Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

7. Химические элементы

§ 7. Химические элементы

Все вещества состоят из молекул или атомов. Молекулы и ионы образуются из атомов. Таким образом, все в природе состоит из атомов. Всего на Земле и в космическом пространстве обнаружено 89 различных видов атомов, еще около 29 видов получены учеными искусственно. Они очень неустойчивы и существуют только в лабораториях в виде отдельных атомов в течение лишь нескольких секунд с момента получения.

Атомы разных видов отличаются массой, размерами, строением и зарядом атомных ядер. Атомы одного вида одинаковы по размерам, имеют приблизительно одинаковую массу и сходное строение, но обязательно — одинаковый заряд ядра. Атомы определенного вида называют химическим элементом.

Химический элемент — это разновидность атомов с одинаковым зарядом ядра.

Заряд ядра атома — это важнейшая характеристика химического элемента, по которой можно многое узнать о свойствах атомов и образованных ими веществ. Например, по заряду ядра можно определить число электронов в атоме химического элемента, а их число, в свою очередь, определяет химические свойства веществ, образованных этим элементом.

Аристотель (384-322 гг. до н. э.)

Античный философ, ученик Платона, наставник Александра Македонского. Учился в Академии у Платона в городе Афины. Основал собственную школу — Ликей, где разработал уникальную для Греции систему образования — когда учитель не просто разговаривает с учениками, а читает им заранее подготовленные и записанные на свитках лекции. Его изобретением также является разделение лекций на разные курсы — научные дисциплины — логику, физику, астрономию, метеорологию, зоологию, политику, этику, риторику и др. Аристотель — один из самых разносторонних древнегреческих ученых. Произведения Аристотеля охватывают все области знаний того времени.

Самое давнее понятие об элементах связано с античным философом Аристотелем, который создал первую научную картину мира. В соответствии с ней все тела состоят из различных комбинаций пяти элементов: земли, воды, воздуха, огня и эфира.

Названия и символы химических элементов

У всех химических элементов есть названия и условные обозначения — химические символы. За основу украинских названий элементов взяты их латинские названия. Названия химических элементов пишут с прописной буквы. В качестве символов химических элементов используются первые буквы их латинских названий.

Например, химический элемент с зарядом атомного ядра +1 называется Гидрогеном, его символ Н соответствует первой букве латинского названия Hydrogenium. Химический элемент с зарядом ядра +8 называется Оксигеном (от латин. Oxygenium) и обозначается символом О.

Если первая буква в названии элемента уже используется для обозначения другого элемента, то к ней прибавляется одна из последующих букв, например символ Гелия — Не, Меркурия — Hg (от латин. Hydrargyrum).

Все открытые на сегодняшний день химические элементы сведены в таблицу — Периодическую систему химических элементов Д. И. Менделеева.

Символы и названия элементов — это буквы химического языка. На этом языке разговаривают все химики мира. И вам также нужно выучить «алфавит» химического языка. Символы химических элементов, которые часто используются на уроках химии, приведены в таблице 1.

МЕДЬ — фундамент цивилизации

Не меньше 9000 лет назад человек уже изготавливал первые предметы из меди. Так говорят археологи и подтверждают их находки из тех древних времен.

Не будь этого металла, вся наша история была бы другой. Именно металл медь стал первой ступенькой в развитии в металлургии и фундаментом цивилизации. Именно с этого металла началось развитие человечества.

От Турции до Египта

История открытия металла затерялась в веках. Кто первый обнаружил металл, кто догадался «обстучать» самородок, чтоб из него получилось лезвие или другой инструмент — неизвестно. Тем более никто не знает, кто додумался «сварить» самородок и залить жидкий металл в форму.

Кристаллы меди

Следующая загадка — кто первым стал плавить из руды металл. Зато известно, что самые древние находки медных изделий и шлак от плавки археологи нашли в современной Турции. Древность несусветная — им до 10 000 лет.

Почему медь?

Племена, жившие в Европе в древности, называли медь и любые металлы «мида». В старинных русских текстах слово «медь» также встречается. Ученые считают слово родственным древнегерманскому «smid» (кузнец); либо производным от Мидия — страны на территории нынешнего Ирана.

По-латыни медь называют купрум (aes cuprium), от острова Кипр. Там было богатое месторождение металла. Плиний пишет:

«…Известно, сколь долго римский народ пользовался лишь медной монетой. Сама древность свидетельствует о важном значении этого металла».

Долгое время главная расхожая монета Римской империи называлась асс (aes).

Сейчас «медь» и «купрум» мирно делят принадлежность к цветному металлу.

Свойства металла

медь элемент

Медь находится в 11-й группе периодической таблицы Менделеева, в так называемой «троице дорогих металлов» — медь, золото, серебро. Атомный номер 29. Цвет металла желтовато-розовый, близкий к оранжевому.

В классификации элемент находится в группе переходных металлов.

Физические свойства оценили давно, и востребованы они до сих пор. Это отменные тепло- и электропроводность. По этим показателям медь уступает только серебру; наличие примесей (олово, железо, мышьяк) показатели ухудшают.

Чистая медь мягкая, ковкая, хорошо поддается прокатке. Проволоку можно довести до диаметра в тысячные доли миллиметра.

Плотность 8,92 г/см3. Плавится при 1083,4 °С, кипит при 2567 °С.

Свойства атома
Название, символ, номерМедь/Cuprum (Cu), 29
Атомная масса
(молярная масса)
63,546(3)[1] а. е. м. (г/моль)
Электронная конфигурация[Ar] 3d10 4s1
Радиус атома128 пм
Химические свойства
Ковалентный радиус117 пм
Радиус иона(+2e) 73 (+1e) 77 (K=6) пм
Электроотрицательность1,90 (шкала Полинга)
Электродный потенциал+0,337 В/ +0,521 В
Степени окисления3, 2, 1, 0
Энергия ионизации
(первый электрон)
745,0 (7,72) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)8,92 г/см³
Температура плавления1356,55 K (1083,4 °С)
Температура кипения2567 °С
Уд. теплота плавления13,01 кДж/моль
Уд. теплота испарения304,6 кДж/моль
Молярная теплоёмкость24,44[2] Дж/(K·моль)
Молярный объём7,1 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая гранецентрированая
Параметры решётки3,615 Å
Температура Дебая315 K
Прочие характеристики
Теплопроводность(300 K) 401 Вт/(м·К)
Номер CAS7440-50-8
Читайте так же:
Устройство смазки цепи бензопилы

Кристаллическая структура решетки гранецентрическая, кубическая.

Химические свойства элемента привлекательны для промышленности:

  1. Металлическая медь довольно стабильна и малоактивна. Шпили старых церквей покрывали медными листами, которые исправно защищали кровлю многие годы.
  2. Проявляет степени окисления 3, 2, 1, 0.
  3. Металл не растворяется в разбавленных серной и соляной кислотах, а вот концентрированная азотная кислота с медью охотно реагирует.
  4. Легко реагирует с серой, галогенами (йод, фтор, хлор).

В природе состоит из изотопов 63Cu и 65Cu.

Соединения меди

Чаще всего в природе встречается медный купорос, сульфат меди. Дачники и огородники хорошо знают этот синий порошок. Его применяют для дезинфекции растений от насекомых.

Ацетат меди — фунгицид, компонент краски для керамики.

Парижская (швейнфуртская) зелень, ацетат-арсенид меди. До сих пор используют в окраске наружных частей морских судов (чтобы они не обрастали моллюсками и прочей морской живностью). Фунгицит, инсектицид.

Оксиды используют в окраске стекла и эмалей.

Нитраты применяют для патинирования медных изделий.

Со временем на них образуется естественная патина — зеленоватая оксидно-карбонатная пленка. Иногда патину наращивают искусственно, для состаривания, придания антикварного вида изделию.

Ищем медь

Запасы металла на земле немалые. В их число входит самородная медь (ее скопления могут достигать 400 тонн — бери готовую).

Нет самородной, к услугам человека содержащие медь минералы:

  • медный колчедан (халькопирит);
  • борнит (сульфид меди и железа); раньше его называли пестрый медный колчедан;
  • халькозин, медный блеск (сульфид меди); , карбонат меди; уральский малахит высочайшего качества уже использован, теперь малахит добывают в Африке;
  • куприт (красная медная руда);
  • азурит, медная лазурь.

Месторождения и добыча

Происхождение медных руд разнообразное. Они бывают оксидные, сульфидные, смешанные. Больше всего на земле сульфидных руд (около 90%), в них богатые руды. Не уступают содержанием металла окисленные минералы.

Крупные месторождения есть в Чили (прогнозируемые запасы больше 5 миллионов тонн).

Самородная-медь

Богатейшие месторождения самородной меди находятся в США (озеро Верхнее), на острове Ванкуве (Канада), Корокоро (Боливия).

Самородная «космическая» медь найдена в метеоритах и на Луне.

В России добыча металла ведется в Красноярском крае (все тот же «Норникель»).

Как выплавить купрум

Способы получения меди:

  • пирометаллургический (с его помощью производят 90% металла);
  • гидрометаллургический, оставшиеся 10%.

Гидрометаллургия состоит из единственного этапа — обработки руды (обычно бедной) разбавленной серной кислотой с последующим выделением из раствора металлической меди. При этом все попутные вещества из руды просто пропадают.

Пирометаллургия сложнее, там несколько этапов:

  1. Обогащение методом флотации и окислительного обжига.
  2. Плавка на штейн при температуре до 1500 градусов. Здесь уже выделяют черновой металл, а также сопутствующие серебро, золото, никель.
  3. Огневое рафинирование — очистка полученного металла от примесей до чистоты 99,5%.
  4. Электролитическое рафинирование, доведение чистоты до 99,95%.

Сплавы, лигатуры…

Медь входит в состав множества сплавов:

  • мельхиор;
  • латунь;
  • бронза;
  • латтен (латон);
  • нейзильбер (применяют в ювелирном деле);
  • абиссинское золото;
  • французское золото;
  • северное золото.

Свойства металла, входящих в сплав, позволяют металлургам «сочинять» требуемые характеристики.

Медь стоит недешево, потому производители предпочитают медные сплавы (там, где это возможно).

В некоторых областях сплавы (особенно с алюминием) уверенно обогнали чистый металл. «Маме»-меди не сравниться с коррозионной стойкостью, прочностью, ковкостью сплавов.

Голубая кровь

Это выражение слышали все. Не все знают, что кровь голубого цвета есть в действительности, но не у людей. Белок гемоцианин окрашивает в голубой цвет кровь моллюсков, многоножек, паукообразных. Сам гемоцианин — аналог гемоглобина, который делает нашу кровь красной.

Без нашего героя человек не смог бы выжить и как биологический вид. Металл способствует усвоению белков, углеводов, укрепляет иммунитет. Не зря наши прабабки варили варенье в медных тазах, ведь металл обладает антисептическими свойствами.

Ионы металла обладают антигрибковыми и противовирусными свойствами, способны проникать через клеточную мембрану и уничтожают распространителей заразы.

Уже существует ткань, содержащая медные нити. Вечернего платья и костюма из нее не сошьешь, вот в больницах она необходима. Материал разработали в Чили.

Применение металла: от телеграфа до фейерверков

Широкое применение меди началось после изобретения телеграфа. Понадобились огромные объемы металла для телеграфных проводов. С этого времени наш герой не покидает первого места в рейтинге электротехнических металлов.

Применение меди основано на ее свойствах. Электропроводка в старых домах; сейчас дорогой металл заменяют на дешевый алюминий. А вот в приборах медные проводки присутствуют. Компьютеры оснащены медными теплоотводами.

Сантехническое оборудование, холодильная техника, кондиционеры — везде задействован цветной металл с его замечательными свойствами.

применение меди

Корабли и кораблики гордятся медными трубопроводами (в них течет жидкость и газ).

А во многих странах медные трубы применяют для водо- и газоснабжения зданий.

Без меди не будет твердого припоя (это «клей» для металлов).

Читайте так же:
Набор ручного инструмента электрика

Диоскурид писал: «Из детской мочи и кипрской меди приготовляется припой для золота».

Япония считает медные трубы газопроводов сейсмостойкими.

Медь применяют как лигатуру для золотых сплавов; чистое золото слишком мягкий и склонный к истиранию металл.

Оранжевый цветной металл дает синий цвет пиротехническим изделиям.

Чего мы не знали о меди

Одно из преимуществ удивительного металла — изготовленные из него инструменты не дают искр при ударе. Разумно использовать их там, где есть вероятность взрыва.

Шведские ученые придумали способ захоронения радиоактивных отходов. Сейчас на это тратятся огромные средства. А можно просто помещать радиоактивный хлам в медные капсулы с толщиной стенок 5 сантиметров. По расчетам, коррозия их разрушит не раньше, чем через полмиллиона лет.

Многие знают, что Статуя Свободы (та самая, с факелом и в короне) изготовлена из меди. Не целиком, конечно, цветной металл только сверху, внутри стальные конструкции. Ходили слухи, что изготовлена она из уральского металла, но… Официально признано, что тот цветмет из Норвегии.

Вот случай, когда вроде полезное свойство нашего героя стало недостатком. Норвежское грузовое судно затонуло по вине медной руды, которую и везло. Виновата электрохимия. Медь из руды создала гальваническую пару с металлическим корпусом судна, электролитом послужили испарения морской воды. Возникший ток спровоцировал такую коррозию, что она проела обшивку, и в трюмы хлынула вода.

Модникам и модницам

Секрет джинсов «Gold Vision-3000» в медном биокорсете. Медные нити, «встроенные» в модные штаны, помогают предотвращать сосудистые патологии, стимулируют работу органов малого таза. А они влияют на пищеварение, половую функцию, кроветворение, уменьшают вредное воздействие бытовых приборов, влияние электромагнитных полей.

На биржу или в Лагич?

Биржевая цена за тонну меди сегодня доходит до 5200 $ США.

Не хотите покупать металл тоннами, а желаете иметь красивое и полезное украшение для дома — поезжайте в Азербайджан, в село Лагич. Там испокон развивалось ремесло медников. Их посуда — чаши, кувшины, блюда — совершенны в своей красоте.

Покупайте их смело. Не зря ведь в Лувре, Венском и Бернском музеях хранятся образцы творчества азербайджанских мастеров медных дел.

Вероника Белова

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Положение меди в периодической системе Д.И. Менделеева

Медь (Cuprum), Сu — химический элемент побочной подгруппы первой группы периодической системы элементов Д.И. Менделеева. Порядковый номер 29, атомная масса 63,54. Распределение электронов в атоме меди — Is 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Природная медь состоит из смеси 2-х стабильных изотопов с массовыми числами 63 (69,1%) и 65 (30,9%). Сечение захвата тепловых нейтронов атомов меди 3,59-10 -28 м -2 . Путем бомбардировки никеля протонами или дейтронами искусственно получают радиоактивные изо­топы меди 61 Сu и 64 Сu с периодами полураспада 3,3 и 12,8 ч соответст­венно. Эти изотопы обладают высокой удельной активностью и ис­пользуются в качестве меченых атомов.

Заполненная d-оболочка меди менее эффективно экранирует s-электрон от ядра, чем оболочка инертного газа, поэтому первый потенциал ионизации меди выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны d-оболочки, теплота испарения и температура плавления меди значительно выше, чем у щелочных металлов, что обусловливает более «благородный» характер меди по сравнению с последними. Второй и третий потенциалы ионизации меньше, чем у щелочных металлов, что в значительной степени объясняет проявление свойств меди как переходного элемента, который в степени окисления II и III имеет парамагнитные свойства окрашенных ионов и комплексов. Медь(I) также образует многочисленные соединения по типу комплексов переходных металлов.

2.3 Распространение в природе

Среднее содержание меди в земной коре 4,7-10 -3 % (по массе), в нижней части земной коры, сложенной основными породами, её больше (1-10 -2 %), чем в верхней (2-10 -3 %), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды меди, имеющие большое промышленное значение. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и окислы.

Медь — важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2-10 -4 %, известны организмы — концентраторы меди. В таёжных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается её избыток в почвах и растениях, отчего болеют домашние животные.

В речной воде очень мало меди, 1-10 -7 %. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7-10 -3 %), а морская вода резко недосыщена медью (3-10 -7 %).

В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд меди в песчаниках.

Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение.

Читайте так же:
Проходная фреза по металлу

Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CuFeS2. В природе он встречается главным образом в смеси с железным колчеданом FeS2 и пустой породой, состоящей из оксидов Si, Al, Ca и др. Часто сульфидные руды содержат примеси благородных металлов (Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных элементов (Ge и др.).

Содержание меди в руде обычно составляет 1—5%, но благодаря легкой флотируемости халькопирита его можно обогащать, получая концентрат, содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке (Катанта, Замбия), Америке (Чили, США, Канада).

Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный).

В мировой практике 80 % меди извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего родства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием.

На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь подачи 300 м 2 и более (30 м; 10 м), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).

Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, — процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель — подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд.

Богатые кусковые сульфидные руды (2-3 % Cu) с высоким содержанием серы (35-42 % S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной серы. Медь в этом процессе также концентрируется в штейне.

Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер — цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической меди и SO2. Эту черновую медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака медь для восстановления растворённой в ней Cu2O «дразнят», погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкислённым H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая медь отлагается на катодах — тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную медь промывают водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники меди концентрируются в анодном шламе, из которого их извлекают специальной переработкой.

Наряду с пирометаллургическими применяют также гидрометаллурги-ческие методы получения меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора меди, либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.

Медь (Cu) – роль в организме, симптомы недостатка, источники

Медь (Cuprum, Cu) – химический элемент, который несмотря на свое издревле широкое повсеместное применение в человеческой жизни, несет благотворное воздействие в качестве микроэлемента и внутри живых организмов. Так, находясь в различных ферментах этот микронутриент помогает усваивать и перерабатывать продукты питания, а транспортируясь с током крови находит свое «депо» в клетках печени, откуда при недостаточном поступлении извне организм ее извлекает.

Читайте так же:
Чему равна сторона правильного шестиугольника

Медь (Cu) – роль в организме, применение, суточная потребность, источники

Кроме того, медь, или как ее еще со школьных лет многие из нас знают под термином «купрум» участвует в метаболизме белков и находясь в клетках хрящевой и костной тканей способствует их росту, и соответственно нормальному развитию опорно-двигательного аппарата человека и животных.

В виде самостоятельного минерала медь представляет собой пластичный металл розоватого с золотистым отблеском цвета, который при контакте с кислородом быстро покрывается оксидной пленкой, придавая ему желто-красный оттенок.

Количество меди в коре Земли составляет примерно от 4,7 до 5,5×10 -3 %, а наименьшая часть его присутствует в воде нашей планеты. Встречается как в качестве самостоятельного металла, так и в составе различных соединениях, особенно халькопирите (CuFeS2), халькозине (Cu2S), борните (Cu5FeS4), куприте (Cu2O), ковеллине (CuS), малахите (Cu2CO3(OH)2), азурите (Cu3(CO3)2(OH)2) и прочих. Среди наиболее крупных месторождений выделяют Казахстан, Забайкалье, Центральная Африка, Германия, Чили и США.

Свое наименование купрум («Cuprum», Cu) получил в честь острова Кипр (Cuprium, Cyprium), расположенного в Средиземном море, т.к. именно там в древности было весьма богатое на этот металл месторождение. На территории же бывшего СССР купрум больше известен под темином «медь», этимология которого до конца не известно, однако его связывают с наименованием древней страны «Мидия» (Μηδία) и древнегерманским «smid» (кузнец). В старословянском обозначалось «Мѣдь». Алхимики называли купрум — «Венера», и обозначали символом «♀».

Медь в природе

История – краткая справка

Первые изделия из меди люди использовали еще далеко до рождения Иисуса Христа. Одни из наиболее ранее изготовленных медные предметы обнаружены на территории Турции во время раскопок старого поселения Чаталхёюк, датирующегося примерно 5600 годом до н. э. Также на Ближнем Востоке и Кипре найдены бронзовые вещи (сплав меди и олова), датируемые 3000 годом до Рождества Христова.

Медь была используемая для внутренней отделки храма Господнего, построенного Соломоном (примерно в 957-950 до Р.Х.):

«столбы числом два, море одно, и подставы, которые сделал Соломон в дом Господень, – меди во всех сих вещах не было весу. Восемнадцать локтей вышины в одном столбе; венец на нём медный, а вышина венца три локтя, и сетка и гранатовые яблоки вокруг венца – все из меди. То же и на другом столбе с сеткою.» (4Царств 25:16,17)

Изначально древние народы добывали медь из малахитовой руды.

Активное применение медь нашла во время открытия и широкого использования электричества, т.к. этот металл обладает превосходными электропроводящими свойствами.

Общие данные

Расположение в периодической таблице Д.И. Менделеева: в старой версии — IV период, V ряд, I группа, в новой версии таблицы – 11 группа, 4 период.

  • Атомный номер – 29
  • Атомная масса – 63,546 г/моль
  • Электронная конфигурация – [Ar] 3d 10 4s 1
  • Температура плавления (°С) – 1083,4 (1356,55 K)
  • Температура кипения (°С) – 2567.
  • CAS: 7440-50-8.

Физико-химические свойства

Чистая медь – довольно пластичный металл, из-за чего он и находил издревле широкое применение. Окрашен в золотисто-розовый цвет с небольшим отблеском, однако при контакте с воздухом стремительно покрывается оксидной пленкой, которая придает купруму желтовато-красный цвет.

Широкое применение в электротехнике, системах отопления и других сферах современного быта получила из-за своих замечательных показателей в теплопроводности и электропроводности, является диамагнетиком.

При воздействии на металл влажного воздуха окисляется, образовывая карбонат меди.

При контакте с водой или разбавленной кислотой в реакцию не вступает.

Биологическая роль и функции меди в организме

Для чего нужна медь организму? Cu играет важную роль в превращении железа (Fe) внутри организма в гемоглобин, за счет чего этот микроэлемент косвенно поддерживает функцию кроветворения. Также, находясь в составе многих ферментов – тирозиназы, аскорбиназы, цитохромоксидазы, меланина и многих других медь сопричастна к пигментации волос и кожного покрова, формировании и развитию костных и хрящевых тканей, образованию эластина и коллагена (входят в состав соединительной ткани), эндорфинов (т.н. «гормоны счастья») и прочих.

Биологическая роль и функции меди в организме

Количество меди в организме взрослого среднестатистического человека колеблется в пределах 100 мг, большая часть из которой присутствует в печени.

Медь выполняет и множество других полезных функций, среди которых:

  • Участие в работе супероксиддисмутазы, являющейся ферментом-антиоксидантом, выполняющего роль защиты организма от процессов окисления, распространения и негативного воздействия свободных радикалов, т.е. профилактирует развитие онкологических болезней;
  • Защита организма от патогенной микрофлоры, т.к. этот металл обладает замечательным бактерицидным действием, из-за чего Cu применяли для изготовления различной кухонной утвари;
  • Обладает противовоспалительным действием, за счет чего человеку легче справляться с различными воспалительными заболеваниями, часто обусловленных инфицированием организма;
  • Замечено действие по снижению выраженности клинических проявлений аутоиммунных заболеваний – ревматоидного артрита и прочих;
  • Помогает бороться с отравлениями – способствует укреплению организма и выведению из него токсинов;
  • Поддерживает функционирование нервной системы – являясь строительным материалом для фосфолипидов, поэтому косвенно участвует в сохранении миелина (внешняя оболочка нервных волокон), а также берет участие в регулировании нейромедиаторов;
  • Участвует в процессах кроветворения – используется для формирования эритроцитов. Именно купрум высвобождает железо из «депо» и в дальнейшем помогает усвоить Fe организмом, а также выработать гемоглобин;
  • Ускоряет кровообращение при физической активности, из-за чего не только способствует похудению, но и предотвращению развития сердечно-сосудистых болезней;
  • Участвует в продукции женских половых гормонов;
  • Несет весомый вклад в обменных процессах – активирует инсулин, помогает расщеплять жиры и углеводы, а также помогает в утилизации белков, углеводов и аскорбиновой кислоты. Участвует в синтезе простагландинов, который помогает регулировать кровяное давление, сердечные сокращения, свертываемость крови и прочие.
  • У некоторых живых организмах, особенно беспозвоночных (моллюски и другие) транспорт кислорода осуществляется не гемоглобином, а гемоцианином (медьсодержащий белок).
Читайте так же:
Резка оцинкованного листа на гильотине

Применение меди в других сферах человеческой жизни

  • В медицинской практике – в качестве антисептика и вяжущего средства;
  • В металлургии – для изготовления бронзы (сплав с оловом и др. веществами), латуни (сплав с цинком), мельхиора (сплав с никелем);
  • В электротехнике и радиоэлектронике – для изготовления кабелей, проводов, контактов и прочих элементов;
  • В быту – для изготовления посуды и других кухонных предметов, а также батарей и труб, монет;
  • В искусстве – для изготовления красок, украшений, различных декоративных отделок, памятников и прочих изделий;
  • Для изготовления минеральных удобрений.

Суточная потребность

Суточная потребность в Cu зависит от пола, возраста, дневного рациона и места проживания человека.

Рекомендуемые суточные дозы меди:

  • Младенцы от 0 до 1 года – 0,5 мг;
  • Дети от 1 до 3 лет – 0,5 мг;
  • Дети от 3 до 7 лет – 0,6 мг;
  • Дети от 7 до 11 лет – 0,7 мг;
  • Дети от 11 до 14 лет – 0,8 мг;
  • Подростки от 14 до 18 лет – 1 мг;
  • Взрослые и лица преклонного возраста – от 1 до 2,5-3 мг.
  • Во время беременности дозировку увеличивают от нормы на 0,1 мг;
  • В период кормления грудью: + 0,4 мг.

Согласно методическим рекомендациям Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека №2.3.1.1915-04 от 02.07.2004 г суточная норма меди для граждан России составляет от 1 до 5 мг. Причем 5 мг – максимально допустимая доза.

Суточная доза меди повышается при воспалительных заболеваниях, анемии, повышенной физической нагрузке, злоупотреблении алкогольными напитками, снижении реактивности иммунной системы.

Нехватка меди — симптомы

Дефицит Cu может вызывать следующие нарушения в работе организма:

    , что обусловлено недостаточной выработкой гемоглобина и развитием анемии;
  • Замедленное развитие костных тканей, различные деформации костей и частые переломы, развитие остеопороза;
  • Ухудшение психоэмоционального состояния – депрессивные состояния, повышенная восприимчивость к стрессам, повышенная утомляемость и периодическая апатия к окружающему миру;
  • Ухудшение состояния и здоровья кожи и костей – повышенная скорость поседения и выпадения волос, появление пигментных пятен (витилиго), периодически появляется сыпь;
  • Нарушения со стороны сердечно-сосудистой системы – аритмии, варикозное расширение вен, аневризмы, развитие атеросклероза;
  • Ухудшение качества крови – развитие лейкопении, нейтропении;
  • Снижение реактивности иммунитета и повышенная восприимчивость к инфекционным болезням, особенно ОРЗ.

Причины нехватки Cu

  • Недостаточное поступление в организм медьсодержащих продуктов, а также голодание, диеты, длительное парентеральное питание;
  • Наличие синдрома маальсорбции – нарушение процесса всасывания вещества органами пищеварения;
  • Повышенное поступление в организм цинка (Zn), а также обратный эффект – если много меди, то в организме уменьшается количество цинка;
  • Недостаточное количество витамина С (аскорбиновой кислоты);
  • Синдром Менкеса – сбой в межклеточном транспорте Cu.

Применение меди в медицине

Применение Cu целесообразно в следующих случаях:

  • Для предотвращения дефицита микроэлемента в организме и связанных с этим состояний, синдромов и болезней;
  • Для улучшения качества волос, кожи.

Избыток меди

Избыток меди, собственно, как и недостаток также может нанести вред здоровью.

Правда передозировка или отравление медью более вероятно при поступлении солей или других химически активных соединений меди. Все соли Cu токсичны для внутренней среды организма.

Отравление медью сопровождается следующими симптомами:

  • Нарушения функции печени, выражающиеся бледностью или желтизной кожи;
  • Нарушения в пищеварительной системе — отсутствие аппетита, тошнота, приступы рвоты;
  • Развитие почечной недостаточности – уменьшение количество вырабатываемой почками мочи, а также изменение ее цвета;
  • При поступлении в организм от 30 до 50 мл медного купороса может закончиться летальным исходом.

Причины переизбытка Cu в организме

Злоупотребление препаратами, в которых содержится это вещество.

Источники меди

В каких продуктах Cu содержится больше всего?

В каких продуктах Cu содержится больше всего? Источники меди

Растительные и животные источники (мг на 100 г): печень говяжья (жаренная — 14,6, тушенная – 14,3), печень консервированной трески (14,2), морские водоросли спирулина (6,1), грибы шитаки сушенные (5,1), соевая мука (5,1), кунжутное масло (4,2), кунжут (4,1), какао в порошке (3,8), орехи кешью или масло из них (2,2), базилик (2,1), черные семечки подсолнуха (1,8), кориандр (1,8), фундук (1,8), редис (1,6), орех грецкий (1,6), мята сушенная (1,5), томаты сушенные (1,4), белые семечки тыквы (1,3), фисташки (1,3), шоколад темный (1,2), гречка (1,1), пшеничные отруби (1), семена тмина (0,9), горох (0,75), крупа овсяная (0,5), крупа геркулес (0,45), редька (0,15), свекла (0,14), картофель (0,14), баклажаны (0,14), абрикос (0,14), клубника (0,13), чеснок (0,13), морковь (0,08), яйцо куриное (0,08), капуста белокочанная (0,08), виноград (0,08), грейпфрут (0,07), апельсины (0,07), творог (0,07).

Химические источники (Cu): витаминно-минеральные комплексы «Витрум плюс», «Мультимакс», «Медь активная) и другие препараты меди.

Синтез в организме: не синтезируется.

Взаимодействие меди с другими веществами

  • Прием повышенного количества цинка, витамина С, молибдена, фруктозы, фитаты уменьшают усвояемость меди;
  • Повышенное количество Cu уменьшает усвояемость витамина А, цинка, молибдена и кобальта;
  • Кобальт повышает усвояемость меди.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector