Wabashpress.ru

Техника Гидропрессы
70 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

При какой температуре плавится медь

При какой температуре плавится медь

Плавление меди в домашних условиях, имея оборудование и соблюдая технику безопасности

Медь, свойства атома, химические и физические свойства.

63,546(3) 1s2 2s2 2p6 3s2 3p6 3d10 4s1

Медь — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 29. Расположен в 11-й группе (по старой классификации — побочной подгруппе первой группы), четвертом периоде периодической системы.

Атом и молекула меди. Формула меди. Строение атома меди

Изотопы и модификации меди

Свойства меди (таблица): температура, плотность, давление и пр.

Физические свойства меди

Химические свойства меди. Взаимодействие меди. Химические реакции с медью

Таблица химических элементов Д.И. Менделеева

Ее использование в строительстве

Высокие показатели электро- и теплопроводности обусловили для меди активное использование, как в строительстве, так и в автомобиле- и приборостроении. Сам же материал устойчив к негативному воздействию коррозии и ультрафиолетовых лучей, также без деформации и нарушения структуры переносит резкие температурные перепады.

Благодаря таким особенностям, позволяет производить детали и прочие конструкции, которые рассчитаны на длительное воздействие влаги.

Провода

Наибольший спрос медь получила именно в электротехнической области, в частности для производства проводов. С этой целью используется максимально чистый металл, поскольку второстепенные компоненты существенно снижают его токопроводимость. Если в готовом материале присутствует более 0,02% алюминия, то его способность проводить ток снижается на 10%.

Существенно возрастание сопротивления происходит в результате присутствия в сырье примесей неметаллического характера. Сам же металл относится крайне низким сопротивлением, которое уступает лишь серебру. Такая особенность металла также послужила его использованию в силовых трансформаторах и энергосберегающих приводах.

Проволока

Высокий уровень вязкости и пластичности обусловили активное использование меди для производства изделий с различными узорами. Проволока, которая была изготовлена из красной меди, после обжига становится максимально пластичной и мягкой. В таком состоянии она позволяет создавать узоры и орнаменты любой сложности.

Такая проволока активно используется в следующих отраслях:

  • Электротехника;
  • Электроэнергетика;
  • Автомобилестроение;
  • Судостроение;
  • Производство кабеля и проводов.

Водо- и теплоснабжение

Благодаря своей высокой теплопроводности медь используется в различных теплообменниках и теплоотводных приборах. Иными словами, из нее изготавливают кулера для системных блоков, радиаторы отопления, трубы, кондиционеры и прочие приборы.

Медные трубы обладают абсолютно уникальными характеристиками, которые и обусловили их широкое распространение не смотря на высокую стоимость самого сырья. Такие изделия не бояться ультрафиолетового излучения, устойчивы к возникновению коррозии и температурным перепадам. Эти свойства позволяют производить монтаж медных труб даже при низких температурах воздуха.

Высокий показатель механической прочности, а также возможность механической обработки материала позволяют создавать бесшовные медные трубы, обладающие круглым сечением. Они рассчитаны на транспортировку жидких веществ или газов в системах газо- и водоснабжения, кондиционирования и отопления.

О роли медных труб в водоснабжении расскажет данное видео:

Кровля

Одним из первых материалов, используемых в качестве кровельного покрытия, является медь. Такая кровля отличается длительным сроком службы (до 200 лет), который происходит благодаря ее уникальным особенностям. Кровля из меди спустя некоторое время претерпевает процесс окисления, который заключается в образовании патины.

Этот своего рода защитный слой уберегает поверхность меди от негативного влияния ультрафиолета, низких температур, влаги и прочих погодных явлений.

Таким образом, медная кровля сразу после своего монтажа имеет золотистый оттенок, но уже через 10 лет становится более темной, в некоторых случаях практически черного цвета. Этот процесс образования патины при желании можно искусственно ускорить.

Про иные сфера применения меди читайте ниже.

Прочие сферы использования

  • Помимо вышеперечисленных областей, медные сплавы могут использоваться в сочетании с золотом. Это необходимо для придания ювелирным изделиям большей прочности и устойчивости к истиранию.
  • Широкое распространение металл получил и в области архитектурного строительства. Кровля, фасады, различные декоративные элементы – все это можно изготовить абсолютно любой формы и уровня сложности.
  • Среди новой сферы использования является применение меди в качестве бактерицидной поверхности в лечебных заведениях: перила, ручки, двери, столешницы и многое другое.

Преимущества данного металла послужили не только его широкому распространению, но и расширению сфер применения.

Сегодня применение разных марок меди в промышленности, в быту, в электротехнике и строительстве, медицине считается весьма выгодным и перспективным.

О том, как переделать медь в «золото», расскажет данное видео:

Атом и молекула меди. Формула меди. Строение атома меди:

Медь (лат. Cuprum) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Cu и атомным номером 29. Расположен в 11-й группе (по старой классификации – побочной подгруппе первой группы), четвертом периоде периодической системы.

Медь – металл. Относится к группе переходных металлов. Относится к тяжёлым и цветным металлам.

Как простое вещество медь при нормальных условиях представляет собой пластичный металл золотисто-розового цвета (либо розового цвета при отсутствии оксидной плёнки). Наряду с осмием, цезием и золотом, медь – один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов.

Молекула меди одноатомна.

Химическая формула меди Cu.

Электронная конфигурация атома меди 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Потенциал ионизации (первый электрон) атома меди равен 745,48 кДж/моль (7,726380(4) эВ).

Строение атома меди. Атом меди состоит из положительно заряженного ядра (+29), вокруг которого по четырем оболочкам движутся 29 электронов. При этом 28 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку медь расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома меди – на s-орбитали находится один неспаренный электрон. В свою очередь ядро атома меди состоит из 29 протонов и 35 нейтронов.

Радиус атома меди (вычисленный) составляет 145 пм.

Атомная масса атома меди составляет 63,546(3) а. е. м.

Медь с давних пор широко используется человеком.

Медь, свойства атома, химические и физические свойства

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Читайте так же:
Насадка на дрель для полирования

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Способы применения меди в промышленности и дома

  • кондиционеры;
  • монеты, в чистом виде или в сплавах с другими металлами, такими как золото;
  • краситель для стекла;
  • пищевые добавки;
  • в искусстве;
  • обшивка корпусов судов;
  • в печатных платах;
  • канализация, слив воды;
  • дверные ручки;
  • посуда;
  • сульфат меди используется, чтобы удалить плесень;
  • электрические проводники;
  • украшения;
  • молниеотводы (молниезащита);
  • микроволновые печи;
  • музыкальные инструменты, в частности, духовая секция;
  • реле;
  • медная шина, токопроводы;
  • крыша гидроизоляции;
  • профнастил;
  • статуя Свободы изготовлена из меди;
  • микроэлементы для животных;
  • используется, чтобы сделать латуни и бронзы;
  • кондиционерные трубки и трубы для холодильного оборудования;
  • трубы для теплообменных аппаратов;
  • медная шина с покрытием.

Свойства меди

Молекулярный вес63.55 г/моль
Происхождение названияОт греческого «Kyprium», то есть «кипрский металл», по названию острова Кипр
IMA статусдействителен, описан впервые до 1959 (до IMA)
Цвет минераламедно-красный, тускнеющий в черный или зеленый на воздухе
Цвет чертымедно-красный
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)2,5-3
Прочностьковкий
Изломзазубренный
Плотность (измеренная)8.94 — 8.95 г/см3
Радиоактивность (GRapi)
Магнетизмдиамагнетик
Точечная группаm3m (4/m 3 2/m) — гексоктаэдрический
Пространственная группаFm3m (F4/m 3 2/m)
Сингониякубическая
Параметры ячейкиa = 3.615Å
Морфологиякубы, додекаэдры и тетрагексаэдры; редко октаэдры и сложные комбинации; нитевидные, древовидные
ДвойникованиеДвойники по <111>по шпинелевому закону

История открытия Медь Cuprum

Открытие элемента Cuprum — один из первых металлов, хорошо освоенных человеком из-за доступности для получения из руды и малой температуры плавления. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк.

Медный век

значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий.

В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришёл на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди.

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, в Сибири, на Алтае, на территории Украины.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник (1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.).

С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике.

Формула оксида меди, свойства, риски и использование

оксид меди, также называется оксидом меди (II), представляет собой химическое соединение формулы CuO. Его структура показана на рисунке 1 (EMBL-EBI, 2017).

Оксид меди встречается в природе как один из компонентов минералов, таких как тенорит и паралаконит. Он добывается из полезных ископаемых по всему миру, в основном в Южной Америке, в таких странах, как Перу, Боливия.

Некоторые химические соединения, такие как карбонат аммония и аммиак, используются для стимулирования добычи полезных ископаемых..

Оксид меди получают в основном путем извлечения в минералах, однако существует определенный процесс его промышленного производства..

В промышленности оксид меди получают реакцией воспламенения тригидрата нитрата меди (100-20 ° C), гидроксида меди (100 ° C) или карбоната меди (250 ° C):

Его также получают синтетическим путем, нагревая металлическую медь на воздухе приблизительно при 800 ° С (формула оксида меди, S.F.).

Физико-химические свойства оксида меди

Оксид меди (II). Представляется в виде тонкого черного порошка с ионной структурой. Его внешний вид показан на рисунке 3.

Молекула образована двухвалентной катионной медью Cu + 2 и анионным кислородом O-2. Молекулы образуют моноклинную кристаллическую систему, где каждый атом меди координируется 4 атомами кислорода..

Он тесно связан с другим оксидом меди: оксидом меди Cu2O (Национальный центр биотехнологической информации, 2005)..

Его молекулярная масса составляет 79,545 г / моль, а плотность — 6,315 г / мл. Его температура плавления составляет 1326 ° C, где он разлагается с выделением кислорода, его температура кипения выше 2000 ° C.

Соединение нерастворим в воде, спирте, гидроксиде аммония, карбонате аммония и растворим в хлориде аммония и цианиде калия (Royal Society of Chemistry, 2015).

Оксид меди является амфотерным, поэтому он может растворяться в кислотах и ​​щелочных растворах. В щелочном растворе реагирует с образованием других солей меди:

В кислотных растворах он также реагирует с образованием других солей меди:

Он взрывается при нагревании в контакте с алюминием, водородом или магнием. Кроме того, при нагревании образуются токсичные пары..

Реактивность и опасности

Оксид меди (II) чрезвычайно ядовит и токсичен при проглатывании. Вызывает повреждение центральной нервной системы и эндокринной системы (AZoM, 2013).

Это также раздражает глаза и кожу. Негорючий, стабильный и несовместимый с восстановителями, сероводородом, алюминием, щелочными металлами, тонкоизмельченными металлами (Fisher scientiffic, 2009).

В случае попадания в глаза, следует проверить, носите ли вы контактные линзы, и немедленно снять их..

Глаза следует промыть проточной водой не менее 15 минут, держа веки открытыми. Вы можете использовать холодную воду. Мазь не следует использовать для глаз.

Если химическое вещество попало на одежду, удалите его как можно быстрее, защищая свои руки и тело. Поместите жертву под безопасный душ.

Если химическое вещество накапливается на незащищенной коже жертвы, например на руках, аккуратно и осторожно промойте кожу, загрязненную проточной водой и неабразивным мылом..

Вы можете использовать холодную воду. Если раздражение не проходит, обратитесь к врачу. Выстирать загрязненную одежду перед повторным использованием.

Если контакт с кожей серьезный, его следует промыть дезинфицирующим мылом и покрыть кожу, загрязненную антибактериальным кремом..

В случае вдыхания пострадавшему должно быть разрешено отдыхать в хорошо проветриваемом помещении. Если вдыхание серьезное, пострадавшего следует как можно скорее эвакуировать в безопасное место..

Ослабьте тесную одежду, такую ​​как воротник рубашки, ремни или галстук. Если пострадавшему трудно дышать, следует назначить кислород.

Если пострадавший не дышит, проводится реанимация из уст в уста. Всегда принимая во внимание, что человеку, оказывающему помощь в проведении реанимации изо рта в рот, может быть опасно, когда вдыхаемый материал токсичен, инфекционен или вызывает коррозию.

В случае проглатывания не вызывать рвоту. Ослабьте тесную одежду, такую ​​как воротники рубашки, ремни или галстуки. Если пострадавший не дышит, проведите реанимацию из уст в уста.

Во всех случаях вам следует немедленно обратиться к врачу (паспорт безопасности материала Оксид меди, 2013 г.).

приложений

Оксид меди используется в качестве пигмента для кристаллов, фарфоровых эмалей и искусственных драгоценных камней. Оксид добавляет к таким материалам голубовато-зеленоватый оттенок.

Он также используется в качестве десульфурирующего агента для нефтяных газов и в качестве катализатора окисления и в гальванических электродах (Encyclopædia Britannica, 2017).

Оксид меди широко используется в химической и сельскохозяйственной химической промышленности для производства промежуточных продуктов в некоторых процессах..

Это широко используемый окислитель / восстановитель и регулятор процесса в химической реакции, особенно в производстве нефти..

Оксид меди используется для производства красок и покрытий, а также является компонентом некоторых продуктов по уходу за воздухом..

Редко используемый в качестве пищевой добавки у животных, он также имеет применение в качестве полупроводника p-типа из-за его узкой запрещенной зоны. Он используется в качестве альтернативы оксида железа в термитах.

Из-за своих фунгицидных и микробицидных свойств оксид меди (II) также находит применение в качестве инсектицида и фумиганта..

Он используется в основном при обработке растений картофеля и в качестве противообрастающего средства в корпусах судов. Средство против обрастания — это материал, предотвращающий образование ракушек и других организмов на дне лодки..

Когда эти организмы растут в корпусе корабля, они увеличивают трение, возникающее при прохождении корабля через воду, тем самым снижая его скорость..

Смесь также используется в качестве консерванта для древесины, для защиты столбов забора, стружки, настила, кровли, черепицы, морских стен и других пресноводных и морских сооружений от насекомых и грибков. (Томсон Гейл, 2006).

Материалы, используемые в кабельной промышленности (медь)

Медь (лат. Cuprum) — химический элемент I группы периодическойсистемы Менделеева (атомный номер 29, атомная масса 63,546). Всоединения медь обычно проявляет степени окисления +1 и +2, известнытакже немногочисленные соединения трехвалентной меди. Важнейшиесоединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2.3H2O, сульфид CuS, сульфат(медный купорос) CuSO4.5H2O, карбонат CuCO3.Cu(OH)2, хлорид CuCl2.2H2O.

Медь — один из семи металлов, известных с глубокой древности.Переходный период от каменного к бронзовому веку (4 — 3-е тысячелетиедо н.э.) назывался медным веком или халколитом ( от греческого chalkos- медь и lithos — камень) или энеолитом (от латинского aeneus — медныйи греческого lithos — камень). В этот период появляются медные орудия.Известно, что при возведении пирамиды Хеопса использовались медныеинструменты.

Чистая медь — ковкий и мягкий металл красноватого, в изломе розовогоцвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93г/см 3 ) , отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 o C).Медь легко вытягивается в проволоку и прокатывается в тонкие листы, носравнительно мало активна. В сухом вохдухе и кислороде при нормальныхусловиях медь не окисляется. Но она достаточно легко вступает вреакции: уже при комнатной температуре с галогенами, например с влажнымхлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S,с селеном. Но с водородом, углеродом и азотом медь не взаимодействуетдаже при высоких температурах. Кислоты, не обладающие окислительнымисвойствами, на медь не действуют, например, соляная и разбавленнаясерная кислоты. Но в присутствии кислорода воздуха медь растворяется вэтих кислотах с образованием соотвествующих солей:

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной — зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленностиважны лишь 17, в том числе: борнит (пестрая медная руда — Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь

  • Плотность меди — 8,93*103кг/м 3 ;
  • Удельный вес меди — 8,93 г/cм 3 ;
  • Удельная теплоемкость меди при 20 o C — 0,094 кал/град;
  • Температура плавления меди — 1083 o C ;
  • Удельная теплота плавления меди — 42 кал/г;
  • Температура кипения меди — 2600 o C ;
  • Коэффициент линейного расширения меди
  • (при температуре около 20 o C) — 16,7 *106(1/град);
  • Коэффициент теплопроводности меди — 335ккал/м*час*град;
  • Удельное сопротивление меди при 20 o C — 0,0167 Ом*мм 2 /м;

Соединения меди

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2Oв природе встречается в виде минерала куприта. Кроме того, она можетбыть получена в виде осадка красного оксида меди (I) в результатенагревания раствора соли меди (II) и щелочи в присутствии сильноговосстановителя. Оксид меди (II), или окись меди, CuO — черноевещество, встречающееся в природе (например в виде минерала тенерита).Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший осислитель. Гидроксид меди (II) Cu(OH)2 осаждается израстворов солей меди (II) при действии щелочей в виде голубойстуденистой массы. Уже при слабом нагревании даже под водой онразлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II)- очень слабое основание. Поэтому растворы солей меди (II) вбольшинстве случаев имеют кислую реакцию, а со слабыми кислотами медьобразует основные соли. Сульфат меди (II) CuSO4 в безводномсостоянии представляет собой белый порошок, который при поглощении водысинеет. Поэтому он применяется для обнаружения следов влаги ворганических жидкостях. Водный раствор сульфата меди имеет характерныйсине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+,поэтому такую же окраску имеют все разбавленные растворы солей меди(II), если только они не содердат каких-либо окрашенных анионов. Изводных растворов сульфат меди кристаллизуется с пятью молекулами воды,образуя прозрачные синие кристаллы медного купороса. Медный купоросприменяется для электролитического покрытия металлов медью, дляприготовления минеральных красок, а также в качестве исходного веществапри получении других соединений меди. В сельском хозяйстве разбавленныйраствор медного купороса применяется для опрыскивания растений ипротравливания зерна перед посевом, чтобы уничтожить споры вредныхгрибков. Хлорид меди (II) CuCl2. 2H2O.Образует темно-зеленые кристаллы, легко растворимые в воде. Оченьконцентрированные растворы хлорида меди (II) имеют зеленый цвет,разбавленные — сине-голубой. Нитрат меди (II) Cu(NO3)2.3H2O.Получается при растворении меди в азотной кислоте. При нагревании синиекристаллы нитрата меди сначала теряют воду, а затем легко разлагаются свыделением кислорода и бурого диоксида азота, переходя в оксид меди(II). Гидроксокарбонат меди (II) (CuOH)2CO3.Встречается в природе в виде минерала малахита, имеющего красивыйизумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II). 2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3v + 2Na2SO4 + CO2^ Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике. Ацетат меди (II) Cu (CH3COO)2.H2O.Получается обработкой металлической меди или оксида меди (II) уксуснойкислотой. Обычно представляет собой смесь основных солей различногосостава и цвета (зеленого и сине-зеленого). Под названием ярь-медянкаприменяется для приготовления масляной краски. Комплексные соединения меди образуются в результатесоединения двухзарядных ионов меди с молекулами аммиака. Из солей медиполучают разноообразные минеральные краски. Все соли меди ядовиты.Поэтому, чтобы избежать образования медных солей, медную посудупокрывают изнутри слоем олова (лудят).

Производство меди

Медь добывают из оксидных и сульфидных руд. Из сульфидных рудвыплавляют 80% всей добываемой меди. Как правило, медные руды содержатмного пустой породы. Поэтому для получения меди используется процессобогащения. Медь получают методом ее выплавки из сульфидных руд.Процесс состоит из ряда операций: обжига, плавки, конвертирования,огневого и электролитического рафинирования. В процессе обжига большаячасть примесных сульфидов превращается в оксиды. Так, главная примесьбольшинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2,который используется для получения серной кислоты. Получающиеся впроцессе обжига оксиды железа, цинка и других примесей отделяются ввиде шлака при плавке. Жидкий медный штейн (Cu2S с примесьюFeS) поступает в конвертор, где через него продувают воздух. В ходеконвертирования выделяется диоксид серы и получается черновая или сыраямедь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредныхпримесей черновая медь подвергается сначала огневому, а затемэлектролитическому рафинированию. В ходе огневого рафинирования жидкаямедь насыщается кислородом. При этом примеси железа, цинка и кобальтаокисляются, переходят в шлак и удаляются. А медь разливают в формы.Получающиеся отливки служат анодами при электролитическом рафинировании.

Основным компонентом раствора при электролитическом рафинированиислужит сульфат меди — наиболее распространенная и дешевая соль меди.Для увеличения низкой электропроводности сульфата меди в электролитдобавляют серную кислоту. А для получения компактного осадка меди враствор вводят небольшое количество добавок. Металлические примеси,содержащиеся в неочищенной ("черновой") меди, можно разделить на двегруппы.

  1. Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательныеэлектродные потенциалы, чем медь. Поэтому они анодно растворяютсявместе с медью, но не осаждаются на катоде, а накапливаются вэлектролите в виде сульфатов. Поэтому электролит необходимопериодически заменять.
  2. Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпеваютанодного растворения, а в ходе процесса оседают у анода, образуя вместес другими примесями анодный шлам, который периодически извлекается.Олово же и свинец растворяются вместе с медью, но в электролитеобразуют малорастворимые соединения, выпадающие в осадок и такжеудаляемые.

Сплавы меди

Сплавы, повышающие прочность и другие свойства меди, получаютвведением в нее добавок, таких, как цинк, олово, кремний, свинец,алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни — сплавы меди с цинком ( меди от 60 до 90% ицинка от 40 до 10%) — прочнее меди и менее подвержены окислению. Приприсадке к латуни кремния и свинца повышаются ее антифрикционныекачества, при присадке олова, алюминия, марганца и никеля возрастаетантикоррозийная стойкость. Листы, литые изделия используются вмашиностроении, особенно в химическом, в оптике и приборостроении, впроизводстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди(80-94%) и олова (20-6%). В настоящее время производят безоловянныебронзы, именуемые по главному вслед за медью компоненту.

  • Алюминиевыебронзы содержат 5-11% алюминия, обладают высокими механическимисвойствами в сочетании с антикоррозийной стойкостью.
  • Свинцовые бронзы, содержащие 25-33% свинца, используютглавным образом для изготовления подшипников, работающих при высокихдавлениях и больших скоростях скольжения.
  • Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
  • Бериллиевыебронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью послезакалки и высокой упругостью. Их применяют для изготовления пружин ипружинящих изделий.
  • Кадмиевые бронзы — сплавы меди с небольшим количествакадмия (до1%) — используют при производстве троллейных проводов, дляизготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои — сплавы цветных металлов, применяемые припайке для получения монолитного паяного шва. Среди твердых припоевизвестен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное -цинк).

Применение меди

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производствекабельных изделий, шин голого и контактного проводов,электрогенераторов, телефонного и телеграфного оборудования ирадиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты,трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другимиметаллами используют в машиностроении, в автомобильной и тракторнойпромышленности (радиаторы, подшипники), для изготовления химическойаппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь дляизготовления разнообразных изделий с очень сложным узором. Проволока изкрасной меди в отожженном состоянии становится настолько мягкой ипластичной, что из нее без труда можно вить всевозможные шнуры ивыгибать самые сложные элементы орнамента. Кроме того, проволока измеди легко спаивается сканым серебряным припоем, хорошо серебрится изолотится. Эти свойства меди делают ее незаменимым материалом припроизводстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагреванииприблизительно такой же , как у горячих эмалей, в связи с чем приостывании эмаль хорошо держится на медном изделии, не трескается , неотскакивает. Благодаря этому мастера для производства эмалевых изделийпредпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важныхмикроэлементов. Она участвует в процессе фотосинтеза и усвоениирастениями азота, способствует синтезу сахара, белков, крахмала,витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата -медного купороса CuSO4.5H2O. В большом количестве он ядовит, как имногие другие соединения меди, особенно для низших организмов. В малыхже дозах медь необходима всему живому.

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

с кислотами-окислителями
— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением:

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

Взаимодействие с кислотами
С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector