Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы ДВС. Рабочие циклы двигателя

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200 о С.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

принцип работы двс

В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600 о С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900 о С.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700 о С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

принцип работы двс

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Читайте так же:
Рейтинг перфораторов до 1000 вт

Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Двигатели внутреннего сгорания


Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров.

Важную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства — автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

Начало создания автомобиля было положено более двухсот лет назад (название «автомобиль» происходит от греческого слова autos — «сам» и латинского mobilis — «подвижный»), когда стали изготовлять «самодвижущиеся» повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени «самобеглую коляску», приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал «самокатную тележку» с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц — трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть — зарубежного производства. После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность. Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский автомобильный завод. За годы послевоенных пятилеток вступили в строй Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы. Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.

За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности.

Двигатели внутреннего сгорания

В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т.д.

  1. Двигатели с внешним сгоранием — паровые машины, паровые турбины, двигатели Стирлинга и т.д.
  2. Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу. Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной.

  1. всасывание;
  2. сжатие;
  3. горение и расширение;
  4. выхлоп.
Читайте так же:
Схема подключения счетчика на 380

Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями и значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность — одно из положительных качеств ДВС.

Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей. Рассматриваемые двигатели успешно используются на автомобилях, тракторах, сельскохозяйственных машинах, тепловозах, судах, электростанциях и т.д., т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего.

Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.

Положительным качеством дизелей является способность одного двигателя работать на многих топливах. Так известны конструкции автомобильных многотопливных двигателей, а также судовых двигателей большой мощности, которые работают на различных топливах — от дизельного до котельного мазута.

Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность, высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, токсичность выхлопных газов, возвратно-поступательное движение поршня, ограничивающие частоту вращения и являющиеся причиной появления неуравновешенных сил инерции и моментов от них.

Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС.

Тепловое расширение

Тепловое расширение — изменение размеров тела в процессе его изобарического нагревания (при постоянном давлении). Количественно тепловое расширение характеризуется температурным коэффициентом объемного расширения B=(1/V)*(dV/dT)p, где V — объем, T — температура, p — давление. Для большинства тел B>0 (исключением является, например, вода, у которой в интервале температур от 0 C до 4 C B Добавить документ в свой блог или на сайт

Двигатель внутреннего сгорания

Тепловым двигателем называют машину, в ходе работы которой внутренняя энергия переходит в механическую. Самую простую модель такой машины можно представить в виде металлического цилиндра и плотно пригнанного поршня, который может двигаться вдоль цилиндра.

Одним из самых распространённых видов теплового двигателя, который мы встречаем в жизни, является двигатель внутреннего сгорания (ДВС). Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Легко догадаться, что отсюда и пошло его название.

В данном уроке мы рассмотрим устройство двигателя внутреннего сгорания и схему его работы.

Устройство двигателя внутреннего сгорания

Тепловые двигатели такого типа работают на жидком и газообразном топливе. Этим топливом могут быть нефть, бензин, керосин, различные горючие газы.

На рисунке 1 изображена схема простейшего двигателя внутреннего сгорания в разрезе.

Двигатель представляет собой прочный металлический цилиндр. Внутри этого цилиндра имеется подвижный поршень 3. Поршень соединения шатуном 4 с коленчатым валом 5.

В верхней части двигателя расположены два клапана 1 и 2. Когда двигатель работает, они автоматически открываются и закрываются в определенные нужные моменты.

Через клапан 1 в цилиндр двигателя поступает горючая смесь. Она воспламеняется с помощью свечи 6.

Горючая смесь – это смесь горючих газов, частиц жидкого топлива и паров топлива с воздухом (кислородом).

Отработавшие газы выпускаются через клапан 2.

Периодически в цилиндре происходит сгорание горючей смеси. Например, сгорает смесь паров бензина и воздуха. Образуются газообразные продукты сгорания. Их температура при этом достигает высоких значений – $1600-1800 degree C$. В результате этого резко увеличивается давление на поршень.

Читайте так же:
Станок деревообрабатывающий комбинированный бытовой станок с рейсмусом

Эти газы (продукты сгорания) толкают поршень. При движении поршня двигается и коленчатый вал. Таким образом газы совершают механическую работу. Т. е., часть внутренней энергии газов перешла в механическую энергию. Следовательно, внутренняя энергия газов уменьшилась – они начинают охлаждаться.

Мертвые точки, ход поршня и такты двигателя

Для того чтобы более подробно рассмотреть схему работы данного двигателя, нам понадобятся новые определения.

Поршень может двигаться внутри цилиндра. В устройстве самого простого вида, который мы рассматриваем, он может двигаться вверх и вниз.

Мёртвые точки – это крайние точки положения поршня в цилиндре.

Ход поршня – это расстояние, которое проходит поршень от одной мертвой точки до другой.

Рассматриваемые нами двигатели внутреннего сгорания называют четырехтактными.

Четырехтактный двигатель – это двигатель, в котором один рабочий цикл происходит за четыре хода поршня (за четыре такта).

Один такой такт двигателя или ход поршня происходит за половину оборота коленчатого вала.

Схема работы двигателя внутреннего сгорания: четыре такта

Теперь давайте подробно рассмотрим все четыре такта работы двигателя (рисунок 2).

Рисунок 2. Схематическое изображение работы двигателя внутреннего сгорания

Первый такт (рисунок 2, а):

  • При повороте коленчатого вала в самом начале такта поршень начинает двигаться вниз
  • Объем над поршнем увеличивается
  • В цилиндре образуется разрежение
  • Открывается клапан 1. В цилиндр поступает горючая смесь
  • Цилиндр заполняется горючей смесью. Клапан 1 закрывается

Второй такт (рисунок 2, б):

  • Вал продолжает поворачиваться, поршень теперь двигается вверх
  • Таким образом поршень сжимает горючую смесь
  • Поршень доходит до верхней мертвой точки
  • Сжатая горючая смесь воспламеняется от электрической искры (свеча 6) и сгорает

Третий такт (рисунок 2, в):

  • При сгорания смеси образуются газы. Они давят на поршень – толкают его вниз
  • Под действием этих расширяющихся нагретых газов двигатель совершает работу. Поэтому,

Третий такт двигателя – это рабочий ход.

  • Поршень двигается вниз. Его движение передается шатуну и коленчатому валу
  • Получив сильный толчок, коленчатый вал с маховиком продолжают вращение по инерции. При этом они приводят в движение поршень при последующих тактах

Заметьте, что на втором и третьем тактах двигателя клапаны закрыты.

  • В конце такта открывается клапан 2. Продукты сгорания начинают выходить из цилиндра в окружающую среду

Четвертый такт (рисунок 2, г):

  • Идет выход продуктов сгорания из цилиндра (клапан 2 открыт)
  • Поршень движется вверх
  • В конце этого такта клапан 2 закрывается

Цикл двигателя состоит из четырех тактов:
впуск
сжатие
рабочий ход
выпуск

Создание и применение двигателя внутреннего сгорания

Четырехтактный двигатель внутреннего сгорания рассмотренного нами вида изобрел немецкий инженер Рудольф Дизель (рисунок 3).

В 1893 году он получил патент на свой тепловой двигатель. В 1897 году, на «Аугсбургском машиностроительном заводе» был построен первый двигатель Рудольфа Дизеля . Его мощность составляла 20 лошадиных сил при 172 оборотах в минуту. Весил этот двигатель пять тонн. Двигатель Дизеля был четырехтактным.

В 1900 году, на “Всемирной выставке”, Рудольф Дизель продемонстрировал двигатель работающий на арахисовом масле (биодизель).

Двигатели внутреннего сгорания имеют очень широкое применение. В ходе их усовершенствования, в мире появлялись новые средства передвижения. Например, автомобили, мотоциклы, самолеты, вертолеты, космические корабли, ракеты, суда на воздушной подушке.

В автомобилях чаще всего стоят четырехцилиндровые двигатели внутреннего сгорания. В каждом цилиндре по очереди происходит рабочий ход. Поэтому коленчатый вал постоянно получает энергию от одного из поршней.

Существуют и двигатели с другим количеством цилиндров. Многоцилиндровые двигатели лучше обеспечивают равномерность вращения вала и имеют большую мощность.

Огнестрельное оружие является простейшим примером ДВС. Цилиндром является ствол оружия, а поршнем – выбрасываемые из оружия пули или снаряды.

Использование ДВС обеспечило быстрый прогресс в военной индустрии: были разработаны танки, истребители, подводные лодки.

В настоящее время двигатели внутреннего сгорания установлены практически на каждом виде транспорта, которым мы пользуемся. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Назначение и протекание процесса расширения в двигателе

Назначение и протекание процесса расширенияПроцесс расширения является единственным процессом рабочего цикла, в течение которого совершается полезная работа. Начинается он с началом снижения давления в цилиндре и заканчивается к моменту прихода поршня в НМТ.

Расширение происходит при изменении площади поверхности теплообмена, а также давления в надпоршневом пространстве и сопровождается потерями незначительного количества рабочего тела через кольцевые уплотнения.

В начальной стадии расширение происходит с подводом теплоты, так как в это время заканчивается догорание и наблюдается рост температуры. Поэтому значение показателя политропы расширения n ниже показателя адиабаты расширения k, в некоторых случаях даже меньше 1. По мере движения поршня к НМТ процесс догорания затихает и начинает преобладать теплоотвод в стенки цилиндра. При этом n растет, приближаясь к значению k.

Читайте так же:
Ремонт патрона макита 2450

При некотором положении поршня отвод теплоты и в то же время продолжающийся, но ослабевающий подвод теплоты становятся равными: n = k.

При дальнейшем расширении отвод теплоты от рабочего тела начинает преобладать, и n становится больше k.

Таким образом, расширение следует рассматривать как политропный процесс с переменным показателем политропы расширения n (рис. 20).

Рис. 20. Изменение в процессе расширения показателей Т, р, n2 и k2.

Из-за трудности использования переменных значений n при тепловых расчетах двигателей пользуются условным средним значением показателя политропы расширения.

В зависимости от типа двигателя и режима его работы средние значения политропы расширения изменяются от 1,18 до 1,32. Рассматривая влияние различных факторов на процесс расширения, следует иметь в виду, что чем меньше значение n2, тем индикаторная диаграмма будет более пологой, что означает получение большей полезной работы цикла.

На процесс расширения оказывают влияние следующие факторы: 1. Частота вращения коленчатого вала. При увеличении частоты вращения коленчатого вала сокращается время контакта рабочего тела со стенками цилиндра и утечки газа через зазоры между поршнем и цилиндром, что приводит к уменьшению значения n2.

Жесткая работа дизеля. Причина

2. Нагрузка. В карбюраторных двигателях с ростом нагрузки значение показателя n почти не изменяется, в дизелях этот показатель уменьшается вследствие увеличения фазы догорания.

3. Размеры цилиндров. При неизменном рабочем объеме цилиндра с увеличением отношения S/D значение показателя n уменьшается.

4. Конструкция камеры сгорания. С увеличением размеров камеры сгорания повышается отвод теплоты от рабочего тела, поэтому значение показателя n увеличивается.

5. Техническое состояние двигателя. При износе цилиндропоршневой группы возрастают утечки рабочего тела, что аналогично отводу теплоты. Поэтому в изношенных двигателях значение показателя будет выше, чем у двигателей, имеющих хорошее техническое состояние.

Не нашли то, что искали? Воспользуйтесь поиском:

В реальном двигателе процесс сгорания начинается до прихода поршня в ВМТ и не заканчивается после окончания подачи топлива в цилиндр, а продолжается на линии расширения. IV-я фаза процесса сгорания (догорание) оказывает значительное влияние на характер процесса расширения. Это влияние может быть проиллюстрировано с помощью кривой использования тепла ξ = f(V), данной на рис.

Рис. 1 Характер изменения коэффициента использования тепла ξ(V) в цилиндре малооборотного (1) и быстроходного (2) дизеляОсновная доля тепла подводится на участке z1z рабочего хода. Однако за счет догорания правее точки z коэффициент ξ продолжает увеличиваться, достигая максимума в точке М. При этом в начале процесса расширения (у точки z) из-за влияния догорания показатель политропы расширения составляет величину n2 = 1,0 ÷ 1,1.

При движении поршня от ВМТ к НМТ догорание уменьшается; в то же время, увеличивается поверхность охлаждения цилиндра и соответственно увеличивается отвод тепла. Наконец, в точке М количество подводимого тепла становится равным количеству отводимого тепла. При этом мгновенное значение показателя n равно показателю адиабаты: n = k.

При дальнейшем движении поршня к НМТ процесс расширения протекает с отводом тепла, величина ξ уменьшается. В конце расширения показатель n равен: n = 1,5 ÷ 1,6.

Устройства для облегчения пуска двигателя

Как правило, в судовых дизелях максимум кривой ξ = f(V) находится между точками z и b. В точке b коэффициент использования тепла равен: ξв = 0,8 ÷ 0,9. Чем ближе максимум кривой к точке z, тем меньше температура в точке b и экономичнее цикл. У высокооборотных двигателей точка М может находиться вообще за пределами графика (кривая 2 на рис.). У этих двигателей догорание протекает на всем ходе расширения и не заканчивается в точке b; количество подводимого тепла на линии расширения больше отводимого. Экономичность цикла понижается за счет недожога топлива и высокой температуры отработавших газов.

При построении расчетного цикла дизеля кривая расширения условно принимается за политропу со средним показателем политропы n, постоянным для всего процесса расширения. По аналогии с процессом сжатия, средний показатель n принимается таким, чтобы площади под расчетной и истинной кривыми расширения в PV — диаграмме были равными. Величина среднего значения показателя политропы расширения зависит от линейных размеров двигателя, уровня его форсировки, нагрузки, частоты вращения коленчатого вала, физических характеристик топлива и ряда эксплуатационных факторов.

Увеличение линейных размеров цилиндра уменьшает относительную площадь поверхности охлаждения; теплоотвод уменьшается, что приводит к снижению показателя n. В том же направлении действуют форсировка двигателей наддувом и увеличение нагрузки цилиндра, повышение частоты вращения коленчатого вала, ухудшение физических характеристик топлива, вызывающее снижение скорости его сгорания, изменение эксплуатационных факторов — уменьшение угла опережения подачи топлива, ухудшение распыливания топлива, повышение температуры охлаждающей среды.

Повышение частоты вращения коленчатого вала при прочих равных условиях уменьшает время контакта газов и стенок цилиндра, что уменьшает отвод тепла. Одновременно уменьшаются протечки газа через кольца, увеличивается догорание. Все это способствует уменьшению показателя n.

Читайте так же:
Перфоратор прэ 7 инструкция

Форсировка двигателя или увеличение нагрузки даже при постоянной частоте вращения приводит к увеличению температуры газа, росту теплоотвода и одновременному переносу сгорания на линию догорания. Возрастание IV-ой фазы оказывается определяющим, что и снижает показатель n. К развитию догорания приводит также ухудшение качества топлива и указанное выше изменение эксплуатационных факторов.

Значения средних показателей политропы расширения для номинальных режимов работы различных двигателей находятся в пределах:

  • n = 1,15 ÷ 1,25 — высокооборотные двигатели с неохлаждаемыми поршнями;
  • n = 1,25 ÷ 1,28 — среднеоборотные двигатели с охлаждаемыми поршнями;
  • n = 1,27 ÷ 1,32 — малооборотные двигатели с охлаждаемыми поршнями.

Меньшие значения n у высокооборотных двигателей — из-за догорания на линии расширения и меньшего времени теплоотвода. Параметры цикла в конце процесса расширения находятся из соотношений:

Рb =Pz (Vz /Vb ) n =Pz/δ n Tb =Tz/δ (n 2 -1)Обычно температура в точке b менее Tв < 1100 + 1200°К — во избежания обгорания выпускных клапанов, головок поршней, пригорания поршневых колец.

Объем в точке b в расчетах теоретических циклов 2-х и 4-тактных дизелей принимается равным объему в точке а цикла: Vв = Va. Влияние действительных углов опережения открытия органов газообмена в дальнейшем учитывается при построении теоретической индикаторной диаграммы путем нанесения действительных моментов на диаграмму и ее исправления от руки.

Давление в точке b находится в пределах:

  • Рв=(2,5 ÷ 3,5) Pк — малооборотные двигатели;
  • Рв=(4,0 ÷ 5,5) Pк — высокооборотные двигатели с выпуском через клапаны (здесь Рк — давление надувочного воздуха).

Процесс расширения протекает политропно с показателем политропы, изменяющимся в довольно широких пределах. Здесь, в отличие от процесса сжатия, в течение всего процесса происходит отдача тепла газов стенкам цилиндра, так как температура газов выше тем­пературы стенок.

Для упрощения расчета принимают процесс расширения прохо­дящим с постоянным средним показателем политропы п. Его прини­мают таким, чтобы кривая расширения, построенная по закону полит­ропы, возможно ближе подходила к действительному процессу рас­ширения в цилиндре.

Газораспределительные механизмы с верхним расположением клапанов

Значение п зависит от ряда факторов. С увеличением числа оборотов показатель п уменьшается, так как сокращается время теплообмена газа со стенками, уменьшаются пропуски газа поршне­выми кольцами. Кроме того, догорание неуспевшего сгореть топлива распространяется на большую часть участка линии расширения; выделяющееся при этом тепло не только компенсирует теплоотдачу стенкам, но и поддерживает температуру газовой смеси примерно постоянной (n ? 1).

С уменьшением нагрузки (при неизменном числе оборотов) показатель n падает, так как уменьшается относительное количество продуктов сгорания, а поэтому и относительная теплоотдача стенкам.

С увеличением размеров цилиндра снижается величина показа­теля политропы п, так как уменьшается относительная поверхность охлаждения.

По опытным данным средние значения показателя политропы для двигателей:

К атегория:

Автомобили и трактора Публикация:

Процесс расширения в дизельном двигателе

Ч итать далее:

Тепловой баланс двигателя

Процесс расширения в дизельном двигателе

В процессе расширения тепловая энергия преобразуется в полезную механическую работу. Началом этого процесса условно считается момент достижения в цилиндре максимального давления цикла, что связано с окончанием процесса видимого сгорания. Процесс расширения изображается на индикаторной диаграмме линией zb. В действительном цикле вследствие догорания топлива на линии расширения, утечки газов через неплотности и отвод тепла через стенки цилиндра в охлаждающую жидкость расширение протекает по политропе с переменным показателем п2.

В начале процесса расширения приток теплоты к газам вследствие интенсивного догорания значительно больше, чем теплоотдача показателя адиабаты. По мере уменьшения явления догорания значение показателя политропы п2 будет повышаться. Если выделяемая теплота при догорании равна тепловым потерям в стенки, то п2 = k.

При дальнейшем расширении газа тепловые потери в стенки будут больше, чем приток теплоты от догорания, а поэтому величина показателя политропы расширения будет увеличиваться. В дальнейшем для упрощения расчетов показатель политропы расширения принят постоянным и равным среднему значению за процесс расширения. Среднее значение показателя политропы расширения п2 для карбюраторных двигателей колеблется в пределах 1,25—1,33, а для дизельных 1,22— 1,25.

На величину среднего значения показателя политропы расширения оказывает влияние ряд факторов.

Рекламные предложения на основе ваших интересов:

При увеличении частоты вращения коленчатого вала показатель уменьшается, что объясняется увеличением скорости сгорания и уменьшением теплоотдачи в стенки. С увеличением нагрузки увеличивается температура газов и теплопередачи в стенки, а следовательно, и значение показателя. Интенсивность охлаждения цилиндров двигателя также способствует увеличению этого показателя.

Рекламные предложения:

Читать далее: Тепловой баланс двигателя Категория: – Автомобили и трактора

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector