Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула циклической частоты свободных колебаний пружинного маятника

SA. Маятники

Физическую систему (тело), в которой при отклонении от положения равновесия возникают и существуют колебания, называют колебательной системой.

Рассмотрим простейшие механические колебательные системы: пружинный и математический маятники.

Пружинный маятник

  • Пружинный маятник — это колебательная система, состоящая из материальной точки массой m и пружины.

Различают горизонтальный пружинный маятник (рис. 1, а) и вертикальный (рис. 1, б).

Период колебаний пружинного маятника можно найти по формуле

где k — коэффициент жесткости пружины маятника. Как следует из полученной формулы, период колебаний пружинного маятника не зависит от амплитуды колебаний (в пределах выполнимости закона Гука).

  • Свойство независимости периода колебаний маятника от амплитуды, открытое Галилеем, называется изохронностью (от греческих слов ίσος — равный и χρόνος —время).

Математический маятник

Рассмотрим простой маятник — шарик, подвешенный на длинной прочной нити. Такой маятник называется физический.

Если размеры шарика много меньше длины нити, то этими размерами можно пренебречь и рассматривать шарик как материальную точку. Растяжением нити также можно пренебречь, так как оно очень мало. Если масса нити во много раз меньше массы шарика, то массой нити также можно пренебречь. В этом случае мы получаем модель маятника, которая называется математическим маятником.

  • Математическим маятником называется, материальная точка массой m, подвешенная на невесомой нерастяжимой нити длиной l в поле силы тяжести (или других сил) (рис. 2).

Галилео Галилей экспериментально установил, что период колебаний математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения). Он установил также, что период колебаний прямо пропорционален (sqrt).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:

При углах отклонения математического маятника α < 20° погрешность расчета периода по формуле Гюйгенса не превышает 1%.

В общем случае, когда маятник находится в однородных полях нескольких сил, то для определения периода колебаний следует ввести «эффективное ускорение» g*, характеризующее результирующее действие этих полей и период колебаний маятника будет определяться по формуле

Читайте так же:
Средство для очистки алюминия

*Вывод формул

*Пружинный маятник

На груз m горизонтального пружинного маятника действуют сила тяжести (m⋅g), сила реакции опоры (N) и сила упругости пружины (Fynp) (рис. 3, первый две силы на рис. а не указаны). Запишем второй закон Ньютона для случая, изображенного на рис. 3, б

<swf age=»13″ bgcolor=»#F8F8FF» dummy=»Dummy_pic1.jpg»>mex-majat-05.swf</swf> а (материал с сайта science.up-life.ru)

Запишем это уравнение в форме аналогичной уравнению движения гармонического осциллятора

Сравнивая полученное выражение с уравнением гармонических колебаний

находим циклическую частоту колебаний пружинного маятника

Тогда период колебаний пружинного маятника будет равен:

*Математический маятник

На груз m математического маятника действуют сила тяжести (m⋅g) и сила упругости нити (Fynp) (сила натяжения) (рис. 4). Ось 0Х направим вдоль касательной к траектории движения вверх. Запишем второй закон Ньютона для случая, изображенного на рис. 4, б

<swf age=»13″ bgcolor=»#F8F8FF» dummy=»Dummy_pic1.jpg»>mex-majat-04.swf</swf> а (материал с сайта science.up-life.ru)

Пусть x — длина дуги AB, следовательно, x = l⋅θ, где угол θ выражен в радианах. Заметим, что при малых углах θ

Сравнивая полученное выражение с уравнением гармонических колебаний

находим, что при малых отклонениях маятник совершает гармонические колебания с циклической частотой

механика. Механика. Учебное пособие для студентов высших технических учебных заведений дневной, вечерней и заочной (дистанционной) форм обучения. М., 2002. 32 с

Ознакомьтесь с конспектом лекций и учебником (Савельев, т.1, § 49, 50, 53, 58). Запустите программу «Механика. Мол.физика». Выберите «Механика», «Механические колебания и волны» и «Свободные колебания» (сначала математический маятник, потом груз на пружине). Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект. (Если вы забыли, как работать с системой компьютерного моделирования, прочитайте ВВЕДЕНИЕ еще раз)

  1. Выбор физических моделей для анализа движения тел.
  2. Исследование движения тела под действием квазиупругой силы.
  3. Экспериментальное определение зависимости частоты колебаний от параметров системы.
Читайте так же:
Сеялка овощная точного высева

КОЛЕБАНИЕ — периодически повторяющееся движения тела. ПЕРИОД T — минимальное время, через которое движение полностью повторяется.

ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ — движение, при котором координата тела меняется со временем по закону синуса или косинуса: .

Основными характеристиками гармонических колебаний являются:

АМПЛИТУДА А – максимальное значение параметра А.

ЦИКЛИЧЕСКАЯ ЧАСТОТА собственных колебаний  — в 2 раз большая обычной или линейной частоты  = 1/Т ( — число полных колебаний за единицу времени).

ФАЗА (t + ) – значение аргумента косинуса.

НАЧАЛЬНАЯ ФАЗА  – значение аргумента косинуса при t = 0.

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ свободных гармонических колебаний параметра А: , свободных затухающих колебаний:

, где  — коэффициент затухания .

МАТЕМАТИЧЕСКИЙ МАЯТНИК (ММ) и ПРУЖИННЫЙ МАЯТНИК (ПМ) это МОДЕЛИ объектов, в которых могут происходить гармонические колебания.

ММ это материальная точка, подвешенная на идеальной (невесомой и нерастяжимой) нити.

ПМ это материальная точка, прикрепленная к идеальной (невесомой и подчиняющейся закону Гука) пружине. Формулы для  в этих системах выпишите из конспекта или учебника.

ЗАДАНИЕ: Выведите формулу для циклической частоты свободных колебаний кубика на пружине, лежащего на горизонтальной абсолютно гладкой поверхности.

УКАЗАНИЯ: Выпишите формулу для второго закона Ньютона. Подставьте в нее все реальные силы, действующие на кубик. Спроектируйте полученное векторное уравнение на вертикальную и горизонтальную оси. Проведя тождественные преобразования, получите уравнение, похожее на дифференциальное уравнение свободных колебаний. Константу, являющуюся множителем перед А, приравняйте к квадрату циклической частоты, откуда получите .

МЕТОДИКА и ПОРЯДОК ИЗМЕРЕНИЙ

Внимательно рассмотрите рисунки, найдите все регуляторы и другие основные элементы. Зарисуйте поле движения тела с регуляторами соответствующих параметров (укажите, что они регулируют).



ЭКСПЕРИМЕНТ 1.

Выберите «Маятник». Установите с помощью движков регуляторов максимальную длину нити L и значения коэффициента затухания и начального угла, указанные в табл. 1 для вашей бригады.

Нажимая мышью на кнопку «СТАРТ», следите за движением точки на графиках угла и скорости и за поведением маятника. Потренируйтесь, останавливая движение кнопкой «СТОП» (например, в максимуме смещения), и запуская далее кнопкой «СТАРТ» . Выберите число полных колебаний N = 3 – 5 и измеряйте их продолжительность t (как разность t2— t1 из таблицы на экране).

Читайте так же:
Оптимальный размер циркулярного стола

Получите у преподавателя допуск для выполнения измерений.
Приступайте к измерениям длительности t для N (3-5) полных колебаний, начиная с максимальной длины (150 см) нити маятника и уменьшая ее каждый раз на 10 см (до минимальной длины 80 см). Длину нити L и результаты измерений длительности t записывайте в таблицу 2, образец которой приведен ниже.

ЭКСПЕРИМЕНТ 2

Выберите «Груз на пружине». Установите массу груза, значение коэффициента затухания и начальное смещение, указанные в табл. 1 для вашей бригады. Проведите измерения, аналогичные эксперименту 1, уменьшая коэффициент жесткости k каждый раз на 1 Н/м.

Таблица 1. Значения коэффициента затухания (вязкого трения), начального угла отклонения (для первого эксперимента) и начального отклоне ния (для второго).

Номер

Амплитуда, период, частота колебаний.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Механические колебания и волны

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Амплитуда период частота колебаний

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Амплитуда период частота колебаний

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Амплитуда период частота колебаний

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Амплитуда период частота колебаний

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Амплитуда период частота колебаний

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Основные формулы по физике — КОЛЕБАНИЯ И ВОЛНЫ

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна — это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х — смещение (отклонение) колеблющейся величины от положения равновесия;

ω — круговая (циклическая) частота;

α — начальная фаза;

101

Связь между периодом и круговой частотой:

102

Частота:

103

Связь круговой частоты с частотой:

104

Периоды собственных колебаний

1) пружинного маятника:

где k — жесткость пружины;

2) математического маятника:

где l — длина маятника,

g — ускорение свободного падения;

3) колебательного контура:

где L — индуктивность контура,

С — емкость конденсатора.

105

106

107

Частота собственных колебаний:

108

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А1 и А2 — амплитуды составляющих колебаний,

α1 и α2 — начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

109

110

Уравнение затухающих колебаний:

е = 2,71. — основание натуральных логарифмов.

111

Амплитуда затухающих колебаний:

где А — амплитуда в начальный момент времени;

β — коэффициент затухания;

112

Коэффициент затухания:

где r — коэффициент сопротивления среды,

где R — активное сопротивление,

L — индуктивность контура.

113

114

Частота затухающих колебаний ω:

115

Период затухающих колебаний Т:

116

Логарифмический декремент затухания:

117

Связь логарифмического декремента χ и коэффициента затухания β:

118

Амплитуда вынужденных колебаний

где ω — частота вынужденных колебаний,

fо — приведенная амплитуда вынуждающей силы,

при механических колебаниях:

при электромагнитных колебаниях:

119

120

121

Резонансная частота

122

Резонансная амплитуда

123

Полная энергия колебаний:

124

Уравнение плоской волны:

где ξ — смещение точек среды с координатой х в момент времени t;

k — волновое число:

125

126

Длина волны:

где v скорость распространения колебаний в среде,

Т — период колебаний.

127

Связь разности фаз Δφ колебаний двух точек среды с расстоянием Δх между точками среды:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector