Wabashpress.ru

Техника Гидропрессы
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Новое в блогах

Сообщество «Наука для всех»

Владимир Мазунин # написал комментарий 19 ноября 2013, 16:33 Совмещённая обмотка (звезда+треугольник) имеет своё имя — Славянка. Применение электродвигателя с такой обмоткой даёт потрясающий эффект. По энергоэффективности — не ниже класса IE3.

  • редактировать
  • удалить

Victor Shamray # ответил на комментарий Владимир Мазунин 20 ноября 2013, 14:27 Про эту тему слыхал еще в 80-х, на Дальзаводе работал один перемотчик, судовой электромех. Фанат этой идеи, жаль,что тогда неинтересно это было. Кто умный сразу,кто потом. А название подсказали — спасибо. А то всякие понабежали сразу,как обычно.

  • редактировать
  • удалить

Владимир Мазунин # ответил на комментарий Victor Shamray 21 ноября 2013, 22:56 Я сам мотаю электродвигатели Славянкой.

  • редактировать
  • удалить

Victor Shamray # ответил на комментарий Владимир Мазунин 23 ноября 2013, 13:58 Я не владею этими технологиями, трансформаторами максимум. Насколько понял из теории, векторная диаграмма принимает вид трехгранной пирамидки, нейтраль — вершина. То есть они должны сдвинуты относительно друг лруга на 90 градусов. Очень остроумно на самом деле. Гениально и просто.

kinshas

Для намотки эл. моторов используется медный эмалированный провод.
ПЭВ-2
ПЭТ-155 (температурный индекс 155℃)
ПЭТ-180 (т. и. 180℃)
Они имеют очень прочное покрытие из модифицированного полиэфира и выдерживают шоковый нагрев провода без повреждения изоляции за 200℃.
Такие провода имеют темно-вишневый цвет лака.

Ток и толщина провода:
1А — 0.05мм, 3А -0.11мм, 10А-0.25мм, 15А-0.33мм, 20А-0.4мм, 30А-0.52мм, 40А-0.63мм, 50А-0.73мм, 60А-0.89мм,70А-0.92мм, 80А-1.00мм, 90А-1.08мм, 100А -1.16мм

Можно мотать тонким проводом в несколько жил.
Преимущества и недостатки:
1 — Тонкий провод легче наматывать.
2 — Тонкий провод лучше заполняет зубы, тут можно поспорить, из моей практики, мотал одной жилой более толстого сечения чем до этого был намотан мотор при максимальном заполнении зубов в обоих случаях.
Мне кажется в тонком проводе очень много сечения уходит на лак, в то время как у толстой жилы только одна проблема с заполняемостью, она не заполняет хорошо углы.
3 — Тонкий провод в основном сгорает от перегрева внутренних обмоток, отсутствует достаточный обдув.
4 — Вентиляция толстого провода лучше из-за небольшого количества слоев, 1-2 не больше в основном.

Для получения максимального КПД мотора, необходимо стремиться получить как можно меньшее сопротивление обмоток. Чем меньше сопротивление, тем меньше потери в обмотке и тем выше эффективность мотора. Для достижения этой цели необходимо использовать как можно более толстый провод.

Слишком тонкий провод дает большое сопротивление, и вы не сможете пропустить нужный ток через двигатель. Если просто поднять напряжение, по закону Ома произойдет увеличение тока. Но потери в обмотках(нагрев) сильно возрастут , что приведет к разрушению двигателя.
Для модельных двигателей обычно используется провод диаметром 0.3-0.6 мм, Скопион сейчас мотают проводом 0.35 в несколько жил.

Расчет сопротивления обмотки двигателя я изложил в в другой теме.

Восстанавливаем изоляцию статора.
Перед тем как начать мотать мотор необходимо убедиться, что статор сверху полностью покрыт изоляцией (зеленое покрытие), если нет то восстанавливаем изоляцию.
1. Смола UHU PLUS 300 с порошковым наполнителем, типа окиси цинка.
2 Хаммерайт зеленый, краска ,очень хорошо, но очень долго сохнет.
3. Если повреждения небольшие то густой циакрин 2 — 3 слоя. (Очень плохо держится на металле, не рекомендую.)
4. На голое железо, зашкурив клею стеклотекстолит 0.3мм а потом по контуру вот такой фрезой не быстрей чем на 10000об, (выше часто ломаются)машинкой типа проксон-дремель, вручную по контуру.
hivolt
Намотка мотора

1. Не отрезать провод от катушки если мотаете одной жилой, это сэкономит провод.
2. Закрепить статор в какое нибудь приспособление, а затем, используя обе руки, наматывать витки с нужным усилием, чтобы обмотки получались более компактными.
3. Не использовать металлический инструмент для заправки или уплотнения провода, использовать только дерево или пластик. Хорошо подходят пластиковые карты.
4. Выточить из дерева оправку для выравнивания провода между зубами.
Подобные оправки можно делать по ходу намотки мотора.
5. Чтобы узнать длину провода для одной фазы, необходимо намотать тонким проводом или ниткой необходимое количество витков на один зуб, далее разматываем и измеряем длину, дальше умножаем на количество зубов, это и будет длина провода одной фазы.

Схема намотки статора с 9 зубами

Сообщение от hivolt

Где 1-2-3 начало а 5-6-4 концы. Те применительно к картинке снизу С(начало) будет -1 и далее ведем счет справо на лево до 6го вывода, по такому порядку и соединяем провода.

Основная схема намотки приведена на картинке ниже.

Как можно объяснить этот эскиз в текстовом формате?
Существует простая форма записи для обозначения намотки:
Обычно статор мотается 3 проводами. Назовем их ‘A’, ‘B’ и ‘С’. Если смотреть на статор сбоку, то намотка провода по часовой стрелке будет обозначена заглавной буквой, а намотка против часовой стрелки — маленькой.
Таким образом,на схеме намотки 9ти полюсного мотора мы должны мотать все зубья в одном направлении, один за другим что видно в текстовой схеме "ABCABCABC". Девять букв, по одной букве для каждого зуба.
Итак берем провод, оставляем около 10 см, и мотаем первый зуб по часовой стрелке. Затем перекидываем провод на 4й зуб и мотаем его. И в заключение мотаем 7й зуб. Потом вторым проводом мотаем зубья 2, 5 и 8. И в завершение третьим проводом мотаем 3, 6 и 9 зубья.
Переход с зуба на зуб изолировать термоусадкой.

Соединение проводов
Кроме принципиальной схемы сборки, электродвигатели соединенными звездой, функционируют значительно мягче, чем двигатели, имеющие соединение обмоток в треугольник. Но при соединении звездой электродвигатель не имеет возможности развивать свою полную паспортную мощность. Тогда как, при соединении обмоток в треугольник двигатель всегда работает на полную заявленную мощность, которая почти в полтора раза выше, чем при соединении в звезду. Большим недостатком соединения треугольником являются очень большие величины пусковых токов.

Итак, у нас есть намотанный статор и из него торчит 6 проводов. Три провода из них — это начала обмоток, и 3 другие концы. Необходимо заранее маркировать провода.
Есть 6 концов, но только 3 из них подключаются к контроллеру скорости. Теперь, чтобы завершить перемотку необходимо выбрать схему подключения (базируясь на желаемом предназначении мотора).
Существует две конфигурации которыми можно соединить выводы статора:
Первая называется Звезда (Star или ‘Y’), а вторая — Треугольник (Delta).

Каждая конфигурация предлагает немного разные свойства и влияет на мощность мотора. Однако, изготовители двигателей еще не решили, какая схема является лучшим вариантом.
Диаграммы ниже показывают электрические схемы для этих соединений.

После этих картинок, сразу понятно почему эти схемы так называются.

Как правило, соединение "Треугольник" выбирается, если вы хотите получить высоко оборотистый мотор и соединение "Звездой" используется для получения более низких оборотов двигателя и позволяет использовать большие винты.

Если рассмотреть соединение Треугольником и подать напряжение на два вывода, во всех обмотках потечет ток. Для демонстрации того как ток распределиться между обмотками, предположим, что сопротивление одной фазы равно 1 Ом. В этом случае, у нас есть фаза А в 1 Ом, соединенная в паралель с 2мя другими фазами B и С (B и С соединены последовательно) сопротивлением в 2 Ома. По закону Ома можно подсчитать, что 2/3 всего тока пойдут через фазу А и оставшаяся 1/3 пойдет через фазы B и C. Результирующее сопротивление которое увидит контроллер будет 0,66 Ом.

Если мы соединим выводы по схеме Звезда, то весь ток будет всегда идти через 2 фазы в любой момент времени.
Результирующее сопротивление для регулятора будет 2 Ома.

Если мы нагрузим мотор напряжением в 10В, то получим ток около 15А при соединении Треугольником и всего лишь 5А при соединении Звездой. Надо сказать, что соединение треугольником в данном случае дает большую мощность. Так-же, мы получим большие токи, но усилие для поворачивания большого винта может оказаться недостаточным. Можно подать на мотор большее напряжение и все же заставить этот винт крутиться, но возможно, что мотор от этого опять сгорит.

Обороты и напряжение (об/В)

От того как вы намотаете мотор будет зависеть с какими оборотами он будет крутиться и какую батарею вам придется использовать для получения нужной тяги.
Если взять мотор без винта и дать полный газ на, скажем, 6В, мотор будет крутить на своих максимальных оборотах.
Если измерить эти обороты и поделить их на напряжение батареи, мы получим характеристику называемую Обороты на Вольт (RPM per Volt). После того как мы узнали эту характеристику мы уже сможем сказать, как быстро мотор будет крутить на нужном нам напряжении.

Например, наш мотор крутит 8000 Оборотов на 6В.

8000 / 6 = 1333 Об/в

В этом случае с батареей на 10В мотор будет выдавать 13330 Оборотов.
Эта характеристика помогает нам понять на что способен наш мотор, и подходит ли он для поставленной задачи.
Если нам нужен мотор для импеллера, тогда необходимо чтобы мотор имел более высокие Об/В.
Для 3D самолетов, необходимо вращать больший винт, и поэтому обычно используют моторы с более низким Об/В.

Под нагрузкой количество оборотов естественно упадет.

Возвращаясь назад к схемам Треугольника и Звезды. Имеется зависимость между этими двумя схемами и расчетом характеристики Об/В. Если вы соединили мотор звездой и измерили его обороты, вы можете подсчитать какие Об/В получатся при использовании схемы Треугольник и наоборот.

Для перевода от Звезды к Треугольнику надо домножить Об/В на 1.73
Для перевода от Треугольника к Звезде — домножить на 0.578

Таким образом, у нас появляется реальный инструмент для изменения характеристик мотора в зависимости от простой схемы подключения. Некоторые моделисты, зашли так далеко, что подключают все 6 проводов к небольшому блоку коммутации, что позволяет им менять схему в любое время.

Итак, как определить/рассчитать необходимое количество витков и оборотов/В перед намоткой двигателя?

Существуют специальные программы для расчета количества витков при определенных размерах статора и толщины зубов для получения нужного количества оборотов. Но в большинстве случаев, мы просто наматываем максимально возможное количество витков и измеряем параметры получившегося мотора. Используя полученные данные, уже можно понять устраивает нас такое положение дел или нет, и что делать для достижения цели. Метод "тыка" тоже работает достаточно хорошо.

Выводы:
В качестве инструкции можно привести несколько утверждений:
Чем больше витков намотано на зуб, тем большее магнитное поле будет получено на том-же токе.
Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов на вольт.
Для получения высоких Об/В, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
Соединение Звездой дает больший крутящий момент и меньшее количество Об/В чем соединение Треугольником.

Читайте так же:
Приспособления для мотоблока своими руками видео

Часть 2. Схемы намотки бесколлекторных двигателей
Можно воспользоваться вот этим калькулятором.

Пояснения к данной таблице:
(A) — мотать по часовой стрелке
(a) — мотать против часовой стрелки
(-) — оставить зуб пустым (Для LRK схем)
Цвета:
черный — не работает
оранжевый -работает, но не очень хорошо
белый — работает
голубой — работает хорошо

Автор описывает 16 способов намотать одно и тоже на 4 зуба. Во всех случаях зубья намотаны по следующей схеме:
Зуб 1 = "A"
Зуб 2 = "a" (схема намотки противоположна зубу 1)
Зуб 7 = "a"
Зуб 8 = "A"
Пример нескольких схем намотки(Начала(Anf) и концы(Ende) обмоток отмечены):
Простая намотка по методом 1278cw.
Схема: AabBCcaABbcC
Данная намотка предназначена для соединения звездой.
Причем надо соединять вместе надо либо 3 "начала", либо 3 "конца".

Почти то же самое, но только почти!
Все три обмоточных провода, намотаны одним методом.
Схема: AaBbCcaAbBcC
На самом деле, намотано НЕПРАВИЛЬНО!
С хорошим контроллером, возможно, и будет работать. Однако, будет очень высокий ток нагрузки и очень плохая эффективность.
Схема, почти та же. Что изменилось?
Начало и конец "B" (синей) фазы были просто поменяны местами.
Получили схему: AabBCcaABbcC
Изменения минимальны, но двигатель будет работать очень хорошо.
В такой схеме концы и начала обмоток чередуются.
Конец "A" следует за началом "B",
конец "B" следует за началом "C" и
конец "C" следует за началом "A".

В таких условиях, лучше использовать соединение треугольником. Я использую именно эту схему намотки.

Часто встречается следующая схема намотки.
Она часто рекомендуется, как схема для соединения треугольником.

Это лучший (но я предпочитаю верхний) вариант для намотки 10 или 14P 12N моторов.
При таком варианте провода наилучшим образом подходят для соединения треугольником.

Намотка многополюсного мотора в конфигурации 24 зуба / 26 магнитов:

Часть 3. Использованием схемы LRK

LRK мотор был разработан тремя джентельменами по имени Lucas, Retzback and Kuhfuss. Целью их разработки была попытка получить максимально возможное силовое поле с определенным видом статора и типов манитов. Чем сильнее поле, тем большее крутящий момент можно получить. Количество об.в при этом уменьшается. Это не значит, что LRK моторы не могут выдавать высоких оборотов. Они вполне могут выдавать высокие обороты, которые позволяет выдать ваш контроллер скорости.
Для постройки LRK мотора, нам необходим статор с 12ю зубьями. Нельзя использовать статоры с 9ю зубьями. Следующее важное отличие — это схема намотки. Только половина всех зубов наматывается. Это делает намотку двигателя более простой по 2м причинам. Во-первых, надо мотать меньше зубов. И второе — пропущенные зубья позволяют намотать больше витков на зубья которые мы мотаем. В некоторых случаях это сильно помогает.

Итак, рассмотрим схему намотки двигателя LRK:

Данная схема достаточно проста. Мотаем первый зуб против часовой стрелки, затем переходим к зубу 7 и мотаем в обратном направлении, и так 3 раза. C точки зрения электроники — не важно какие метки стоят на ваших выводах. В данном случае все выводы идентичны друг другу. Поэтому можно смело мотать и не бояться запутаться в будущем.

Определяем KV мотора без тахометра.
Тестером на конденсаторе подключив между любых двух фаз конденсатор 0.1-0-0.22 мкФ и сопротивление 1-5ком последовательно. В режиме измерения частоты. Результат в гц разделить на 7 (кол-во пар полюсов) и умножить на 60 сек. Получите об/мин. Далее делите на напряжение -получаете кв. Естественно на холостых.
hivolt
Все расчеты параметров мотора здесь-Расчет основных параметров бесколлекторного мотора.

Обмотка Славянка асинхронных высокомоментных энергоэффективных двигателей

аша компания предлагает услугу по перемотке сгоревших или требующих ремонт асинхронных электродвигателей на инновационную обмотку типа "Славянка" для получения высоких параметров по высоким моментам, малошумности, энергоэффективности, повышению ресурса и др. Типоряд мощностей АД для перемотки: от 1,1 кВт до 250 кВт.

Основные области применения – транспортные системы, подъемное оборудование, вентиляторы, насосы, компрессоры, редукторы, станки и т.д. Двигатели с обмоткой "Славянка" по установочно – присоединительным размерам полностью соответствуют ГОСТ Р 51689. По классу энергоэффективности соответствуют IE 2 по IEC 60034-30.

Основные преимущества асинхронных двигателей с обмоткой "Славянка":

Имеют возможность эксплуатации как в режиме работы S1, так и в режиме работы S3; Улучшены вибро-шумовые характеристики, в среднем уровень звука ниже на 5ДБ; Имеют повышенную надежность: сервис фактор 2,5; Более высокий пусковой момент на 35%; Меньшие пусковые токи на 35%; Больший минимальный момент на 35%; Больший максимальный момент на 20%; КПД и cos, близкий к номинальному в диапазоне нагрузок от 25 до 150%; Более «мягкая» механическая характеристика; Большая перегрузочная способность.
Двигатели рассчитаны для работы в условиях:

частых пусков; тяжелых пусков; «затяжных» пусков; больших (более 10%) падений питающего напряжения.
В подавляющем большинстве случаев асинхронные двигатели позволяют решить проблемы запуска двигателей без использования частотных регуляторов. При работе совместно с частотным регулятором они обеспечивают механические характеристики, недостижимые для других серий двигателей. При работе с регулярно меняющейся нагрузкой, при работе с неноминальной нагрузкой, при перепадах питающего напряжения асинхронные двигатели позволяют снизить потребление электроэнергии на 50%.

Технические характеристики электродвигателей:

Мощность от 0,18 до 250 кВт; Напряжение питания – любое до 1000 В; высота над уровнем моря не более 1200 м; запылённость воздуха не более 1,3 г/м3; окружающая среда не взрывоопасна, не содержит токопроводящей пыли, не содержит паров веществ, вредно влияющих на изоляцию. Степень защиты двигателей – IP 55 и IP54 по ГОСТ 17494. Двигатели могут быть оборудованы встроенной температурной защитой. Группа механического воздействия по стойкости к воздействию механических внешних воздействующих факторов – М3 по ГОСТ 17516.1 (п.1¸3; 6; 15). Способ охлаждения двигателей IC0141 по ГОСТ 20459 (п.6). Изоляция маслостойкая класса нагревостойкости F (155оС) или Н (180оС) по ГОСТ 8865 (п.1¸5). Режим работы – продолжительный S1 и повторно-кратковременный S3 по ГОСТ 183. Повторно-кратковременный режим работы с ПВ от 0 % до 50 %. Допускается работа с ПВ от 50 % до 100 % в течение двух часов, но не чаще одного раза за 3 часа эксплуатации. Среднее количество пусков электродвигателя не более 30 в час. Количеством пусков в течение суток не более 200. Суммарное количество пусков в течение года не более 30000. Двигатели при рабочей температуре выдерживают в течение 2 мин без повреждений и видимых остаточных деформаций повышение частоты вращения до 120% номинальной. Двигатели выдерживают стоянку под током короткого замыкания после установившегося номинального режима работы при номинальном напряжении не менее 10 с. Изоляция обмотки статора относительно корпуса и между обмотками выдерживает в течение 1 минуты испытательное напряжение 2500 В частоты 50 Гц. Изоляция обмотки статора между смежными ее витками выдерживает в режиме холостого хода в течение 5 минут испытательное напряжение выше номинального значения на 50% с увеличенной частотой напряжения питания на 20%. Двигатели выдерживают 50% перегрузку по току в течение 2 минут. Двигатели, начиная с высоты вращения 80, имеют приспособления для подъема и транспортирования. Двигатели имеют коробку выводов с двумя сальниковыми вводами, допускающую возможность поворота на 180º с целью подвода кабелей с двух сторон. По способу защиты человека от поражения электрическим током двигатели имеют класс 1 по ГОСТ 12.2.007.0. В части пожаробезопасности двигатели соответствуют требованиям ГОСТ 12.1.004. Вероятность возникновения пожара не превышает 10-6 в год.
Характеристики
Основные
Производитель Русский сверхпроводник
Страна производитель Россия
Количество фаз 3
Напряжение 380.0 (В)
Потребляемый ток 40.0 (А)
Мощность 100.0 (кВт)
Коэффициент мощности 0.9
Частота вращения 3000.0 (об/мин)
Тип возбуждения Смешанное
Режимы работы Кратковременный, Повторно-кратковременный, Длительный
Степень защиты IP 55
Дополнительные характеристики
КПД, не менее 96.0 (%)
Дополнительные характеристики
режимы работы S1, S3
вибро-шумовые характеристики в среднем уровень звука ниже на 5ДБ
надежность сервис фактор 2,5
пусковой момент выше паспортного на 35%
пусковые токи меньше паспортного на 35%
минимальный момент выше паспортного на 35%
максимальный момент выше паспортного на 20%
КПД близкий к ном. в диап. нагрузок от 25 до 150%
cos ф близкий к ном. в диап. нагрузок от 25 до 150%
Суммарное количество пусков в течение года не более 30000
Информация для заказа
Цена: 2 000 руб.

Читайте так же:
Миксер для дрели насадка своими руками

Контактная информация:

Имя: Александр Кацай
E-mail:
www: http://enprok.ru
телефон: 8-916-248-02-44
Раздел: Электродвигатели, генераторы, вентиляторы, насосы

Выводы обмоток электродвигателя — схемы соединения

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Условно на схемах каждая обмотка изображается следующим образом:

выводы обмотки статора электродвигателя

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

Обозначение выводов обмоток статора электродвигателя

В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

Схема соединения обмоток электродвигателя по схеме «треугольник»

Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

как соединить треугольником выводы обмоток трехфазного двигателя

A, B, C — точки подключения питающего кабеля.

Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

Читайте так же:
Проводка на кухне своими руками

как соединить звездой выводы обмоток трехфазного двигателя

Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:

Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:

Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.

Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:

как определить вывода обмоток двигателя

Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:

Уникальный электромобильный двигатель – Славянка

Начала и концы обмоток

380 В. Соединяться обмотки двигателя могут и в клеммной коробке: в этом случае все концы обмоток выводятся в коробку виде двух разделенных пучков по три провода (“начала” и “концы”).

Наконец, выводы обмоток могут быть промаркированы металлическими бирками (С1-С2-С3 – “начала”, С4-С5-С6 “концы” обмоток). Однако, в некоторых случаях попадаются электродвигатели, в клеммную коробку которых просто выведены шесть немаркированных “концов” обмоток, не разделенных на пучки. Причиной этому может быть утеря бирок с маркировкой вследствие небрежной эксплуатации электродвигателя.

В некоторых случаях, бывает, что после ремонта его обмоток – перемотки, в клеммную коробку двигателя выводят шесть совершенно одинаковых проводов одного цвета.

В этом случае, для правильного соединения. необходимо определить “начала” и “концы” обмоток электродвигателя. Для этого, сначала нужно “найти” обмотки, т. е. определить пары проводов отдельных фазных обмоток. Прозвонить пары можно любым тестером или при помощи контрольной лампы, после чего следует промаркировать найденные фазные обмотки.

Теперь нужно определить начало и конец найденных пар фазных обмоток, существуют несколько способов определения, наиболее распространенный и достаточно надежный способ – следующий:

Две любые “найденные” фазные обмотки, соединенные последовательно включают в сеть

220 В, а к выводам третьей подключают контрольную лампу или вольтметр, с установленным пределом измерения до 100 В. Слабый накал лампы или отклонение стрелки вольтметра будет признаком, того, что две, последовательно включенные в сеть обмотки, соединены таким образом, что, «конец» одной обмотки соединен с «началом» другой.

Соответственно, полное отсутствие накала лампы или отклонения стрелки вольтметра – свидетельство отсутствия ЭДС в третьей обмотки, следовательно, последовательно включенные обмотки соединены своими “началами” или “концами”. Таким образом, определив “начала” и “концы” двух обмоток, выводы маркируются.

Читайте так же:
Труба гофрированная двухслойная для канализации

Теперь нужно определить “начало” и “конец” третьей обмотки, для этого ее соединяют последовательно с любой из обмоток, “начало” и “конец” которой уже определены и, подключив лампу или вольтметр к оставшейся обмотке, по аналогии предыдущего опыта находят “начало” и “конец”.

Какой должна быть намотка

Обмотка – это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:

  • Проволока однородная на всем покрываемом участке;
  • Форма и площадь сечения проводника соответствуют друг другу;
  • Поверх наносится слой изоляции (лака);
  • Соединение должно обеспечивать надежный контакт.

Если хоть одно из требований нарушено, то происходящие в двигателе процессы работают на износ, теряя мощность, обороты и ломаясь.

В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.

Важно знать, как определить концы обмоток электродвигателя, для чего необходимо обратить внимание на имеющуюся маркировку: “К” или четные цифры – конец, “Н” или нечетное число – начало.

Сферы применения «Славянки»

Инновационная технология «Славянка» применима везде, где предусмотрена эксплуатация трехфазных асинхронных электродвигателей.

  • Станки.
  • Подъемное оборудование.
  • Редукторы.
  • Вентиляторы.
  • Насосное оборудование.
  • Компрессоры и т.д.

При этом присоединительные размеры уже модернизированных электродвигателей полностью соответствуют установленным стандартам (ГОСТ Р 51689), а по желанию владельца учитываются уменьшенные габариты агрегатов.

Преимущества замены обычных электродвигателей на преобразователи с совмещенной обмоткой «Славянка» особо ощутимы в тяжелых эксплуатационных условиях, в которых они не только демонстрируют высокие рабочие показатели, но и быстро окупают свою себестоимость.

Возможные неполадки

Обмотка достаточно хрупкий элемент мотора, поэтому его нестабильная работа может вылиться во многие неисправности:

  • Обрыв провода и прекращение передачи тока;
  • Короткое замыкание из-за поврежденной изоляции;
  • Замыкание между отдельными витками, их самостоятельное “отключение” от системы;
  • Повреждение изоляции.

Как определить неисправность

На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.

Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние “симптомы”. Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:

Измерить сопротивление на концах намотки. Слишком большой или слишком малый результат сигнализирует об обрыве провода. На стартере трехфазного мотора сопротивление обмотки электродвигателя имеющиеся разные значения также говорят о неполадках в системе (данный показатель должен быть идентичен).

Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).

Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.

Суть технологии «Славянка»

«Славянка» – это простой способ сделать асинхронный электродвигатель более энергоэффективным, высокомоментным и малошумным. Суть, запатентованной профессором Н. В. Яловега технологии, сводится к использованию дополнительных совмещенных обмоток статора.

Так, согласно технологии, для трехфазного асинхронного электродвигателя помимо основной обмотки необходимо использовать 3 дополнительных, соединенных между собой и расположенных особым образом – отсюда и название способа – совмещенная обмотка.

Метод с шариком

  • Подключить симметричное напряжение от трех фаз с низким номинальным током.
  • Присоединить к каждой фазе понижающий трансформатор, имеющие одинаковые рабочие значения.
  • Подать напряжение (и ни в коем случае не допустить превышения токовой нагрузки!).
  • Одновременно ввести в созданное магнитное поле небольшой стальной шарик (диаметром 1-3 см).
  • Проследить за совершаемыми предметом действиями: если шарик крутится синхронно – все исправно, если остановился – в этом месте замыкание.

Как произвести обмотку

Чаще всего данная задача возлагается на обмотчика-ремонтника – специалиста, занимающегося только восстановлением функциональности обмотки движков. Но имея необходимые расходные материалы, специальный станок и определенные знания в электротехнике можно и самому приступить к ремонту машины.

Пошаговая инструкция для обмотки двигателя выглядит следующим образом:

  • Произвести осмотр механизма по представленным выше схемам, выявить проблемные участки, наметить фронт работы.
  • Приготовить расходные материалы (подходящий вид проволоки, изоляции и соединяющей пропитки).
  • Подготовить к работе кантователь (станок для намотки).
  • Надежно зафиксировать на машине стартер движка.
  • Произвести соответствующую намотку.
  • Густо обработать всю поверхность пропиточным средством.
  • Установить изоляционный слой.
  • Пропитать изоляцию.
  • Высушить устройство в специальном сушильном шкафу.
  • Проверить качество произведенной обмотки.

Обмотка электродвижка – это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.

Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.

    Ротор электродвигателя — особенности конструкции и принцип работы устройства. Инструкция по ремонту и восстановлению

Подключение электродвигателя — основные схемы, способы и особенности подсоединения различных моделей (инструкция + фото)

Однофазный электродвигатель: основные виды, принцип работы и инструкция по подключению и настройке. Обзор лучших производителей!

Преимущества

По сравнению с китайскими аналогами, мотор-колесо Дуюнова имеет ряд преимуществ, а именно:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector