термообработки повышает ряд механических качеств. В результате этого в легированных конструкционных сталях улучшены механические характеристики (тепло-, жаро- и коррозионная стойкость) и существенно изменены физико-химические и технико-эксплуатационные свойства.

Основные характеристики легированных сталей

Преимущественные свойства легированных сталей заключаются в следующих особенностях:

• сочетание значительных прочностных и ударно-вязких параметров при позитивной и негативной температуре;
• прекрасные технологические качества;
• экономичность;
• большие объемы производства;
• серьезные параметры сопротивления пластичным деформациям;
• легирующие добавки способствуют стабилизации аустенита, что сказывается на повышении прокаливаемости таких сталей;
• возможность применения легких охладителей уменьшает риск возникновения брака по трещинам и короблению при закалке, поскольку снижается разрушение аустенита;
• увеличивается запас пластичности и вязкости, что обуславливает высокую надежность готовых изделий;
• полезные свойства выявляются только после термической обработки легированной стали, поэтому производимые изделия проходят обязательный этап термического воздействия.

Обработка легированной стали

Для описания марок легированных сталей используется буквенно-цифровой алгоритм. Легирующие добавки соответствуют определенной букве алфавита. Цифры, указанные перед буквами, означают уровень углерода в десятых или сотых долях % в зависимости от класса стали. Цифры, расположенные следом за буквами, означают уровень легирующих добавок в процентах. Когда их уровень составляет больше 1,5 %, то цифровое обозначение не используется. Указывание буквы А в конце маркировки легированных сталей свидетельствует о том, что металл высококачественный.

Низколегированная сталь характеризуется прекрасной пластичностью, достаточной свариваемостью и крепким сопротивлением хрупкости. Отличные механические качества она получает в ходе закаливания, нормализации и дальнейшего высокого отпуска. У нее в составе низкий уровень углерода. Высокие прочностные характеристики получаются за счет введения марганцевых, хромовых, никелевых или кремниевых добавок. Влияние легирующих элементов на сталь проявляется в отличной свариваемости и способности поглощать механическое воздействие при деформировании и распаде под ударной нагрузкой с низкой границей хладноломкости. Такая сталь отличается мелкозернистой текстурой. Но высокая чувствительность к концентрированию напряжений обуславливает пониженную вибрационную устойчивость.

Процесс сварки легированных сталей

Главные параметры сварки низколегированных сталей состоят в их сопротивляемости к локальным межкристаллическим трещинам и хрупкому разрушению. Показателями при выборе режимов сварочных операций являются предельно-допустимые наибольшая и наименьшая скорости остывания околошовной области стали. Максимум скорости остывания выбирается с учетом предотвращения холодных трещин в этой области. Величина тока процесса сварки принимается в соответствии с типом и толщиной электрода, также оценивают расположение шва, категорию соединения и слой свариваемого железа. Сварку технологических зон следует осуществлять беспрерывно, без охлаждения шва ниже температуры первоначального нагревания и подогревания его перед проведением дальнейшего прохода выше 200 °С.

Газовое сваривание таких сталей отличается высокой степенью разогревания сварных кромок, низкой коррозионной устойчивостью и сильным выгоранием легирующих элементов, что значительно ухудшает свойства сварных соединений. Для предотвращения отрицательных моментов при такой сварке используют присадочную проволоку, проковывание при 800 °С с дальнейшей нормализацией.

Читайте так же:
Что не поднимешь домкратом

Сварка легированной стали

Конструкционные низколегированные стали используются для производства сварных устройств разного назначения. В эту категорию входит термоустойчивая сталь, легированная молибденовыми, вольфрамовыми или ванадиевыми элементами для увеличения температуры разупрочнения металла при нагревании и хромом для увеличения жароустойчивости.

Высоколегированная сталь легко подвергается межкристаллической коррозии, что исключает использование газовой сварки. Допускается такой вариант соединения лишь в случае обработки жаропрочных экземпляров слоем до 2 мм, но при этом все равно остается риск появления короблений.

Сварка высоколегированной стали под флюсом является оптимальным способом соединения металла толщиной до 5 см, поскольку при обработке обеспечиваются стабильные характеристики состава полотна на протяжении всего шва.

Большая часть легированных инструментальных сталей принадлежит к металлам перлитного класса. Они имеют в своем составе небольшое число легирующих веществ, отлично подлежат компрессионной обработке и резанию. Сталь инструментального типа востребована в производстве режущего инструментария, форм горячей деформации повышенной износостойкости. Металлургическая индустрия производит большой ассортимент продукции из такого материала, соответствующего конкретному ГОСТу. Основное назначение легированных сталей состоит в изготовлении горячекатаного проката.

Разница между легированной и нелегированной сталью

Разница между легированной и нелегированной сталью

Основное отличие — сплав против нелегированной стали

Легированная и нелегированная сталь — это химические термины, используемые для обозначения двух типов стали. Сталь — это металлический сплав. Он состоит из железа и некоторых других элементов, таких как углерод. Нелегированная сталь не имеет элементов, добавляемых в сталь при выплавке. Сталь широко используется во всем мире по нескольким причинам, таким как низкая стоимость, простота производства, прочность и т. Д. Существуют различные сорта стали в зависимости от их свойств. Легированная сталь является одним из видов стали и имеет большое количество других элементов, кроме железа и углерода. Основное различие между легированной и нелегированной сталью заключается в том, что в легированной стали другие элементы добавляются в железо во время плавки, тогда как в нелегированной стали никакие элементы не добавляются во время плавки.

Ключевые области покрыты

1. Что такое легированная сталь
— определение, свойства
2. Что такое нелегированная сталь
— определение, свойства
3. В чем разница между легированной и нелегированной сталью
— Сравнение основных различий

Ключевые термины: сплав, легированная сталь, углерод, хром, высоколегированная сталь, промежуточный сплав, железо, металл, нелегированная сталь, низколегированная сталь, плавка, сталь, замещающий сплав

Что такое легированная сталь

Легированная сталь — это вид стали, состоящий из железа, углерода и некоторых других элементов. Другие элементы, присутствующие в нем, обычно включают марганец, кремний, никель, титан, медь и хром. Эти элементы называют элементами сплава, потому что они смешаны вместе, чтобы сформировать сплав. Целью добавления этих элементов является улучшение свойств стали. Легированная сталь может быть разделена на две категории следующим образом:

  • Низколегированная сталь
  • Высоколегированная сталь

Существует два вида легированной стали: низколегированная и высоколегированная. Низколегированная сталь имеет небольшое количество легирующих элементов. Высоколегированная сталь имеет большое количество легирующих элементов. Легированная сталь устойчива к коррозии благодаря наличию таких элементов, как хром. Обычно для улучшения твердости и долговечности стали добавляют легирующие элементы.

Например, нержавеющая сталь — это легированная сталь. Он содержит около 10% хрома вместе с железом и углеродом в смеси элементов. Благодаря своей антикоррозионной стойкости нержавеющая сталь используется для изготовления кухонных предметов.

Рисунок 1: Наручные часы из нержавеющей стали. Нержавеющая сталь является хорошим примером легированной стали.

Существует два основных типа сплавов: замещающие сплавы а также межузельные сплавы, Когда в производстве сплавов используется расплавленный металл, размер атомов будет определять, какой тип будет образован. Если атомы металлов, которые будут смешиваться, имеют относительно одинаковые размеры, образуется тип сплава замещения, но если атомы металла одного типа меньше, чем другой тип, образуется промежуточный сплав.

Что такое нелегированная сталь

Нелегированная сталь — это тип стали, который не имеет других элементов, добавляемых во время плавки. выплавка это процесс извлечения металла из его руды. Этот процесс включает нагревание и плавление руды. Выплавка удаляет примеси, присутствующие в железной руде. Процесс выплавки проводится несколько раз, чтобы удалить углерод. Если присутствует слишком много углерода, это не нелегированная сталь. Содержание углерода должно быть снижено до 1%.

При производстве легированной стали некоторые элементы, такие как хром, кобальт, добавляются в железо, но при производстве нелегированной стали другие элементы не добавляются. Поскольку нет других элементов, кроме железа и небольшого количества углерода, нелегированная сталь имеет меньшую долговечность и меньшую гибкость. Следовательно, эта сталь должна пройти процесс, который называется закалкой. закал это процесс нагрева чугуна при высокой температуре, чтобы сделать его чувствительным к растрескиванию, которое происходит во время сварки.

Рисунок 2: Заборы из кованого железа — хороший пример применения нелегированной стали. Кованое железо считается нелегированной сталью из-за очень низкого содержания углерода.

Нелегированная сталь используется в области строительства, где требуются металлы с высокой прочностью. Здесь брусья из нелегированной стали используются для укрепления бетонов, для изготовления ворот, заборов и т. Д.

Разница между легированной и нелегированной сталью

Определение

Легированная сталь: Легированная сталь — это вид стали, состоящий из железа, углерода и некоторых других элементов.

Не сплав Сталь: Нелегированная сталь — это тип стали, который не имеет других элементов, добавляемых во время плавки.

Присутствие углерода

Легированная сталь: Легированная сталь состоит из большого количества углерода.

Не сплав Сталь: В нелегированной стали содержание углерода меньше или отсутствует.

выплавка

Легированная сталь: Легированная сталь изготавливается путем добавления различных элементов во время плавки.

Не сплав Сталь: Никакие другие элементы не добавляются во время плавки при производстве нелегированной стали.

коррозия

Легированная сталь: Легированная сталь менее устойчива к коррозии из-за присутствия железа.

Не сплав Сталь: Нелегированная сталь сильно подвергается коррозии из-за большого содержания железа.

Примеры

Легированная сталь: Нержавеющая сталь является хорошим примером легированной стали.

Не сплав Сталь: Кованое железо является хорошим примером нелегированной стали.

Заключение

Сплав представляет собой смесь или смесь двух или более металлических компонентов. Это может быть или гомогенным или гетерогенным. Легированная сталь — это тип стали, в состав которого входят железо, углерод и некоторые другие элементы. Основное различие между легированной и нелегированной сталью состоит в том, что легированная сталь состоит из железа, добавленного с другими элементами во время плавки, тогда как нелегированная сталь не имеет добавленных элементов при выплавке.

Рекомендации:

1. Редакция Британской энциклопедии. «Плавка». Encyclopædia Britannica, Encyclopædia Britannica, Inc., 30 ноября 2016 г.,

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector