Wabashpress.ru

Техника Гидропрессы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Физико-механические свойства металлов и сплавов

Физико-механические свойства металлов и сплавов

Цвет. По цвету отличаются от других металлов только медь (розовато-красная) или золото (желтое). Серебро имеет характерный белый свет; алюминий, магний, платина, олово, кадмий, ртуть — синевато-белый; железо, свинец, и мышьяк — сероватый. В сильно измельченном состоянии металлы имеют серый. Коричневый или черный цвет.

При пребывании в течении длительного времени на воздухе большинство металлов окисляется и темнеет. Металлы, не окисляющиеся на воздухе (серебро, золото и металлы платиновой групп), и металлы, у которых образуется на поверхности тончайший защитный слой окиси (алюминий и др.), не изменяют своего цвета и блеска в течении длительного времени.

Удельный вес. Удельным весом металлов называется вес 1 см 3 вещества, выраженный в граммах.

Кроме небольшой группы легких металлов (алюминий, магний) имеющих удельный вес менее 3, большинство металлов имеет значительный удельный вес (табл.1) отдельно.

Благодаря большому удельному весу платина (21,4) и золото (19,32), встречающиеся в самородном виде, добываются путем отмывки от сопровождающих их сравнительно легких частиц песка, глины и т.п.

Малый удельный вес алюминия и магния имеет исключительно важное значение при постройке самолетов, и поэтому легкие сплавы этих металлов особенно тщательно изучают.

В литейном деле большая разница металлов иногда вызывает затруднения при получении однородных сплавов. При сплавлении металлов, сильно различающихся по удельному весу, более легкий металл может всплывать. Такое явление происходит, например, при изготовлении свинцовой бронзы, содержащей 60 % Pb и 40% Cu.

Температура плавления. Температура, при которой нагреваемый металл переходит из твердого состояния в состояние жидкое, называется температурой плавления (см. табл. 1).

Необходимо учитывать изменение температуры плавления сплава при введении в него новых составных частей. Температура плавления платины 1773 o C , и в окислительном, светлом, некоптящем пламени платиновый тигель легко выдерживает температуру пламени. В коптящем восстановительном пламени (при неполном горении), несмотря на более низкую температуру пламени, платина тигля, вступив в соединение с избытком несгоревшего углерода, может образовать более легкоплавкую и хрупкую углеродистую платину, и тигель испортится. Чистое железо вместе с углеродом дает сравнительно легкоплавкий чугун с температурой плавления приблизительно 1130 o C. может получиться и обратное явление, например при сплавлении алюминия и 30 %Ni. Ранее считали обязательным начинать плавку всегда с расплавления этого наиболее тугоплавкого металла, но в данном случае этого делать нельзя. Если начать с расплавления никеля (температура его плавления 1454 o C) и в него вводить постепенно более легкоплавкий алюминий (температура плавления 660 o C), то его сплав затвердеет.

При содержании 68,5 % Ni и 31,5 % Al образуется химическое соединение AlNiс температурой плавления около 1620 o C. поэтому при сплавлении металлов, которые могут дать химические соединения с температурой плавления выше температуры плавления исходных компонентов, необходимо руководствоваться диаграммой состояния, указывающей, как изменяется температура плавления сплава при постепенном изменении его состава, и вести плавку соответственным образом.

Удельная теплоемкость. Количество тепла в больших калориях (килокалориях — ккал), необходимо для повышения температуры 1 кг металла на 1 o C, называется теплоемкостью металла и обозначается буквой С.

Теплоемкость несколько изменяется с температурой. В таблицах приводиться обычно средняя температура, например от 0 до 100 o C (см.табл. 1)

Скрытая теплота плавления. Чтобы расплавить твердое вещество, т.е. перевести его в жидкое состояние, требуется не только нагреть его до температуры плавления, но еще затратить дополнительную тепловую энергию, которая не повышает температуры расплавляемого тела, а идет на разрушение кристаллической структуры. Пока твердое вещество не перейдет все целиком в жидкое состояние, температура не будет повышаться выше температуры источника тепловой энергии. Повышенная мощность источника тепла может лишь ускорить расплавление, но температура плавящегося вещества будет оставаться постоянной, пока не произойдет полное расплавление.

Количество тепла, идущего на повышение 1 кг твердого вещества при температуре его плавления в жидкое состояние при той же температуре, называется скрытой теплотой плавления и выражается в больших калориях.

Теплопроводность. Свойство металла проводить тепло называется теплопроводностью теплопроводность характеризуется коэффициентом теплопроводности, показывающим, сколько калорий тепла может пройти в единицу времени сквозь 1 см o C вещества при разности температур на двух противоположных гранях кубика в 1 o C, и обозначается буквой λ.

Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава будучи легче чугунного примерно в три раза, облегчит ве конструкции. Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.

Электросопротивление. За единицу электрического сопротивления принято сопротивление ртутного столба длиной 106,3 см с поперечным сечением 1 см 2 C при 0 o C. Эта единица называется омом (обозначается Ω). Чем больше длина проводника и чем меньше поперечное сечение проводника, тем сопротивлении его больше. При одной и той же длине и сечении проводники из разных металлов имеют различное сопротивление, что характеризуется удельным сопротивлением. Удельное сопротивление показывает, какое сопротивление имеет проводник из данного метала длиной 1 м и сечением 1 мм 2 C.

Для всех металлов характерно повышение электросопротивления с повышением температуры в отличие от неметаллических материалов, элетросопротивление которых при нагревании уменьшается.

Медь и алюминий, обладая самым малым электросопротивления из всех металлов (за исключением серебра), являются основными металлами для электропроводов.

Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника. Сплавами для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000 o C. Однако такую нить модно нагревать лишь в вакууме. Кислород воздуха ее окисляет

Термический коэффициент линейного расширения. Приращение длины предмета на единицу длины при нагревании его на 1 o C называется термическим коэффициентом линейного расширения α.

Так как коэффициент α очень мал, то в таблицах его значение обычно дается с коэффициентом 10 -6 C, т.е. в миллионных долях первоначальной длины, измененной при 0 o C. Свойство металлов расширяться при нагревании и сжиматься при охлаждении необходимо учитывать при изготовлении металлических сооружений и деталей машин.

Коэффициент линейного расширения может считаться почти постоянным при небольших изменениях температуры. При сильном нагревании он может значительно изменять свою величину. Имеются сплавы, обладающие особенно малой величиной α. Например, сплав «инвар» (35 % Fe и 35 %Ni) имеет в пределах от -10 до + 90 o C термический коэффициент линейного расширения α, близкий к нулю; однако при повышении температуры выше 100 o C он быстро растет.

При застывании отлитых деталей, если тонкие части охлаждаются и сжимаются быстрее, чем толстые, могут получиться трещины там, где возникают вредные внутренние напряжения. Конструктор во избежании трещин должен умело подбирать размеры сечений в отливке.

Тепловое расширение имеет большое значение и для сварных конструкций, в которых тоже возникают внутренние напряжения.

Особенно тщательно необходимо учитывать линейное расширение металлов при производстве измерительных и прецизионных (точных) приборов, при изготовлении калибров и деталей машин, работающих при повышенной температуре.

Поглощение газов. Многие металлы и сплавы обладают свойством в жидком состоянии поглощать и растворять газы, и тем сильнее, чем выше перегрет жидкий металл. При охлаждении и при кристаллизации растворимость газов понижается. Они выделяются в толщине застывающего металла и могут образовывать большое количество газовых раковин и других дефектов. Это вызывает брак в следствие недостаточной плотности и прочности литья. Растворенный в металле кислород может давать химические соединения с металлом, тоже понижающие прочность металла.

Читайте так же:
Сплав меди с цинком и никелем

Для удаления газов и раскисления жидких металлов (например, стали) применяют элементы, обладающие большим сродством с кислородом и азотом, напрмер металлический алюминий. Он соединяется с кислородом и с азотом, а образующиеся при жтом окислы и нитриды алюминия поднимается на поверхность расплавленного металла и переходят в шлак. Для раскисления меди и ее сплавов часто применяют фосфористую медь — сплав с 12-14% Р, используя большое сродство фосфора с кислородом.

Особенное значение имеет тщательное раскисление медных и других сплавов успешной обработки их давлением в горячем или холодном виде (проката, прессовка, ковка, штамповка, волочение и пр.) и для снижения брака. Однако избыток раскислителя, переходя в сплав в качестве его компонентов может ухудшить свойства сплава.

Окислы раскислителя, образующиеся в результате раскисления сплава, должны легко оделяться от него, всплывая в виде шлака.

Этому способствует достаточная разность удельных весов сплава и продуктов раскисления его. Остающийся в сплаве после реакции раскисления небольшой избыток раскислителя не должен понижать обратавыаемость и механических качеств сплава.

В качестве раскислителя не следует употреблять дорогостоящие, редкие вещества. Раскислитель должен быть удобным для точной навески при добавлении его в шихту.

Магнитные свойства. По магнитны свойствам все металлы делятся на две группы — диамагнитные и парамагнитные. При внесении диамагнитного металла в магнитное поле оно уменьшается, а при внесении парамагнитного металла магнитное поле усиливается. К диамагнитным металлам относится бериллий, сурьма, висмут, медь, золото, серебро, цинк, кадмий, ртуть и др. к парамагнитным металлам алюминий, кальций, барий, молибден, вольфрам и др.

Частным случаем парамагнитных метало являются ферромагнитные металлы — железо, никель, кобальт и редкий элемент — гадолиний.

Железо, кобальт и никель теряют свои магнитные свойства при высоких температурах (железо при 759 o C, кобальт при 1110 o C и никель при 350 o C).

Диффузия. Протекающий во времени процесс выравнивания состава в газе, в жидкости и даже в твердом теле путем взаимного проникновения их частиц называется диффузией. Оцинковка железа и другие подобные операции с диффузией жидкого металла в твердый. Твердое вещество также может диффундировать в жидкое — растворяться в нем. Это имеет важное практическое значение и наблюдается, между прочим, при изготовлении стали и других сплавов, когда твердый металл растворяется в жидком металле или в сплаве.

Диффузией газа в твердый металл широко пользуются в таких процессах, как азотирование (нитрирование), стали, когда аммиак, вводимый в печь, в которую положены детали, разлагается при нагревании до 500-600 o C, а выделяющийся азот диффундирует в твердую сталь, образуя на поверхности ее очень твердые нитриды. Продолжительность времени нагревания в аммиаке и температура нагрева определяют глубину азотированного слоя. Диффузия алюминия в поверхность железных, стальных или чугунных изделий при температуре около 900 o C («алитирование» изделий) вызывает повышение их коррозионной стойкости.

Твердость. Твердостью металла называется сопротивление, оказываемое металлом при вдавливании в него твердых предметов. Наиболее распространенными методами определения твердости являются методы Бринелля и Роквелла.

Упругость. Упругостью металла называют свойство металла восстанавливать свою первоначальную форму и размеры после прекращения действия внешней силы, вызывающей его деформацию.

Брусок металла, подвергнутый действию растягивающего усилия, удлиняется. Если это усилие не превосходит определенной для данного материала величины, брусок после снятия нагрузки получает свои первоначальные размеры. Величина этого усилия называется пределом упругости.

Если нагрузка перейдет за пределы упругости, то после снятия нагрузки форма бруска не восстанавливается, и брусок останется удлиненным; такая деформация называется пластической.

Прочность. Прочностью называется свойство металла сопротивляться действию внешних разрушающих сил. В зависимости от характера этих внешних сил различают прочность на растяжение, на сжатие, на изгиб, на кручение и т.д. Условное напряжение, отвечающее наибольшей нагрузки, предшествующей разрушению образца, называется пределом прочности, определяя максимальное усилие Р, которое может выдержать образец во время испытания, деля его на первоначальную площадь поперечного сечения образца F oC.

Вязкость ударная. Вязкость характеризуется сопротивлением удару.

Удельная ударная вязкость (сопротивление удару) определяется количеством работы, необходимой для разрушения бруска посредством ударной изгибающей нагрузки на так называемом копре Шарпи, деленной на поперечное сечение образца, и выражается в кгм/см 2 C.

Технологические свойства.

Пластичность. Одним из основных свойств металла является их пластичность, т.е. способность металла, повергнутого нагрузке, деформироваться под действием внешних сил без разрушения и давать остаточную (сохраняющуюся после снятия нагрузки) деформацию. Пластичность иногда характеризуют величиной удлинения образца при растяжении.

Отношение приращения длины образца при растяжении к его исходной длине, выражаемое в процентах, называется относительным удлинением и обозначается δ, %. Относительное удлинение определяется после разрыва образца и указывает способность металла удлиняться под действием растягивающих усилий.

Ковкость. Способность металла без разрушения поддаваться обработке давлением (ковке, прокатке, прессовке и т.п.) называется его ковкостью. Ковкость металла зависитот его пластичности. Пластичные металлы обычно обладают и хорошей ковкостью.

Усадка. Усадкой металла называется сокращение объема расправленного металла при его застывании и охлаждении до комнатной температуры.

Соответствующее изменение линейных размеров, выраженное в процентах, называется линейной усадкой.

Жидкотекучесть. Способность расплавленного металла заполнять форму и давать хорошие отливки, точно воспроизводящие форму, называются жидкотекучестью. Кроме хорошего заполнения формы, лучшая жидкотекучесть способствует получению здоровой плотной отливки благодаря более полному выделению из жидкого металла газов и неметаллических включений. Жидкотекучесть металла определяется его вязкости в расплавленном состоянии.

Износостойкость. Способность металла сопротивляться истиранию, разрушению поверхности или изменению размеров под действием трения называется износостойкостью.

Коррозия стойкости. Способность металла сопротивляться химическому или электрохимическому разрушению его во внешней среде под действием химических реактивов и при повышенных температурах называется коррозионной стойкостью.

Глава 1. Металлические материалы / Глава 1.2. Основные свойства металлов и сплавов

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов: блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов: твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются, окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов: ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость — способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость — способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость — способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава — возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Читайте так же:
Светильник над кроватью в спальне

Обрабатываемость резанием — поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть — способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость — способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск — способность поверхности металла и сплава направленно отражать световой поток.

Плотность — масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления — это температура, при которой металл или сплав целиком переходят в жидкое состояние.

Теплопроводность — количество теплоты, проходящее в секунду через сечение в 1 см2, когда на расстоянии в 1 см изменение температуры составляет в 1 °С.

Теплоемкость — количество теплоты, необходимой для повышения температуры тела на 1 °С.

Электрическая проводимость — величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10-6 м2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эта величины связаны между собой коэффициентом χm, который называется магнитной восприимчивостью стали или сплава.

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь

где μь — магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) b = μНтμв, где μ= 1 + χ — коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нт после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. ‘Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Hc, напряженность насыщающего поля Нн и намагниченность насыщения Мs, По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость μ0 и максимальная магнитная проницаемость μmax .

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения b3 .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно-нечувствительные и структурно-чувствительные. К структурно-нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно-чувствительным — магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно-нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т. д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно-чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов — изменение размеров и формы зерен — характеризуется температурными коэффициентами объемного и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава нагреваемых или охлаждаемых с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

  • Назад
  • Вперёд

Компания Укринтех предлагает качественные и недорогиеоптико-эмиссионные спектрометры от производителя MetalPower по самым выгодным ценам.

Характеристики основных механических свойств металлов и сплавов и способы их определения

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

Металл

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

Механические свойства металлов

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

1. Верно ли утверждение, что к цветным металлам и образованных из них сплавов относится сталь и чугун?

2. В каком из перечней перечислены механические свойства металлов?

1. Плотность, температура плавления, цвет 2. Спекаемость, свариваемость, штампуемость 3. Прочность, твердость, пластичность, упругость

Читайте так же:
Регистр из профильной трубы своими руками

3. На какие группы подразделяются твердые тела в зависимости от их внутреннего строения

1. Аморфные и кристаллические 2. Легкоплавкие и тугоплавкие 3. Черные и цветные

4. От чего зависят свойства металлов, с точки зрения их внутреннего строения?

1. От химического состава 2. От типа кристаллической решетки. 3. От количества компонентов.

5. Макроскопический анализ материалов позволяет определить:

1. Химический состав 2. Механические свойства 3. Форму и размер зерен, макродефекты, макрохимическую неоднородность

6. Прочность – это способность материала

1. Сопротивляться действию внешних сил без разрушения 2. Восстанавливать первоначальную форму после снятия нагрузки 3. Сопротивляться проникновению более твердого материала

7. Какой из индентеров применяется при определении твердости методом Виккерса?:

1. Закаленный шарик ø 10мм 2. Алмазная пирамида с углом между диагоналями 136 º 3. Алмазный конус с углом при вершине 120º г)

8. Упругость – это

1. Способность материала выдерживать нагрузки не разрушаясь 2. Способность материала изменять свою форму при приложении внешних нагрузок не разрушаясь 3. Способность материала изменять свою форму под действием внешней нагрузки и восстанавливать ее после снятия

9. Какий из способов исследования материалов применяют для выявления внутренних дефектов?

1. Рентгеновский 2. По излому 3. Электронный микроскоп 4. Магнитный метод

10. Какой метод определения твердости применяется для тонких деталей и поверхностных слоев?

1. Роквелла 2. Бринелля 3. Виккерса 4. Метод Шора

11. В чем сущность атомно-кристаллического строения металлов?

1. Их атомы располагаются хаотично 2. Их атомы расположены в геометрически правильном порядке 3. Их атомы сохраняют ближний порядок 4. Атомы расположены закономерно

12. Определите правильную строку

1. Обрабатываемость материала зависит от его структуры 2. От твердости материала 3. От теплопроводности 4. Все варианты ответов правильные

13.Определите правильную строку

1. Такие характеристики материалов как предел прочности, предел текучести, относительное удлинение и сужение можно определить при испытаниях на растяжение 2. Такие характеристики материалов как предел прочности, предел текучести, относительное удлинение и сужение можно определить при испытаниях на ударную вязкость 3. Такие характеристики материалов как предел прочности, предел текучести, относительное удлинение и сужение можно определить при испытаниях на усталость 4. Такие характеристики материалов как предел прочности, предел текучести, относительное удлинение и сужение можно определить при испытаниях на ползучесть

14. Можно ли определить по диаграмме Fe-C температуры термической обработки?

15. Как называется линия первичной кристаллизации сплавов?

1. Солидус 2. Ликвидус

16. Сплав – это вещество

1. Состоящее из двух и более металлов 2. Состоящее из металлов и неметаллов 3. Состоящее из двух и более компонентов

17. Выберите способы получения сплавов:

1. Сплавление 2. Сварка 3. Спекание

18. Линия ликвидус соответствует точкам

1. АВСD 2. AB 3. AHJE 4. GSE

19. Какая из структурных составляющих диаграммы имеет низкую прочность и высокую пластичность

1. Аустенит 2. Ледебурит 3. Цементит 4. Феррит

20. Каким содержанием углерода ограничивается область сталей на диаграмме Fе-С?

1. 2,14 % 2. 2 % 3. 0,83 % 4. 4,3 %

21. По предложенному описанию определите структуру сплава: компоненты не растворяются и химически не взаимодействуют между собой в твердом состоянии. Свойства сплава средние из свойств элементов, которые его образуют.

1. Твердые растворы 2. Механические смеси 3. Химическое соединение

22. По следующему описанию определите структурную составляющую железоуглеродистых сплавов: Это химическое соединение железа с углеродом. Наибольшее содержание углерода — 6,67%. Характерными особенностями структуры являются высокая твердость и низкая пластичность.

1. Аустенит 2. Цементит 3. Перлит 4. Ледебурит

23. Выберите продукты доменного процесса

1. Сталь 2. Латунь, бронза 3. Чугун, ферросплавы

24. Верно ли утверждение, что сера ухудшает механические свойства чугуна и стали

25. Сталь – это

1. Сплав железа с углеродом, где углерода свыше 2,14% 2. Сплав железа с углеродом, где углерода 2,14% 3. Сплав железа с углеродом, где углерода до 2,14%

26. Основными видами машиностроительных чугунов являются

1. Серый, ковкий 2. Высокопрочный, антифрикционный, легированный 3. Все перечисленные

27. По химическому составу стали делятся на:

1. Углеродистые и легированные 2. Качественные и высококачественные 3. Конструкционные и инструментальные

28.Укажите форму графита высокопрочного чугуна:

1. Пластинчатый 2. Шаровидный 3. Хлопьевидный

29. Основными сталями для изготовления рессор и пружин являются:

1. Углеродистые конструкционные 2. Конструкционные стали с повышенным содержанием углерода 0,5 -0.7%, дополнительно легированные марганцем, хромом, ванадием, кремнием. 3. Инструментальные легированные с повышенным содержанием вольфрама, ванадия.

30. Чугун –это

1. Сплав железа с углеродом, где углерода свыше 2,14% 2. Сплав железа с углеродом, где углерода до 2,14% 3. Сплав железа с углеродом и другими примесями

31. Какие из перечисленных элементов определяют химический состав стали:

1. Кремний, марганец, сера, фосфор 2. Железо, углерод, кремний, марганец, сера, фосфор 3. Железо, углерод, кремний, марганец, сера 4. Железо, углерод, кремний, марганец

32. Ковкие чугуны получают:

1. Из отливок белого чугуна путем отжига 2. Путем введения в их состав легирующих компонентов 3. Добавлением в жидкий чугун небольших присадок 4. В доменных печах

33. Определите правильную строку:

1. Наибольшей прочностью и износостойкостью обладают чугуны на перлитной основе 2. Наибольшей прочностью и износостойкостью обладают чугуны на ферритовой основе 3. Наибольшей прочностью и износостойкостью обладают чугуны на мартенситной основе 4. Все перечисленные варианты ответов правильные

34. Найдите ошибку. Стали для измерительного инструмента должны иметь:

1. Высокую износостойкость 2. Высокую ударную вязкость 3. Мартенситную структуру 4. Мало изменяющийся коэффициент теплового расширения

35. Верно ли утверждение, что термическая обработка изменяет свойства материала?

36. В каком из перечней указаны этапы термической обработки?

1. Нагрев до определенной температуры, выдержка при этой температуре и охлаждение 2. Нагрев до определенной температуры и выдержка 3. Нагрев до определенной температуры и охлаждение

37. Что называют термической обработкой?

1. Процесс пластического упрочнения поверхностного слоя металла 2. Процесс диффузионного насыщения поверхностных слоев химическими элементами 3. Процесс преобразования металла под действием температуры для изменения его структуры, механических и физических свойств 4. Процесс преобразования металла под действием температуры для изменения химического состава материала

.
Закалка- это…
1. Нагрев стали до высоких температур, выдержка при этих температурах и последующее быстрое охлаждение 2. Нагрев стали до определенных температур, небольшая выдержка и охлаждение на спокойном воздухе 3. Нагрев поверхностного слоя металла 4. Насыщение поверхностного слоя металла углеродом

39. Химико-термическая обработка-это…

1. Процесс преобразования материала под действием температуры 2. Нагрев металла до определенной температуры и медленное охлаждение 3. Процесс диффузионного насыщения поверхностных слоев изделия одним или несколькими химическими элементами 4. Процесс нанесения на изделия металлов

40. Какое из представленных определений соответствует понятию «нормализация»?

1. Нагрев стали до определенной температуры, с последующим охлаждением на воздухе 2. Нагрев стали до температуры 1100-1200ºС, с последующим медленным охлаждением 3. Нагрев стали до определенной температуры, с последующим быстрым охлаждением 4. Нагрев закаленной стали до определенной температуры и охлаждение

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Читайте так же:
Почему нельзя перевозить холодильник лежа

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Физические свойства металлов

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Свойства металлов

Характеризуют взаимодействие и/или сопротивление металла различным химически активными средам.

2.1 Антикоррозионные свойства

Физические свойства

Технологические свойства металлов

Определяют возможность изготовления изделия тем или иным способом К технологическим свойствам относятся жидкотекучесть, деформируемость, свариваемость, закаливаемость, прокаливаемость, обрабатываемость резанием

Эксплуатационные свойства

Обеспечивают долговечную работу в определенных условиях. К ним относятся износостойкость, теплостойкость, жаропрочность

Новости металлургии

Поиск и добыча полезных ископаемых alt=»Поиск и добыча полезных ископаемых» width=»80″ height=»80″ />

Начало и конец поиска месторождений полезных ископаемых

Поиском полезных ископаемых люди стали заниматься с тех пор, как зародилась идея повышать качество.

/>

Газорезка – эффективный способ резки металлических изделий

Сегодня большое распространение получили изделия из металлопроката. Они повсеместно используются в строительстве и в.

/>

Расписание конференций по металлургии и обработке металлов на 2019/2020 годы

Анонсируем выставки и конференции по металлургии и обработке металлов которые запланированы на 2019-2020 годы.

/>

Листовая оцинкованная сталь: основные сферы применения, преимущества и виды

Листовая оцинкованная сталь славится превосходной стойкостью к коррозии. Она приобрела широкую сферу применения благодаря.

Современные станки с ЧПУ alt=»Современные станки с ЧПУ» width=»80″ height=»80″ />

Фрезеровка на станках с ЧПУ

Фрезеровка — одна из ключевых манипуляций, связанных с обработкой разных видов материалов, и необходимая.

Пистолет для вязание арматуры alt=»Пистолет для вязание арматуры» width=»80″ height=»80″ />

Пистолеты для вязки арматуры: преимущества применения и виды

Что представляет собой пистолет для вязки арматуры, как работает устройство. Разновидности, особенности и характеристики.

Тема № 1. «Механические свойства металлов и сплавов и методы их определения» Лекция 1

Определения. Методы определения механических свойств металлов разделяют на:

Методы определения механических свойств металлов разделяют на:

— статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

— динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);

— циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

1.2.2.1 Испытание на растяжение

При испытании на растяжение определяют предел прочности (sв),

предел текучести (sт), относительное удлинение (δ) и относительное сужение (y). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения
Fo
и рабочей (расчетной) длиной
lo.
В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.

Предел прочности (sв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/F0).

Рисунок 1 – Диаграмма растяжения

Необходимо отметить, что при растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяется делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент. Истинные напряжения в повседневной практике не определяют, а пользуются условными напряжениями, считая, что поперечное сечение

образца остается неизменным.

Предел текучести (sт) – это нагрузка, при которой происходит пластическая деформация, отнесенная к начальной площади поперечного сечения образца (Рт / F0). Однако при испытаниях на растяжение у большинства сплавов площадки текучести на диаграммах нет. Поэтому определяется условный предел текучести (s0,2) — напряжение, которому соответствует пластическая деформация 0,2%. Выбранное значение 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

К характеристикам материала относят также предел упругости (sпр

), под которым подразумевают напряжение, при котором пластическая деформация достигает заданного значения. Обычно используют значения остаточной деформации 0,005; 0,02; 0,05%. Таким образом,
s0,05 = Рпр / F0
(Рпр – нагрузка, при которой остаточное удлинение составляет 0,05%).

Предел пропорциональности sпц = Рпц / F0

(Рпц – максимальная нагрузка, при действии которой еще выполняется закон Гука).

Пластичность характеризуется относительным удлинением (d) и относительным сужением (y ):

d = [(lk — lo)/lo]∙100% y = [ (Fo – Fk)/Fo]∙100%

— конечная длина образца;
lo
и
F0
— начальные длина и площадь поперечного сечения образца;
Fk
— площадь поперечного сечения в месте разрыва.

Для малопластичных материалов испытания на растяжение вызывают затруднения, поскольку незначительные перекосы при установке образца вносят существенную погрешность в определение разрушающей нагрузки. Такие материалы, как правило, подвергают испытанию на изгиб.

1.2.2.2 Испытания на твердость

Твердость – способность материала оказывать сопротивление проникновению в него другого, более твердого тела – индентора.

Твердость материала определяют методами Бринелля, Роквелла, Виккерса, Шора (рис.2).

Определение твердости по Бринеллю проводится путем вдавливания в металл стального шарика. При этом на поверхности металла образуется сферический отпечаток, диаметр которого зависит от твердости металла. Диаметр шарика (Д

) и нагрузки (
Р
) выбирают в зависимости от металла, который исследуют. При испытании стали и чугунов выбирают
Д
= 10 мм и
Р
= 30 кН, при испытании меди и её сплавов —
Д
= 10 мм и
Р
= 10 кН, а при испытании очень мягких металлов (алюминия, баббита и др.) —
Д
= 10 мм и
Р
= 2,5 кН.

Рисунок 2 – Схемы определения твердости по Бринеллю(а),

Роквеллу(б) и Виккерсу(в)

Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 · 106, на который умножают значение твердости по Бринеллю: НВ = НВ · К, Па.

Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.

Читайте так же:
Светодиодная лента без подключения к сети

Для различных материалов установлена корреляционная связь между пределом прочности (в МПа) и числом твердости НВ: sв » 3,4 НВ — для горячекатаных углеродистых сталей; sв » 4,5 НВ — для медных сплавов, sв » 3,5НВ — для алюминиевых сплавов.

Определение твердости методом Роквелла осуществляют путем вдавливания в металл алмазного конуса или стального шарика. Прибор Роквелла имеет три шкалы – А,В,С. Алмазный конус применяют для испытания твердых материалов (шкалы А и С), а шарик – для испытания мягких материалов (шкала В). В зависимости от шкалы твердость обозначается буквами HRB, HRC, HRA

и выражается в специальных единицах.

При измерении твердости по методу Виккерса производят вдавливание в поверхность металла (шлифуемую или полируемую) четырехгранной алмазной пирамиды. Этот метод применяют для определения твердости деталей малой толщины и тонких поверхностных слоев, которые имеют высокую твердость (например, после азотирования). Твердость по Виккерсу обозначают HV

. Перевод числа твердости
HV
в систему СИ производится аналогично переводу числа твердости
НВ
.

При измерении твердости по методу Шора шарик с индентором падает на образец, перпендикулярно его поверхности, а твердость определяется по высоте отскока шарика и обозначается HS

Твердость металла в малых объемах оценивают путем определения микротвердости. Прибор для измерения – это механизм для вдавливания индентора (алмазной пирамиды) и металлографический микроскоп. Микротвердость оценивают по величине диагонали отпечатка на образце, который должен быть подготовлен как микрошлиф. Метод применяют для определения микротвердости тонких упрочненных поверхностных слоев после химико-термической обработки (например, борированных), отдельных структурных составляющих и т.п.

1.2.2.3 Испытание на ударную вязкость

Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре (рис.3). По шкале маятникового копра определяют работу К

, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м2.

Для обозначения ударной вязкости применяют буквы КС и добавляют третью, которая указывает на вид надреза на образце: U, V, T. Запись KCU

означает ударную вязкость образца с U-подобным надрезом,
KCV
— с V-подобным надрезом, а
KCT
— с трещиной, созданной в основании надреза. Работа разрушения образца при проведении ударных испытаний содержит две составляющие: работу зарождения трещины (А
з
) и работу распространения трещины (А
р
).

Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации.

Рисунок 3 – Схема маятникового копра и ударного образца

При проведении ударных испытаний образцов с надрезом при низких температурах определяют порог хладноломкости, который характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. При переходе от вязкого к хрупкому разрушению наблюдается резкое снижение ударной вязкости в интервале температур, который имеет название температурный порог хладноломкости

. При этом изменяется строение излома от волокнистого матового (вязкое разрушение) к кристаллическому блестящему (хрупкое разрушение). Порог хладноломкости обозначают интервалом температур (tв.– tхр.) или одной температурой t
50
, при которой в изломе образца наблюдается 50% волокнистой составляющей или же величина ударной вязкости снижается в два раза.

О пригодности материала к работе при заданной температуре судят по температурному запасу вязкости, который определяется по разнице между температурой эксплуатации и переходной температурой хладноломкости, и чем он больше, тем надежнее материал.

1.2.2.4 Испытания на трещиностойкость

Сопротивление материала распространению трещин или его трещиностойкость

характеризуется коэффициентом интенсивности напряжений
К1С
. Значение
К1С
определяют экспериментально на образцах с надрезом, на дне которого инициирована усталостная трещина. Для расчета
К1С
при нагрузке образца фиксируют усилие в момент подрастания трещины на некоторую величину и перехода к её нестабильному распространению.

Величина К1С

характеризует сопротивление развитию вязкой трещины, и чем она больше, тем выше сопротивление материала разрушению, то есть его надежность. Коэффициент интенсивности напряжений в вершине трещины в момент разрушения
К1С
дополняет параметры
s0,2
и модуль Юнга
Е
при расчетах на прочность деталей, изготовленных из высокопрочных сталей с sв > 1500 МПа, титановых (sв > 800 МПа) и алюминиевых (sв > 450 МПа) сплавов. Он позволяет определить безопасный размер трещины при известном напряжении или безопасное напряжение при известном размере дефекта.

1.2.2.5 Испытания на усталость

– процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, которые приводят к образованию трещин и разрушений. Усталость металла вызывается концентрацией напряжений в отдельных его объемах (в местах скопления неметаллических и газовых включений, структурных дефектов). Свойство металла сопротивляться усталости называется
выносливостью
.

Испытания на усталость проводят на машинах для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, или на машинах для испытаний на растяжение-сжатие, или на повторно-переменное скручивание. В результате испытаний определяют предел выносливости, который характеризует сопротивление материала усталости.

Предел выносливости

– максимальное напряжение, при действии которого не происходит усталостного разрушения после базового количества циклов нагружения. За максимальное
smax
или минимальное
smin
напряжение цикла принимают наибольшее или наименьшее по алгебраической величине напряжение. Цикл характеризуется коэффициентом асимметрии
R = smin /smax
. Если
R
=-1, то цикл называют симметричным, если
smin
и
smax
не равны по величине, то цикл считается асимметричным. Предел выносливости обозначается
sR
, где
R
— коэффициент асимметрии цикла.

Для определения предела выносливости проводят испытания не менее десяти образцов. Каждый образец испытывают только при одном напряжении до разрушения или при базовом числе циклов. Базовое число циклов должно быть не ниже 107 нагружений (для стали) и 108 (для цветных металлов).

По результатам испытаний отдельных образцов строят кривые усталости в логарифмических координатах. С уменьшением smax

долговечность возрастает и напряжение, не вызывающее разрушения при базовом числе циклов (горизонтальный участок на кривой усталости), соответствует пределу выносливости
sR
(рис.4).

Многие металлы (обычно цветные и их сплавы) не имеют горизонтального участка на кривой усталости и в этом случае определяют ограниченный предел выносливости, т. е. наибольшее напряжение, которое выдерживает металл в течение заданного числа циклов нагружения.

Если образование трещин или полное разрушение происходит при 5×104, то такая усталость называется малоцикловой и она имеет большое значение для штампового инструмента, сосудов высокого давления, деталей самолета и т. д.

Для многих сталей отношение предела выносливости к пределу прочности при растяжении приблизительно равно 0,5, но для высокопрочных сталей это отношение уменьшается, поскольку из-за снижения пластичности затрудняется релаксация напряжений у вершины трещины и ускоряется её развитие.

Важной характеристикой конструкционной прочности является живучесть

при циклическом нагружении, под которой понимают продолжительность эксплуатации детали от момента зарождения первой макроскопической усталостной трещины размером 0,5…1 мм до окончательного разрушения. Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем раннего обнаружения и предотвращения дальнейшего развития усталостных трещин.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector