Химические свойства алюминия таблица
Химические свойства алюминия таблица
Алюминий-серебристо-белый металл, обладающий высокой электропроводностью и теплопроводностью. (Теплопроводность алюминия в 1,8 раз больше, чем у меди, и в 9 раз больше, чем у нержавеющей стали.) Он имеет невысокую плотность — приблизительно втрое меньше, чем у железа, меди и цинка. И все же это очень прочный металл.
Три электрона из внешней оболочки атома алюминия делокализованы по кристаллической решетке металлического алюминия. Эта решетка имеет грансцентрированную кубическую структуру, подобную решетке олова и золота (см. разд. 3.2). Поэтому алюминий обладает хорошей ковкостью.
Химические свойства
Алюминий образует соединения ионного и ковалентного типа. Он характеризуется высокой энергией ионизации (табл. 15.1). Плотность заряда (отношение заряда к радиусу) для иона очень велика по сравнению с катионами других металлов того же периода (см. табл. 15.2).
Рис. 15.2. Гидратированный ион алюминия.
Таблица 15.2. Отношение заряда к радиусу катионов
Поскольку ион имеет высокую плотность заряда, он обладает большой поляризующей способностью. Этим объясняется то, что изолированный ион обнаруживается лишь в очень немногих соединениях, например в безводном фториде алюминия и оксиде алюминия, причем даже эти соединения обнаруживают заметный ковалентный характер. В водном растворе ион поляризует молекулы воды, которые вследствие этого гидратируют катион (см. рис. 15.2). Эта гидратация характеризуется большой экзотермичностью:
Стандартный окислительно-восстановительный потенциал алюминия равен — 1,66 В:
Поэтому в электрохимическом ряду элементов алюминий расположен довольно высоко (см. разд. 10.5). Это заставляет предположить, что алюминий должен легко реагировать с кислородом и разбавленными минеральными кислотами. Однако, когда алюминий реагирует с кислородом, на его поверхности образуется тонкий непористый слой оксида. Этот слой предохраняет алюминий от дальнейшего взаимодействия с окружающей средой. Оксидный слой можно удалить с поверхности алюминия, натирая ее ртутью. После этого алюминий способен соединяться непосредственно с кислородом и другими неметаллами, например серой и азотом. Взаимодействие с кислородом приводит к реакции
Анодирование. Алюминий и легкие алюминиевые сплавы можно защитить еще больше, сделав толще естественный оксидный слой при помощи процесса, который называется анодированием. В этом процессе алюминиевый предмет помещают в качестве анода в электролизер, где в качестве электролита используется хромовая кислота либо серная кислота.
Алюминий реагирует с горячими разбавленными соляной и серной кислотами, образуя водород:
Сначала эта реакция протекает медленно из-за наличия оксидного слоя. Однако по мере того, как он удаляется, реакция становится все более интенсивной.
Концентрированная и разбавленная азотная кислота, а также концентрированная серная кислота делают алюминий пассивным. Это означает, что он не реагирует с указанными кислотами. Такая пассивность объясняется образованием тонкого слоя оксида на поверхности алюминия.
Растворы гидроксида натрия и других щелочей взаимодействуют с алюминием, образуя тетрагидроксоалюминат(III)-ионы и водород:
Если оксидный слой удален с поверхности, алюминий может выступать в роли восстановителя в окислительно-восстановительных реакциях (см. разд. 10.2). Он вытесняет металлы, расположенные ниже его в электрохимическом ряду, из их растворов. Например
Наглядным примером восстановительной способности алюминия является алюмотермитная реакция. Так называется реакция между порошкообразным алюминием и
оксидом В лабораторных условиях ее обычно инициируют, используя в качестве запала ленточку магния. Эта реакция протекает очень бурно, и в ней выделяется такое количество энергии, которого достаточно, чтобы расплавить образующееся железо:
Алюмотермитную реакцию используют для проведения алюмотермитной сварки; например, таким способом соединяют рельсы.
Оксид алюминия Оксид алюминия, или, как его часто называют, глинозем, представляет собой соединение, которое обладает как ионными, так и ковалентными свойствами. Он имеет температуру плавления и в расплавленном состоянии представляет собой электролит. По этой причине его часто считают ионным соединением. Однако в твердом состоянии оксид алюминия имеет каркасную кристаллическую структуру.
Корунд. Безводные формы оксида алюминия образуют в природных условиях минералы группы корундов. Корунд-это очень твердая кристаллическая форма оксида алюминия. Он используется в качестве абразивного материала, так как по твердости уступает только алмазу. Крупные и прозрачные, нередко окрашенные, кристаллы корундов ценятся как драгоценные камни. Чистый корунд бесцветен, однако наличие в нем небольшого количества примесей оксидов -металлов придает драгоценным корундам характерную окраску. Например, окраска рубина обусловлена наличием в корунде ионов а окраска сапфиров — наличием ионов кобальта Фиолетовая окраска аметиста обусловлена наличием в нем примеси марганца. Сплавляя глинозем с оксидами различных -металлов, можно получать искусственные драгоценные камни (см. также табл. 14.6 и 14.7).
Оксид алюминия нерастворим в воде и обладает амфотерными свойствами, вступая в реакцию как с разбавленными кислотами, так и с разбавленными щелочами. Реакция с кислотами описывается общим уравнением:
Реакция со щелочами приводит к образованию -иона:
Галогениды алюминия. Строение и химическая связь в галогенидах алюминия описаны в разд. 16.2.
Хлорид алюминия можно получать, пропуская сухой хлор либо сухой хлороводород над нагретым алюминием. Например
За исключением фторида алюминия, все остальные галогениды алюминия гидролизуются водой:
По этой причине галогениды алюминия в контакте с влажным воздухом «дымят».
Ионы алюминия. Мы уже указывали выше, что ион гидратируется в воде. При растворении солей алюминия в воде устанавливается следующее равновесие:
В этой реакции вода выступает в роли основания, так как она акцептирует протон, а гидратированный ион алюминия выступает в роли кислоты, так как он донирует протон. По этой причине соли алюминия обладают кислотными свойствами. Если в
Таблица 15.3. Наиболее распространенные квасцы
раствор какой-либо соли алюминия добавить щелочь, например или происходит осаждение гидратированного оксида алюминия:
Однако добавление избыточного количества щелочи приводит к растворению этого осадка вследствие образования растворимого аниона:
В этой реакции гидратированный гидроксид алюминия выступает в роли кислоты. Однако он реагирует также с кислотами:
Таким образом, гидроксид алюминия обладает амфотерными свойствами.
Сульфат алюминия и квасцы. Квасцы — это двойные соли, имеющие общую формулу . В этой формуле однозарядный ион, например или трехзарядный ион. например или . В табл. 15.3 указаны названия и формулы некоторых наиболее распространенных квасцов.
При растворении квасцов они образуют простые ионы. Например, калиевые квасцы образуют в растворе ионы Кристаллы квасцов имеют октаэдрическую структуру.
Протравы. Калиевые квасцы и сульфат алюминия используются в качестве протравы в процессе крашения тканей. С этой целью ткань замачивают в растворе калиевых квасцов или сульфата алюминия, а затем добавляют в раствор какую-либо щелочь. Раствор соли действует как слабая кислота, и в нем образуется гидроксид алюминия (см. выше). Гидроксид алюминия осаждается на нитях ткани и «разъедает» ткань. Кроме того, он поглощает краситель и тем самым связывает его с тканью. Свое название протравы получили от термина «травить» (разъедать).
Химические свойства алюминия таблица
Часть I
1. Дополните схему строения атома алюминия.
13Al 2е, 8е, 3е или
2. Al проявляет сильные восстановительные свойства, получая при этом с.о. +3, по соответствующей схеме:
3. Эта же схема отражает образование в простом веществе металлической связи.
Алюминий имеет металлическую кристаллическую решётку и характеризуется следующими физическими свойствами: серебристо-белый, электро-, термопроводен, пластичный.
4. Заполните таблицу «Применение алюминия на основе его физических свойств».
5. В ряду активности металлов алюминий следует за металлами IIA группы, т.е. очень активен, но с водой, как подсказывает бытовой опыт, не взаимодействует при обычных условиях (алюминиевые провода и посуда не разрушаются под действием воды). Почему?
Есть защитная плёнка оксида алюминия.
Как осуществить реакцию, схема которой:
Al+H2O→Al(OH)3+H2 ?
Растереть алюминий в порошок и смешать с водой при высокой температуре.
6. Химические свойства алюминия (запишите уравнения возможных реакций – молекулярные, полные и сокращённые ионные).
1) Сгорает при нагревании (рассмотрите с позиций окисления-восстановления).
2) Взаимодействует с неметаллами (рассмотрите ОВР).
3) Взаимодействует с растворами кислот.
4) Взаимодействует с растворами солей.
5) Взаимодействует с оксидами металлов – алюминотермия.
6) Взаимодействует с растворами щелочей.
Часть II
1. Заполните таблицу «Применение алюминия на основе его химических свойств».
2. Запишите уравнения реакций, с помощью которых можно осуществить соответствующие переходы, в свете ОВР.
3. Амальгама – это соединение, в состав которого входит ртуть.
В химии алюминия она играет важную роль — как восстанавливающий агент в органических синтезах.
4. Подготовьте сообщение об амальгамах золота и их значении, используя различные источники информации(интернет). Запишите тезисы сообщения или составьте его план в особой тетради.
Метод амальгамации основан на способности ртути образовывать сплавы — амальгамы с различными металлами, в том числе и с золотом. В этом методе увлажненная дробленая порода смешивалась со ртутью и подвергалась дополнительному измельчению в мельницах-чашах. Амальгаму золота (и сопутствующих металлов) извлекали промывкой, после чего ртуть отгонялась из собранной амальгамы и использовалась повторно. Метод амальгамации известен с I века до н. э., наибольшие масштабы приобрел в американских колониях Испании начиная с XVI века. Это стало возможным благодаря наличию в Испании огромного ртутного месторождения — Альмаден. В более позднее время использовался метод внешней амальгамации, когда дробленая золотоносная порода при промывке пропускалась через обогатительные шлюзы, выстланные медными листами, покрытыми тонким слоем ртути. Метод амальгамации применим только на месторождениях с высоким содержанием золота или уже при его обогащении. Сейчас он используется очень редко, главным образом старателями в Африке и Южной Америке.
5. Подготовьте с помощью Интернета презентацию (5-10 слайдов) на тему «История алюминия». Запишите план презентации.
1) Открытие алюминия
2) Нахождение в природе
3) Физические и химические свойства
4) Получение
5) Применение
6. Вычислите, какое количество граммов оксида хрома (III), содержащего 20% примесей, и моль алюминия необходимо для получения 4,5 моль хрома с помощью алюминотермии.
Химические свойства алюминия, его применение
Алюминий – это 13 элемент периодической таблицы. Он находится в третьем периоде, III группе, главной подгруппе.
Свойства и применение алюминия связаны с его электронным строением. Атом алюминия имеет положительно заряженное ядро (+13) и 13 отрицательно заряженных электронов, располагающихся на трёх энергетических уровнях. Электронная конфигурация атома – 1s22s22p63s23p1.
На внешнем энергетическом уровне находится три электрона, которые определяют постоянную валентность III. В реакциях с веществами алюминий переходит в возбуждённое состояние и способен отдавать все три электрона, образуя ковалентные связи. Как и другие активные металлы, алюминий является мощным восстановителем.
Рис. 1. Строение атома алюминия.
Алюминий – амфотерный металл, образующий амфотерные оксиды и гидроксиды. В зависимости от условий соединения проявляют кислотные или основные свойства.
Физическое описание
- лёгкостью (плотность 2,7 г/см3);
- серебристо-серым цветом;
- высокой электропроводностью;
- ковкостью;
- пластичностью;
- температурой плавления – 658°C;
- температурой кипения – 2518,8°C.
Из металла делают жестяные ёмкости, фольгу, проволоку, сплавы. Алюминий используют при изготовлении микросхем, зеркал, композитных материалов.
Рис. 2. Жестяные ёмкости.
Алюминий – парамагнетик. Металл притягивается магнитом только в присутствии магнитного поля.
Химические свойства
На воздухе алюминий быстро окисляется, покрываясь оксидной плёнкой. Она защищает металл от коррозии, а также препятствует взаимодействию с концентрированными кислотами (азотной, серной).
Поэтому кислоты хранят и перевозят в алюминиевой таре.
При обычных условиях реакции с алюминием возможны только после удаления оксидной плёнки. Большинство реакций протекают при высоких температурах.
Основные химические свойства элемента описаны в таблице.
Реакция
Описание
Уравнение
Горит при высоких температурах с выделением тепла
4Al + 3O2 → 2Al2O3
Взаимодействует с серой при температуре выше 200°С, с фосфором – при 500°С, с азотом – при 800°С, с углеродом – при 2000°С
Реагирует при обычных условиях, с йодом – при нагревании в присутствии катализатора (воды)
– 2Al + 3Br2 → 2AlBr3
Реагирует с разбавленными кислотами при обычных условиях, с концентрированными – при нагревании
– 2Al + 3H2SO4(разбав.) → Al2(SO4)3 + 3H2;
– Al + 6HNO3(конц.) → Al(NO3)3 + 3NO2 + 3H2O
Реагирует с водными растворами щелочей и при сплавлении
– 2Al + 2NaOH + 10H2O → 2Na[Al(H2O)2(OH)4] + 3H2;
– 2Al + 6KOH → 2KAlO2 + 2K2O + 3H2
Вытесняет менее активные металлы
2Al + Fe2O3 → 2Fe + Al2O3
Алюминий не реагирует непосредственно с водородом. Реакция с водой возможна после снятия оксидной плёнки.
Рис. 3. Реакция алюминия с водой.
Что мы узнали?
Алюминий – амфотерный активный металл с постоянной валентностью. Обладает небольшой плотностью, высокой электропроводностью, пластичностью. Притягивается магнитом только в присутствии магнитного поля. Алюминий реагирует с кислородом, образуя защитную плёнку, которая препятствует реакциям с водой, концентрированными азотной и серной кислотами. При нагревании взаимодействует с неметаллами и концентрированными кислотами, при обычных условиях – с галогенами и разбавленными кислотами. В оксидах вытесняет менее активные металлы. Не реагирует с водородом.
Особенности металла алюминия: его свойства, преимущества и характеристики
Алюминий — это самый распространенный металл в земной коре, который встречается в виде изотопа. Его активная добыча связана с широкой сферой применения. Благодаря низкой теплопроводности, устойчивости к воздействию коррозии, большой тугоплавкости и жароустойчивости без этого металла не обходится ни одна сфера производства.
Особенности алюминия
Сам металл обладает белым цветом и химической активностью. Вступая в реакцию с воздухом, на его поверхности образуется оксидная пленка, которая защищает его от воздействия влаги и прочих негативных факторов, выступающих в роли раздражителей. Такая реакция не только выступает преимуществом металла, но и в некотором роде является недостатком, корректируя процесс литья.
Далее рассмотрены преимущества и недостатки эматалирования, анодированного и других видов алюминия, а также его классификация.
Данное видео ознакомит вас с особенностями алюминия:
Преимущества и недостатки
Благодаря своей структуре и характеристикам, алюминий обладает следующими преимуществами:
- Небольшая масса;
- Устойчивость к коррозии;
- Высокий коэффициент поглощения звука;
- Экологическая безопасность;
- Устойчивость к температурным перепадам;
- Долговечность;
- Возможность корректировки характеристик благодаря примесям.
Что касается недостатков, то можно отметить лишь высокую стоимость, по сравнению с другими металлами. Однако преимущества эту особенность делают менее значимой.
Классификация
Алюминий достаточно редко используется именно в чистом виде, чтобы получить необходимые функции и технические характеристики, в металл добавляются специальные примеси. Если предел прочности чистого металла составляет 90 МПа, то при добавке легирующих компонентов (магний, цинк и прочее) этот показатель можно увеличить до 700 МПа.
Такие алюминиевые сплавы можно разделить на две группы:
- Деформируемые сплавы. Для их производства металл разливается изначально в специальные слитки, которые затем обрабатываются под высоким давлением одним из методов.
- Литейные сплавы. Они отличаются повышенным содержанием кремния и необходимостью литья уже в готовые формы.
Про температуру плавления и кипения алюминия, иные химические свойства и характеристики металла поговорим ниже.
Свойства и характеристики
Физические свойства данного металла зависят напрямую от его чистоты. Если состав алюминия максимально приближен к единице, то в результате достигаются максимально возможные свойства. Именно поэтому он идеально подходит для ковки, штамповки и другим методам обработки.
Отличительной чертой алюминия является возможность применения разных типов сварки. Кроме этого металл обладает следующими характеристиками:
- Низкий коэффициент плотности, который составляет 2,7 г/см³. От этого показателя зависит также его прочность, которая также невелика. Именно по этой причине алюминий в чистом виде не используется в конструкционных целях.
- Высокий коэффициент теплопроводности. Чистый металл при температуре 200°C обладает теплопроводностью в 209 Вт/(м*К).
- Температура плавления у алюминия технического типа составляет 657 °C, а у чистого — 660 °C.
- Удельная теплоемкость составляет 880 Дж/кг·K.
- Температура кипения — 2500 °C.
Далее рассмотрены структура и химический состав алюминия.
Структура и состав
Структура алюминия представлена кубической решеткой из кристаллов. Минимальное расстояние между двумя атомами составляет от 2,863Å. Кристаллическая решетка имеет стабильность при температурных условиях от 4К до непосредственной температуры плавления. Наличие примесей практически не влияет на структуру алюминия.
Помимо чистого алюминия в состав могут входить примеси из цинка, кремния, магния и других металлов. Далее мы рассмотрим получение и применение алюминия на основе его химических и физических свойств.
О том, как правильно расплавить алюминий при помощи газовой плиты, расскажет видеоролик ниже:
Процесс производства
Технологический процесс получения данного металла включает в себя три этапа:
- Получение глинозема из первичного сырья (содержащие алюминий руды).
- Создание из получившегося глинозема технического алюминия.
- Процесс максимальной очистки металла.
Получение оксида алюминия происходит из глинозема под действием электролиза. Соединение должно быть максимально чистым, поскольку на этом этапе его получения весьма проблематично избавиться от ненужных примесей.
Чтобы получить алюминий с чистотой приближенной к единице, необходимо организовать несколько цехов для его обработки, каждый из которых будет отвечать за определенный этап производства. Именно поэтому чистый металл имеет достаточно высокую цену, которая достигает до 1700 долларов за 1 т (1000 кг алюминия).
Области применения
Технические характеристики и возможность подвергать алюминий различным обработкам обусловили его широкое распространение. В частности металл активно используется в следующих областях:
- Авиастроение;
- Автомобилестроение;
- Ракетостроение;
- Производство посуды;
- Пищевая промышленность;
- Судостроение;
- Микроэлектроника;
- Энергетика и многое другое.
Нередко в процессе использования алюминия применяют в симбиозе с другими металлами, например, железом, титаном, никелем, бронзой, медью и т.п. Особенности алюминия, его технические характеристики и широкое распространение сделали этот металл крайне востребованным. Ни она современная область промышленности не обходится без его применения.
Как паять алюминий без специального флюса, поведает этот видеосюжет: