Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Значение слова; сплав

Значение слова «сплав»

СПЛАВ 1 , -а, м. Однородная смесь из двух или нескольких плавких твердых тел, преимущественно металлов. Легкие сплавы. Сверхтвердый сплав. Сплав меди с золотом. || перен. Соединение различных элементов, частей и т. п. чего-л. Сплав высокого героизма и мужественной скорби — вот главное в бетховенском творчестве. Кабалевский, Про трех китов и про многое другое.

СПЛАВ 2 , -а, м. Действие по глаг. сплавить 2 —сплавлять 2 (в 1 знач.). Сплав бревен.— Сплав леса по горной реке — дело не легкое, и браться за него надо с умом. Бабаевский, Кавалер Золотой Звезды.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).

СПЛАВ 1 , а, м. Смесь из двух или нескольких плавких твердых тел, преимущ. металлов.

СПЛАВ 2 , а, мн. нет, м. Действие по глаг. сплавить 2 в 1 знач. — сплавлять 2 . С. леса по реке.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

сплав I

1. техн. металл. твёрдая смесь, состоящая из двух и более компонентов, из которых по крайней мере один является металлом ◆ Олово легко образует сплавы со многими металлами.

3. перен. соединение различных элементов, частей чего-либо в единое целое ◆ Сплав богатых традиций и новаторских идей определяют сегодняшнюю жизнь предприятия.

сплав II

1. перемещение, спуск чего-либо вниз по течению реки ◆ Немецкие купцы посредством евреев покупали, правда, у него лес, рожь, пеньку, сало — но Двина была не очень близка, перевоз колесом в бездорожном краю затруднителен и сплав до Риги, от войны со шведами, неверен, а потому и цены на всё чрезвычайно низки. Бестужев-Марлинский, «Наезды», 1831 г. (цитата из Викитеки) ◆ Сплав на байдарках — один из популярных видов туризма в нашей стране.

Фразеологизмы и устойчивые сочетания

Делаем Карту слов лучше вместе

/>Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Состав, свойства, применение.

На каждую изготовленную методом штамповки коронку с зубного техника списывается 0,6 г легкоплавкого сплава, следовательно, на 100 зафиксированных в полости рта у пациента штампованных коронок списывается 60 г, т.е. один блок («таблетка»).

Сплавы на основе меди. Состав, свойства, применение.

Эти сплавы имеют вспомогательное значение. К ним относятся:

дюралюминий, нейзильбер, латунь алюминиевая бронза.

Дюралюминий (твердый алюминий) – сплав, состоящий из алюминия, магния, марганца и меди. Сплав серовато-белого цвета. Плотность – 2,8,температура плавления — 605˚, твердость по Бринеллю – 120. Из сплава делают малые и большие кюветы.

Нейзильбер (мельхиор) – серый, блестящий сплав. Состоит из меди, цинка, никеля. Плотность – 7,5, температура плавлении — 1024˚, твердость – 80 В полости рта покрывается защитной матовой пленкой. До внедрения в ортопедическую практику стали применяется как основной материал для изготовления искусственных коронок и зубов. Можно применять дл временныхаппаратов и в виде проволок.

Латунь – соломенно-желтого цвета. Состоит из меди и цинка. Плотность – 8,4, температура плавления — 1050˚, твердость-60. В полированном виде некоторое время похоже на золото, но быстро окисляется. Хорошо растворяется в азотной кислоте. Из латуни готовят ортодонтические винты (замки), кюветы. Входит в состав золотых и серебряных припоев.

Алюминиевая бронза – сплав соломенно-желтого цвета с красноватым оттенком. Состоит из меди и алюминия. Плотность – 8,3, температура плавления 1030˚, твердость -50. В полости рта окисляется. Хорошо поддается волочению, из нее можно изготовить проволоку любой толщины. В стоматологии используется в виде лигатурной проволоки для фиксации к естественным зубам внутри ротовых шин, применяемых при лечении переломов челюстей.

Сплавы титана

Титан – серебристый металл, не темнеющий со временем ни в атмосфере, ни в морской воде; на него не действуют кислоты и щелочи. Коррозийная стойкость титана превышает таковую у нержавеющей стали. При удельной массе, почти такой же, как у алюминия, титан в 12 раз прочнее его и превосходит по прочности железо. В отличие от последнего титан не намагничивается, а такое свойство, как термостойкость (температура плавления – 1670 ˚) резко выделяет его среди других металлов. Стали с присадками титана обладают повышенной жаропрочностью и используются в космической технике и других технологиях. Соединения титана используется в качестве катализаторов в полимеризации мономеров, красителей, наполнителей высокомолекулярных соединений.

Читайте так же:
Паяльник и припой с канифолью

В настоящее время сплавы титана используются для получения цельнолитых каркасов зубных протезов, а также мостовидных протезов с последующей обработкой и нанесением покрытий нитрида титана. Это производится нагреванием в атмосфере азота или аммиака. Покрытие нитридом титана увеличивает твердость и придает эстетический вид, пленка имеет золотистый оттенок , (температура плавления — 2950˚, твердость — 7-8 ед. Для сравнения: твердость алмаза -10 ед. топаза-8ед.).

Наибольший интерес представляет применение сплавов титана для получения цельнолитых каркасов зубных протезов. Из всех сплавов наилучшими литейными свойствами наряду с высокими показателями прочности (предел прочности на разрыв 686 МПа) обладает сплав марки ВТ5Л (титан, легированный алюминием). Линейная и объемная усадка при литье у сплава ВТ5Л составляют 0,8-1%, что близко к таковым для золотых сплавов.

Технология получения ортопедических конструкций из литьевого титана, следующая: к смоделированной по обычной методике восковой модели протеза прикрепляются литниковая система из штифтов диаметром 5-6 мм и устанавливают центральный питатель. Модели с питателем присоединяются к коллекторам блока литниковой системы. Для изготовления керамической формы используется электрокорунд. Общее количество слоев покрытия -9. Каждый слой подвергается сушке в атмосфере аммиака. Затем блок моделей помещают в ванну для выталкивания воска. Формы для литья прокаливают при температуре 1000˚ С и обрабатывается пироуглеродом (подаваемый в печь углеводород при высокой температуре в отсутствии кислорода разлагается и атомарный углерод пропитывает стенки керамической формы, предотвращая ее химическое взаимодействие с металлом). Формы, остывшие до температуры не более 150˚, устанавливают в контейнер под заливку.

Плавку и литье титана проводят в вакуумно-дуговой гарнисажной литьевой установке. Плавку ведут в графитовом тигле с гарнисажем. Благодаря постоянному охлаждению тигля (водой) гарнисаж не расплавляется, защищает тигель от воздействия, расплавленного металла.

После наплавления необходимого количества металла включается центробежная установка, и расплавленный металл сливается в центральный метала

приемник контейнера с формами. Охлаждение металла проводится в вакууме или в среде аргона.

Обработка изделий из титана может быть осуществлена посредством:

1)механической шлифовки и полировки ( по обычной методике);

2)электрополировки.

Состав электролита: серная кислота -60%; плавиковая кислота -30%; глицерин -10%. Деталь является анодом. Катод выполняет из графита. Плотность тока составляет 0,5-0,7 А/мм. Напряжение 24В.

Выдерживание изделий из титана в атмосфере азота при температуре 850-950˚ приводит к образованию на их поверхности золотистой пленки нитрида титана.

Температура плавления металлов

температура плавления металлов

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления металлов. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления металлов у вольфрама: она составляет 3422 °C, самая низкая — у ртути: элемент плавится уже при — 39 °C. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Плавление всех металлов происходит примерно одинаково — при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

Взависимости от температуры плавления металлы делятся на:

  1. Легкоплавкие: им необходимо не более 600°C. Это цинк, свинец, виснут, олово.
  1. Среднеплавкие: температура плавления колеблется от 600°C до 1600°C. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  1. Тугоплавкие: требуется температура свыше 1600°C, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления металлов выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.

Читайте так же:
Плазменная сварка принцип работы

Свойства металлов

свойства металлов Для успешного создания декоративных изделий необходимо знать основные свойства исходного материала, а также технологию работы с ним.

В наши дни для изготовления посуды, украшений и различных предметов дизайна интерьера могут использоваться как металлы в чистом виде, так и их сплавы.

Художественное изделие - ваза из серебра

Художественное изделие — ваза из серебра

Все металлы и сплавы, созданные на их основе, делятся на две большие группы, обладающие различными свойствами:

  • Черные металлы — сталь
  • Цветные металлы — медь, бронза, латунь, цинк, олово, алюминий, свинец и серебро.

Именно эти виды металлов наиболее часто используются для изготовления декоративных предметов, посуды и многого другого. Поэтому давайте рассмотрим их свойства и особенности обработки металлов.

Сталь

Сталь относится к черным металлам. Для художественной обработки лучше всего подходит углеродистая сталь, которая представляет собой сплав железа с углеродом и другими элементами. Сталь обладает высокими качественными характеристиками, среди которых можно назвать следующие:

  • Упругость
  • Прочность
  • Способность к закаливанию — кусок стали нагревается при высокой температуре докрасна, а затем опускают в воду. Благодаря этому металл приобретает различные степени твердости и упругости.
  • Возможность » отпускания» посредством нагревания до красного каления и последующего медленного охлаждения.
  • Способность к обработке кузнечным молотом в нагретом состоянии, так как сталь отлично куется.
  • Возможность к разрезанию металла на тонкие полосы.

Мягкость стали прямо пропорциональная количеству углерода в ее составе. Чем меньше в металле углерода, тем он мягче и легче в обработке. Мягкость стали повышается при отжиге, то есть » отпускании» металла. Для этого сталь нагревают докрасна, а затем подвергают процедуре медленного охлаждения.

Сталь для изготовления различных изделий и художественной обработки производят в виде сортового материала. Для гравирования и чеканки чаще всего используют стали У8 и У10, где буквой » У» обозначено количество углерода в составе сплава.

Лезвие ножей изготовлено из нержавеющей углеродистой стали

Лезвие ножей изготовлено из нержавеющей углеродистой стали

Цветные металлы

Цветные металлы стоят намного дороже черных, потому что они обладают множеством уникальных свойств. Главным из них является отсутствие реакции с магнитом, то есть цветные металлы не притягиваются и не намагничиваются. Кроме этого, большинство из них практически не поддаются окислению, поэтому изделия характеризуются длительностью срока службы.

Выпуск цветных металлов для художественной обработки осуществляется в различных видах:

  • Ленты
  • Полосы
  • Чушки
  • Трубки
  • Проволока
  • Прутки
  • Листы

Давайте рассмотрим характерные особенности наиболее популярных среди мастеров цветных металлов:

  • Медь — достаточно мягкий металл красивого красно — оранжевого оттенка, характеризующийся повышенной способностью к ковке и обладающий большой электропроводностью и способностью проводить тепло. Обработка меди не представляет особой сложности, но мастер должен иметь в виду большую вязкость данного металла.

Медь можно паять с помощью олова и твердого припоя, Листовая медь является основным материалом для выполнения чеканки и граверных работ. Медная проволока используется для изготовления декоративных изделий и ажурных скульптур.

Медная раковина

Медная раковина

  • Бронза — это сплав меди с оловом. Количественное содержание олова влияет на цвет сплава, который может приобретать розовые, красные, желтые или серые оттенки. Если бронзовое изделие покрыть слоем патины ( декоративным налетом из оксида меди), то она приобретает благородный дымчато — зеленоватый оттенок и выглядит старинной и по — настоящему дорогой. Бронза чаще всего используется для инкрустации и литейных работ.

Листовая бронза

Листовая бронза

  • Латунь — это сплав меди с цинком. Оттенок металла зависит от количества цинка. По своим качественным характеристикам латунь является более твердым сплавом, чем чистая красная медь, поэтому степень ее ковкости значительно ниже. По сравнению с медью латунь обладает некоторой хрупкостью, но вместе с тем она более упруга.

Латунь легко поддается различным видам обработки, в частности, ее можно использовать для изготовления тонких деталей в инкрустациях, а также украшений различной конфигурации. Для чеканных работ используется в листовом виде.

Чеканка на латуни

Чеканка на латуни

  • Цинк — прекрасно подходит для литья как в чистом виде, так и в сплавах с другими металлами. Чистый цинк куется плохо, однако его легко паять, гравировать и обрабатывать различными инструментами. Температура плавления составляет 419* С.

Листовой цинк

Листовой цинк

  • Олово — цветной металл, с давних пор известный своей мягкостью и пластичностью. Температура его плавления составляет всего 252* С. В качестве компонента олово входит в состав различных видов бронзы. На изломе олово издает характерный, узнаваемый хруст. Чистое олово и его сплавы идеально подходят для изготовления инкрустаций. А еще олово используется для лужения и пайки посуды как в чистом виде, так и в сплавах со свинцом. При этом продукты его окисления безвредны.

Набор оловянных солдатиков

Набор оловянных солдатиков

  • Алюминий — цветной металл серебристо — белого цвета, который плавится при температуре около 658* С. Характерной особенностью алюминия является его легкость и простота в обработке металла . Литой алюминий достаточно хрупкий, а в прокатном ( отожженном) виде он приобретает желаемую пластичность.
Читайте так же:
Стол для лобзика своими руками с чертежами

Алюминиевые изделия ремесленников Мадагаскара

Алюминиевые изделия ремесленников Мадагаскара

  • Свинец — мягкий цветной металл, имеющий синевато — серый оттенок. Он плавится при температуре 327* С, и хорошо противостоит коррозии. Однако следует отметить, что оксиды свинца являются ядовитыми. Свинец пригоден для литейных работ и изготовления формовых изделий.

Свинец ( эталон)

Свинец ( эталон)

  • Серебро — также относится к цветным, но при этом является еще и драгоценным металлом. Чистое серебро слишком мягкое, и поэтому его неудобно обрабатывать. Для изготовления изделий применяется в виде сплавов с медью. Серебряные вставки используются в инкрустациях, в гравировке, чеканке и черни.

Антикварные серебряные изделия

Антикварные серебряные изделия

Свойства металлов

Рассмотрим некоторые свойства металлов, влияющие на качество выполнения художественных изделий:

  • Ковкость металла — ковкие пластичные металлы требуют большей силы резания, но при этом необходимо учитывать их вязкость. Кусок меди или свинца нужно рубить до конца, а латунь, цинк или сталь можно надколоть зубилом, а после просто сломать. Более твердая латунь при обточке дает гладкую поверхность, в то время как алюминий или медь как бы тянутся за резцом.
  • Хрупкость — это способность твердых материалов разрушаться вследствие механического воздействия без заметной пластической деформации. Это свойство противоположно пластичности. Сильно закаленная сталь, а также многие сорта латуни и бронзы являются очень хрупкими, и от сильных ударов раскалываются на куски. Хрупкость металла не всегда является признаком его твердости, например, отливка из цинка хрупкая, но не твердая. Закаленный стальной нож одновременно и тверд, и хрупок.
  • Упругость — это свойство металлов восстанавливать свою форму и объем после прекращения действия внешних сил или нагревания, вызвавших деформацию. В большой степени этим свойством обладают специальные сорта стали.
  • Плавление при нагревании — способность металла плавиться при нагревании является важным качеством, так как плавление считается одним из самых доступных и дешевых способов получения изделий из металла. Детали огромных машин и маленькие металлические скульптуры изготовляются одинаковым способом.

Если возникает необходимость закалить деталь, и при этом сохранить вязкость металла, мастера используют токи высокой частоты. При этом деталь закаляется в глубину на несколько миллиметров. Однако вся остальная масса металла внутри изделия остается без изменений. И, наконец, металлические детали можно обрабатывать без нагревания — например, способом гравировки и резьбы по металлу.

Серебряные изделия

Серебряные изделия

Литейные сплавы

Простота изготовления фасонной отливки зависит от литейных свойств сплавов. Например, получить отливку сложной конфигурации и заданных свойств из серого чугуна значительно проще, чем из легированной стали и из некоторых сплавов цветных металлов.

Литейные свойства сплавов — это такие технологические свойства, которые непосредственно влияют наоплучение качественных отливок с хорошими эксплуатационными показателями. Основными литейными свойствами, которые влияют на выбор сплава в качестве литейного материала, являются: жидкотекучесть, усадка, ликвация, склонность к газопоглощению и трещинообразованию.

Жидкотекучесть — способность расплава свободно течь в литейной форме, заполняя и точно воспроизводя все ее контуры.

Жидкотекучесть сплавов зависит от следующих параметров:

1. Температурного интервала кристаллизации

где Тл и Тс — температуры ликвидуса и солидуса соответственно.

Чем меньше ΔТ, тем больше жидкотекучесть. Лучшей жидкотекучестью обладают чистые металлы и эвтектические сплавы, у которых ΔТ = 0. Худшая жидкотекучесть у сплавов, образующих твердые растворы, поскольку в процессе их заливки и охлаждения в литейной форме возникает дополнительное трение образующихся твердых кристаллов о ее стенки.

2. Вязкости и поверхностного натяжения расплава (чем они меньше, тем больше жидкотекучесть).

3. Температуры заливаемого металла и температуры формы

(чем они выше, тем выше жидкотекучесть).

4. Свойств литейной формы (чем больше ее теплопроводность, теплоемкость и влажность, тем меньше жидкотекучесть).

Жидкотекучесть литейных сплавов определяют с помощью различных методов и технологических проб. Технологические пробы на жидкотекучесть поводят в специальных литейных формах с полостью в виде каналов, характер заполнения которых жидким металлом определяет его жидкотекучесть. Из разнообразных конструкций технологических проб наибольшее распространение получила спираль Керри — проба спиральной формы (рис. 1.24).

Жидкотекучесть определяют по длине пути, пройденному жидким металлом до его затвердевания, т. е. по длине прутка. Небольшие выступы, нанесенные через 50 мм, облегчают измерение длины спирали (прутка). Спиральный канал позволяет получить длинные прутки в сравнительно небольших формах.

Рис. 1.24. Технологическая спиральная проба (спираль Керри): 1 — чаша; 2 — стояк;

3 — металлоприемник; 4 — спиральный канал; 5 — выступы

Усадка свойство металлов и сплавов уменьшать свой объем при затвердевании и охлаждении. Она приводит к уменьшению размеров отливки. Различают объемную и линейную усадки.

На усадку влияют следующие факторы:

1. Химический состав сплава (усадка серого чугуна уменьшается с увеличением содержания углерода С и кремния Si и увеличивается с повышением содержания фосфора Р и серы S; усадка алюминиевых сплавов уменьшается с повышением содержания кремния Si).

2. Температура заливаемого металла Тмет (чем меньше Тмет, тем меньше усадка).

Читайте так же:
Самый надежный шуруповерт аккумуляторный

3. Скорость охлаждения металла в форме или теплопроводность формы (чем больше скорость охлаждения, тем больше усадка).

4. Конструкция отливки и литейной формы (с увеличением толщины стенок чугунной отливки усадка уменьшается).

Линейная усадка для различных сплавов составляет: для серого чугуна — 0,9. 1,5 %; для углеродистых сталей — 2. 2,4 %; для алюминиевых сплавов — 0,9. 1,5 %; для медных сплавов — 1,4. 2,3 %.

Усадка в отливках проявляется в виде усадочных раковин и усадочной пористости.

Усадочные раковины — сравнительно крупные полости, расположенные в частях отливки, затвердевающих в последнюю очередь. Усадочные раковины образуются при изготовлении отливок из чистых металлов, сплавов эвтектического состава и сплавов с узким интервалом кристаллизации (низкоуглеродистые стали, безоловянистые бронзы и др.). Как правило, усадочные раковины из отливок стремятся сместить в литниковую систему (выпор или прибыль), где металл затвердевает в последнюю очередь.

Усадочная пористость — скопление мелких пустот, образовавшихся в обширной зоне отливки в результате усадки в тех местах, которые затвердевали последними без доступа к ним расплавленного металла. Усадочная пористость располагается по границам зерен металла.

Для получения отливок без усадочных раковин и пористости необходимо обеспечить, во-первых, непрерывный подвод расплавленного металла в форму в процессе его кристаллизации и, вовторых, движение фронта кристаллизации таким образом, чтобы последними кристаллизовались части отливки, граничащие с поверхностью формы или расположенные в литниковой системе. Первое достигается размещением в литейной форме прибылей, второе — наружных и внутренних холодильников.

Ликвация — неоднородность химического состава отливки в различных ее точках, возникающая при кристаллизации. На процесс развития ликвации (кроме химического состава сплава) влияют технологические факторы (конфигурация отливки, скорость охлаждения и др.). Различают три вида ликвации: зональную, дендритную и ликвацию по плотности.

Зональная ликвация наблюдается во всем объеме отливки из-за различия температур кристаллизации отдельных компонентов сплава. По мере кристаллизации металл слитка будет все более обогащаться легкоплавкими примесями, поэтому его химический состав по объему будет различным. Так, наружные участки и тонкие стенки стальных отливок, кристаллизующиеся в первую очередь, содержат ликвирующих более легкоплавких примесей (S, P) меньше, чем более массивные части, которые кристаллизуются позже.

Дендритная (внутрикристаллическая) ликвация наблюдается в объеме одного зерна. Чем больше температурный интервал между началом и концом кристаллизации, тем больше будут отличаться по составу отдельные участки внутри зерен. В дендритах оси первого порядка обогащены более тугоплавким компонентом и в них содержание примесей бывает минимальным. Кристаллизующиеся в последнюю очередь междендритные пространства содержат наибольшее количество более легкоплавких компонентов и примесей.

Ликвация по плотности наблюдается при сплавлении металлов значительно различающихся по плотности. Так, в сплавах системы

«свинец–сурьма» верхняя часть слитка будет обогащена сурьмой, а нижняя — более тяжелым свинцом, т. е. отличаться от среднего состава сплава.

Обычно ликвация является нежелательным явлением, поскольку в результате неоднородности химического состава свойства металла на различных участках отливкитбуду отличаться друг от друга.

Склонность к газопоглощению. В расплавленном состоянии металлы и сплавы способны активно поглощать водород, кислород, азот и другие газы из оксидов и влаги шихтовых материалов при их плавке, а также сгорании топлива, из окружающей среды при заливке металла в форму и т. д. Как правило, растворимость в металлах газов с понижением температуры уменьшается, что вызывает их выделение в процессе кристаллизации. В результате этого в отливке могут образовываться газовые раковины и газовая пористость, которые ухудшают механические свойства и герметичность отливок. Для уменьшения газовых раковин и пористости плавку сплава проводят под слоем флюса, в среде защитных газов, с использованием просушенных шихтовых материалов. При этом перед заливкой расплавленный металл подвергают дегазации вакуумированием или продувкой инертными газами.

Для устранения газонасыщенности отливок следует увеличивать газопроницаемость литейных форм и стержней, снижать влажность формовочных смесей, подсушивать формы и т. д. (например, выплавка стали в вакуумных печах устраняет газонасыщенность).

Склонность к образованию трещин и короблению. В результате неравномерного затвердевания металла в тонких и толстых частях отливки, а также из-за торможения усадки формой при ее охлаждении возникают внутренние напряжения. Эти напряжения тем выше, чем меньше податливость формы и стержней. Если величина внутренних напряжений превысит предел прочности сплава в данном месте, то в нем образуются горячие или холодные трещины.

Горячие трещины — как правило, хорошо видимые разрывы поверхности отливки, распространяющиеся по границам зерен и имеющие неровную окисленную поверхность, на которой при увеличении видно дендритное строение сплава. Эти трещины образуются при застывании расплава в форме. Характерными признаками горячих трещин являются их неровные (рваные) края и значительная ширина.

Холодные трещины — очень тонкие разрывы поверхности отливки, имеющие обычно чистую, светлую (с цветами побежалости) зернистую поверхность. Они образуются из-за внутренних напряжений или механического воздействия при температуре ниже температуры свечения отливки. В отличие от горячих трещин холодные распространяются непосредственно по зернам, а не по их границам, и располагаются преимущественно в острых углах и других местах с высокой концентрацией напряжений.

Читайте так же:
Фрезерный станок по дереву для дома

Холодные трещины, чаще всего, образуются в тонкостенных отливках сложной конфигурации. Вероятность их образования тем выше, чем больше упругие свойства сплава, чем значительнее его усадка (особенно при пониженных температурах) и чем ниже теплопроводность сплава. Вероятность образования холодных трещин в отливках также возрастает при наличии в сплаве вредных примесей (например, фосфора в сталях).

Для предупреждения образования трещин необходимо осуществлять равномерное охлаждение отливок (во всех сечениях), применять сплавы, обладающие повышенной пластичностью, проводить дополнительный отжиг отливок и т. п.

Внутренние напряжения, возникающие при охлаждении отливок, могут привести к их короблению (изменению формы и размеров отливок). Вероятность коробления отливки увеличивается при усложнении ее конфигурации и повышении скорости охлаждения, вызывающие неравномерное охлаждение отдельных частей отливки и, как следствие, различную усадку. Коробление отливки также может быть вызвано сопротивлением формы усадке отдельных частей отливки. Для предупреждения коробления отливки необходимо увеличивать податливость формы, создавать рациональную конструкцию отливки и т. д.

3.2. Производство отливок из чугуна

При выборе материала для литья детали следует учитывать условия, в которых она работает, физико-механические свойства сплава, литейные свойства, условия кристаллизации в форме, а также стоимость сплава.

Если принять среднюю стоимость отливки из серого чугуна за 100 %, то стоимость отливок из других сплавов составит: ковкий ч1у30гу%н ,—сталь — 160 %, цветные сплавы — 300. 600 %.

Литейные чугуны. Чугун является самым распространенным сплавом в литейном производстве. Так, около 80 % общего мирового выпуска отливок приходится на долю чугуна. В связи с улучшением его свойств и появлением высокопрочного чугуна с шаровидным графитом, чугуна с вермикулярным графитом и легированных чугунов специального назначения область применения очудогулнжа ептр расширяться.

В машиностроении для производства деталей используют следующие чугуны: серые, с вермикулярным графитом, высокопрочные, ковкие и специального назначения, характеризующиеся наличием в их структуре свободного углерода в виде графита. Белые чугуны, в структуре которых углерод находится только в связанном состоянии в виде цементита, в машиностроении применяются редко из-за их высокой твердости, затрудняющей механическую обработку, и хрупкости. Эти чугуны применяются только для ограниченной номенклатуры отливок, подвергающихся в условиях эксплуатации сильному износу от трения при высоких удельных нагрузках (валки прокатных станов, щеки камнедробилок и т. п.).

Широкое применение чугунов обусловлено следующим:

1) высокими литейными свойствами этих сплавов, что позволяет изготавливать из них отливки сложной конфигурации, с тонкими стенками, а также производить механическую обработку этих отливок;

2) большей, чем у стальных деталей, способностью гасить вибрации;

3) меньшим, чем у сталей, влиянием концентраторов напряжений (риски, задиры, переходыогот одн на конструкционную прочность деталей;

сечения к другому)

4) высокими антифрикционными свойствами, обусловленными наличием в структуре чугуна свободного графита, являющегося естественной смазкой;

5) невысокой стоимостью отливок по сравнению со стоимостью отливок из стали и цветных сплавов.

Серый чугун — чугун с пластинчатой формой графитовых включений. Металлической основой серого чугуна является феррит, феррит – перлит или перлит (рис. 1.25). Он является наиболее распространенным литейным сплавом. Отливки из этого чугуна составляют до 80 % от общего объема чугунного литья.

Рис. 1.25. Микроструктура серого чугуна: а — ферритный чугун; б — феррито-перлитный; в — перлитный

Структура металлической основы практически не влияет на низкую пластичность серого чугуна (δ = 0,2. 0,5 %), но оказывает влияние на его прочность и твердость (σв = 100. 450 МПа; НВ = 143. 289). Он обычно содержит 2,9. 3,7 % С, 0,5. 1,1 % Мn, 1,2. 2,6 % Si, до 0,3 % Р, до 0,15 % S.

Маркируется серый чугун буквами СЧ (серый чугун) и двумя цифрами, обозначающими предел прочности при растяжении (кгс/мм 2 ). Согласно ГОСТ 1412-85 имеются следующие марки серого чугуна: СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ35, СЧ40 и СЧ45.

Кроме того, по требованию потребителя допускаются марки серого чугуна СЧ18, СЧ21 и СЧ24.

Для изготовления малоответственных деталей, испытывающих небольшие нагрузки в работе, используют чугуны марок СЧ10 и СЧ15, а для изготовления более ответственных деталей применяют чугуны остальных марок.

Следует отметить, что чугуны СЧ30, СЧ35, СЧ40 и СЧ45 относятся к группе модифицированных серых чугунов, которые получают добавлением в жидкий чугун перед его разливкой специальных добавок — графитизирующих модификаторов (ферросилиция, силикокальция, графита и др.) в виде кусков размером 1. 5 мм. Это позволяет получать в модифицированных чугунных отливках перлитную основу с вкраплениями небольшого количества изолированных пластинок графита средней величины, что повышает их механические свойства.

Высокие литейные свойства серого чугуна позволяют получать самые разнообразные детали. Области применения серых чугунов представлены в таблице 1.2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector