Определение твердости по Бринеллю
Определение твердости по Бринеллю.
Бринелльили Бринелль (Brinell) Юхан Август (1849–1925), шведский инженер. Труды по металлургии стали и определению твердости металлов и сплавов. Метод определения твердости металлов, названный его именем, предложил в 1900 г.
Метод измерения твердости металлов по Бринеллю заключается во вдавливании индентора (шарика) стального или из твердого сплава диаметром D в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка d после снятия силы (рис. 1).
Рис. 1. Вид деформированного образцапосле вдавливания шарика
Измерение твердости по методу Бринелля осуществляется на твердомере типа ТВ 5004 в соответствии с ГОСТом 23677-79. В качестве индентора применяются шарики диаметром 1; 2,5; 5,0 и 10 мм, изготовленные из термически обработанной высокоуглеродистой стали с чистотой поверхности по двенадцатому классу (ГОСТ 2789-73). Выбор диаметра шарика, нагрузки и времени нагружения производится по таблице 1.
Показателем твердости является число твердости по Бринеллю, обозначаемое НВ и представляющее собой отношение усилия F к площади поверхности шарового сегмента A:
где h – глубина отпечатка, мм,
D – диаметр шарика, мм.
где d – диаметр отпечатка, мм.
Тогда число твердости НВ рассчитывается по формуле:
Твердость по Бринеллю выражается в кГ/мм 2 , но по стандарту размерность обычно не записывается. В то же время с системе СИ она указывается – МПа. Верхний предел измерения твердости этим методом составляет НВ 450, так как при испытании более твердых материалов происходит деформация шарика, превышающая стандартизированный допуск.
Для получения одинаковых значений твердости при испытаниях одного и того же металла инденторами разных диаметров необходимо, чтобы соблюдалось соотношение между размером шарика и действующей на него нагрузкой K=F/D 2 . Отношение К подбирается из ряда значений, приводимых в ГОСТе, с учетом свойств испытуемого металла так, чтобы соотношение между диаметрами шарика и отпечатка было в некотором диапазоне (d/D=0,24…0,6). Например, для сталей и высокопрочных сплавов ГОСТ рекомендует принимать отношение K=30, для цветных металлов и сплавов принимают K=10, а для очень мягких металлов K=2,5 (подшипниковые сплавы) или K=1 (свинец, олово).
На практике по диаметру d отпечатка находят число твердости НВ, используя таблицы, составленные для каждого из рекомендуемых соотношений F и D. Современное оборудование позволяет находить твердость по-другому, – определяя глубину h внедрения шарика (см. рис. 1).
Пластическое деформирование материала в окрестности внедряемого индентора связано со структурными изменениями, происходящими в металле. Длительность протекания этих изменений зависит от свойств материала. Для черных металлов достаточно 10. 15 секунд выдержки под нагрузкой, для большинства цветных – 30 секунд. В некоторых случаях для завершения пластического течения устанавливают 180 секунд или особо оговаривают условия испытания.
Когда твердость испытуемого металла соизмерима с твердостью индентора – стального шарика, то вследствие деформации шарика искажается форма отпечатка, что влияет на точность результатов. Во избежание существенных ошибок (из-за смятия шарика) обычно вводится ограничение на применение метода Бринелля: испытывают материалы с твердостью не превышающей 450 НВ. Для испытаний более твердых материалов используют либо шарик из твердого сплава, либо другие методы, например, Виккерса или Роквелла, где индентором служит алмаз – самый твердый материал из известных в природе.
Твердость по Бринеллю обозначают символом НВ (Hardness Brinell) или HBW (Hardness Brinell Wolfram carbide):
— НВ – при применении стального шарика (твердость детали менее 450 единиц);
— HBW – при применении шарика из твердого сплава (твердость детали более 450 единиц).
Символу НВ(HBW) предшествует числовое значение твердости (с округлением до трех значащих разрядов), а после символа указывают диаметр шарика [мм], значение приложенной силы [кгс], продолжительность выдержки [с], если она отличается от 10 или 15 секунд.
Примеры обозначений:
— 250 НВ 5/750– твердость по Бринеллю 250, измеренная стальным шариком диаметром 5 мм, при нагрузке 750 кгс (7355 Н) и продолжительности выдержки 10-15 с;
— 575 HBW 2,5/187,5/30– твердость по Бринеллю 575, измеренная шариком из твердого сплава диаметром 2,5 мм, при нагрузке 187,5 кгс(1839 Н) и продолжительности выдержки под нагрузкой 30 с.
При определении твердости стальным шариком (или шариком из твердого сплава) диаметром 10 мм при нагрузке 3000 кгс (29420 Н) и продолжительности выдержки 10…15 секунд твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW (например, 300 НВ).
Основными частями прибора являются:
1. Шпиндель 6, в который вставляются сменныеинденторы с шариками разного диаметра.
2. Подвеска 18 с набором грузов.
3. Маховик 1, перемещающий опорный столик 5 с образцом в вертикальном направлении.
4. Система рычагов 12, 15, 17-19, передающих нагрузку на испытуемый образец.
5. Электродвигатель 21, обеспечивающий работу прибора.
6. Пульт управления с переключателями режима работы, сигнальными лампами “контроль”, “выдержка”, “сеть”, реле времени.
7. Кнопки “пуск” и “стоп”.
Требования к образцам и приборам при определении твердости оговариваются соответствующими ГОСТами.
Определение твердости по методу Бринелля
Твердость – это способность материала сопротивляться внедрению в него других тел определенной формы и размеров под действием определенных сил. Измерение твердости можно осуществлять по методам Бринелля, Роквелла и Виккерса.
Сущность метода заключается во вдавливании стального закаленного шарика диаметром 2,5; 5,0 или 10 мм в испытываемый образец (изделие) под действием нагрузки, приложенной перпендикулярно к поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия нагрузки (рисунок 2.1).
Рисунок 2.1 — Схема получения отпечатка
Твердость по Бринеллю определяется отношением приложенной нагрузки Р (кгс) к площади поверхности отпечатка F (мм 2 ):
Площадь поверхности в виде шарового сегмента определяется выражением
где D – диаметр шарика, мм;
d – диаметр отпечатка, мм.
Твердость выражается в МПа или кгс/мм 2 . При определении твердости по Бринеллю нагрузка и диаметр шарика должны соответствовать закону подобия
где к – постоянная для данного материала величина, равная 30, 10 или 2,5, которая выбирается в зависимости от вида материала, его предполагаемой твердости и толщины испытываемого образца.
Диаметр шарика D, нагрузку Р и длительность выдержки t выбирают в зависимости от вида материала, его ориентировочной твердости НВ и толщины образца d, значения коэффициента К. (таблица2.3).
Таблица 2.3 — Выбор диаметра шарика, нагрузки и длительности выдержки
Материал | Твердость по Бринеллю | Толщина образца d, мм | Коэффициент К | Диаметр шарика D, мм | Нагрузка Р, кгс | Выдержка под нагрузкой t, с |
Черные металлы | >140-150 | 6-3 3-2 < 2 | 10,0 5,0 2,5 | 187,5 | ||
-«- | < 140 | > 6 6-3 < 2 | 10,0 5,0 2,5 | 62,5 | ||
Цветные металлы | > 130 | 6-3 4-2 < 2 | 10,0 5,0 2,5 | 187,5 | ||
-«- | 35-130 | 9-5 6-3 < 2 | 10,0 5,0 2,5 | 62,5 | ||
-«- | 8-35 | > 6 6-3 < 3 | 2,5 | 10,0 5,0 2,5 | 62,5 15,6 |
Диаметр отпечатка измеряют специальным отсчетным микроскопом МПБ-2, на окуляре которого нанесена шкала с делениями, соответствующими десятым долям миллиметра, с точностью до 0,05 мм в двух взаимно перпендикулярных направлениях. Принимают среднюю из полученных величин.
На рисунке 2.2 показан способ измерения отпечатка по шкале отсчетного микроскопа. В рассматриваемом случае диаметр отпечатка равен 4,3 мм. Измерив диаметр отпечатка, площадь поверхности отпечатка F определяют по формуле (2.2) и, зная величину приложенной силы Р, твердость определяют по формуле (2.1) или находят по таблице 2.4.
Рисунок 2.2 — Измерение отпечатка с помощью отсчетного микроскопа
При измерении твердости шариком D=10 мм под нагрузкой Р=29430 Н (3000 кгс) с выдержкой t=10 с твердость по Бринеллю обозначают цифрами, характеризующими число твердости, и буквами НВ, например 175НВ (здесь175 – число твердости, кгс/мм 2 , НВ – твердость по Бринеллю).
При других условиях испытания после букв НВ указывают условия испытания в следующем порядке: диаметр шарика, нагрузка и продолжительность выдержки под нагрузкой, разделенные наклонной чертой, например 200НВ5/250/30.
Между числом твердости по Бринеллю НВ и пределом прочности sв существует примерная количественная зависимость sв = K НВ, где K – коэффициент, определенный опытным путем (таблица 2.5).
Таблица 2.4 – Твердость по Бринеллю в зависимости от диаметра отпечатка
Диаметр отпечатка d, 2d * или 4d ** , мм | Число твердости при нагрузке Р, кгс | Диаметр отпечатка d, 2d * или 4d ** , мм | Число твердости при нагрузке Р, кгс | |||
30D 2 | 10D 2 | 2,5D 2 | 30D 2 | 10D 2 | 2,5D 2 | |
3,00 | 34,6 | 4,55 | 58,1 | 14,5 | ||
3,05 | 33,4 | 4,60 | 56,8 | 14,2 | ||
3,10 | 32,3 | 4,65 | 55,5 | 13,9 | ||
3,15 | 31,3 | 4,70 | 54,3 | 13,6 | ||
3,20 | 30,3 | 4,75 | 53,0 | 13,3 | ||
3,25 | 29,3 | 4,80 | 51,9 | 13,0 | ||
3,30 | 28,4 | 4,85 | 50,7 | 12,7 | ||
3,35 | 27,6 | 4,90 | 49,6 | 12,4 | ||
3,40 | 26,7 | 4,95 | 48,6 | 12,2 | ||
3,45 | 25,9 | 5,00 | 47,5 | 11,9 | ||
3,50 | 25,2 | 5,05 | 46,5 | 11,6 | ||
3,55 | 97,7 | 24,5 | 5,10 | 45,5 | 11,4 | |
3,60 | 95,0 | 23,7 | 5,15 | 44,6 | 11,2 | |
3,65 | 92,3 | 23,1 | 5,20 | 43,7 | 10,9 | |
3,70 | 89,7 | 22,4 | 5,25 | 42,8 | 10,7 | |
3,75 | 87,2 | 21,8 | 5,30 | 41,9 | 10,5 | |
3,80 | 84,9 | 21,2 | 5,35 | 41,0 | 10,3 | |
3,85 | 82,6 | 20,7 | 5,40 | 40,2 | 10,1 | |
3,90 | 80,4 | 20,1 | 5,45 | 39,4 | 9,86 | |
3,95 | 78,3 | 19,6 | 5,50 | 38,6 | 9,66 | |
4,00 | 76,3 | 19,1 | 5,55 | 37,9 | 9,46 | |
4,05 | 74,3 | 18,6 | 5,60 | 37,1 | 9,27 | |
4,10 | 72,4 | 18,1 | 5,65 | 36,4 | 9,10 | |
4,15 | 70,6 | 17,6 | 5,70 | 35,7 | 8,93 | |
4,20 | 68,8 | 17,2 | 5,75 | 35,0 | 8,76 | |
4,25 | 67,1 | 16,8 | 5,80 | 34,3 | 8,59 | |
4,30 | 65,5 | 16,4 | 5,85 | 33,7 | 8,43 | |
4,35 | 63,9 | 16,0 | 5,90 | 99,2 | 33,1 | 8,26 |
4,40 | 62,4 | 15,6 | 5,95 | 97,3 | 32,4 | 8.11 |
4,45 | 60,9 | 15,2 | 6,00 | 95,5 | 31,8 | 7,96 |
4,50 | 59,5 | 14,0 |
* 2d берется при использовании шарика диаметром 5 мм.
** 4d берется при использовании шарика диаметром 2,5 мм.
Таблица 2.5 — Значения коэффициента K для некоторых материалов
Материал | Состояние материала | Условия испытаний (D=10 мм) | |
Латунь | Отожженая наклепанная | Р = 10D 2 | 0,50 0,41 |
Алюминий | Холоднокатаный при обжатии 5% при обжатии 10% при обжатии 90% отожженный | Р – 2,5D 2 | 0,37 0,35 0,40 0,40 |
Дюралюминий | Отожженный закаленный и состаренный | Р=10D 2 Р=30D 2 | 0,36-0,37 0,34-0,36 |
Сталь легированная 220-400 НВ | — | Р=30D 2 | 0,33 |
Сталь углеродистая и легированная НВ<250 | — | Р=30D 2 | 0,34 |
При измерении твердости по Бринеллю необходимо соблюдать следующие условия:
1) действующее усилие перпендикулярно поверхности испытуемого образца;
2) поверхность образца должна быть плоской, чистой и гладкой;
3) образец должен лежать на подставке устойчиво;
4) минимальная толщина образца должна быть не менее 10-кратной глубины отпечатка;
5) расстояние от центра отпечатка до края образца должно быть не менее 2,5d, между центрами двух соседних отпечатков – не менее 4d, а для металлов с НВ < 350 – 3 d и 6 d;
6) диаметры отпечатков должны находиться в пределах 0,25D<d< 0,6D.
Преимущества метода Бринелля – простота и надежность в работе приборов, применяемых для определения твердости, высокая точность определения твердости, так как при достаточно большом диаметре отпечатка исключается влияние локальных факторов.
— метод не может быть применен для испытания металлов с НВ > 450;
— метод неприменим для определения твердости листовых образцов
толщиной менее 0,5…1 мм и изделий малой жесткости;
— на поверхности испытуемого изделия остаются заметные отпечатки.
Для определения твердости по Бринеллю пользуются твердомером ТШ-2М (рисунок 2.3). Прибор состоит из станины, в нижней части которой помещен винт 20 со сменными столиками 19 для испытуемых образцов. Перемещают винт вручную маховиком 21. В верхней части находится шпиндель 16 со сменными наконечниками 17. Основная нагрузка прикладывается к образцу посредством рычажной системы. На длинном плече основного рычага 6 имеется подвеска со сменными грузами 4. При нажатии пусковой кнопки освобождается рычаг и на шарик воздействует нагрузка. Время действия нагрузки устанавливается с помощью устройства, расположенного с правой стороны прибора.
Рисунок 2.3 — Твердомер ТШ-2М
studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с) .
Метод Бринелля
Ме́тод Брине́лля — один из основных методов определения твёрдости материала.
Метод предложен шведским инженером Юханом Августом Бринеллем (1849-1925 гг.) в 1900 году и стал первым широко используемым и стандартизированным методом определения твёрдости в материаловедении.
Метод Бринелля относится к методам вдавливания.
Испытание проводится следующим образом:
- вначале образец подводят к индентору;
- затем вдавливают индентор в образец с плавно нарастающей нагрузкой в течение 2‑8 секунд;
- после достижения максимальной величины нагрузка на индентор выдерживается в определённом промежутке времени (для сталей обычно 10‑15 секунд);
- затем снимают приложенную нагрузку, отводят образец от индентора и измеряют диаметр получившегося отпечатка.
В качестве инденторов используются шарики из твёрдого сплава диаметра 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала.
Исследуемые материалы делят на 5 основных групп:
Кроме того, выше приведённые группы могут разделяться на подгруппы в зависимости от твёрдости образцов.
При выборе условий испытаний следят за тем, чтобы толщина образца, как минимум, в 8 раз превышала глубину вдавливания индентора. И ещё важно контролировать диаметр отпечатка, который должен находиться в пределах от 0,24·D до 0,6·D, где D — диаметр индентора (шарика).
Твёрдость по Бринеллю обозначается «HW» (Hardness Brinell) при применении стального шарика в качестве индентора или «HBW» при применении в качестве индентора шарика из твёрдого сплава и может рассчитываться двумя методами:
- метод восстановленного отпечатка;
- метод невосстановленного отпечатка.
По методу восстановленного отпечатка твёрдость рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка:
- F
— приложенная нагрузка, Н; - D
— диаметр шарика, мм; - d
— диаметр отпечатка, мм.
По методу невосстановленного отпечатка твёрдость определяется как отношение приложенной нагрузки к площади внедрённой в материал части индентора:
Нормативными документами определены:
- диаметры индентора;
- время вдавливания;
- время выдержки под максимальной нагрузкой;
- минимальная толщина образца;
- минимальная и максимальная величины диагоналей отпечатка;
- максимальные нагрузки;
- группа исследуемого материала.
По ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.
Пример обозначения твёрдости по Бринеллю:
600 HBW 10/3000/20,
- 600 — значение твёрдости по Бринеллю, кгс/мм²;
- HBW — символьное обозначение твёрдости по Бринеллю;
- 10 — диаметр шарика в мм;
- 3000 — приблизительное значение эквивалентной нагрузки в кгс (3000 кгс = 29 420 Н);
- 20 — время действия нагрузки, с.
Для определения твёрдости по методу Бринелля используют различные твердомеры (например, твердомеры для металлов) как стационарные, так и переносные.
Материал | Твёрдость |
---|---|
Мягкое дерево, например, сосна | 1,6 HBS 10/100 |
Твёрдое дерево | от 2,6 до 7,0 HBS 10/100 |
Полиэтилен низкого давления | 4,5-5,8 HB [1] |
Полистирол | 15 HB [1] |
Алюминий | 15 HB |
Медь | 35 HB |
Дюраль | 70 HB |
Мягкая сталь | 120 HB |
Нержавеющая сталь | 250 HB |
Стекло | 500 HB |
Инструментальная сталь | 650-700 HB |
- Метод рекомендуется применять для материалов с твёрдостью до 450 HB.
- Твёрдость по Бринеллю зависит от нагрузки (обратный размерный эффект — англ. reverse indentation size effect ).
- При вдавливании индентора по краям отпечатка из-за выдавливания материала образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка.
- Из-за большого размера тела внедрения (шарика) метод неприменим для тонких образцов.
- Зная твёрдость по Бринеллю, можно быстро найти предел прочности и текучести материала, что важно для прикладных инженерных задач.
- Так как метод Бринелля — один из самых старых, накоплено много технической документации, где твёрдость материалов указана в соответствии с этим методом.
- Данный метод является более точным по сравнению с методом Роквелла на более низких значениях твёрдости (ниже 30 HRC).
- Также метод Бринелля менее критичен к чистоте поверхности, подготовленной под замер твёрдости.
Результаты измерения твёрдости по методу Бринелля могут быть переведены с помощью таблиц в единицы твёрдости по другим методам, например метод Виккерса и метод Роквелла. В свою очередь, измерения твёрдости двумя последними методами могут быть переведены в единицы твёрдости по методу Бринелля. Перевод чисел твёрдости следует использовать лишь в тех случаях, когда невозможно испытать материал при заданных условиях. Полученные переводные числа твёрдости как табличные, так и рассчитанные по уравнениям согласно ASTM E140-07 являются лишь приближёнными и могут быть неточными для конкретных случаев. С физической точки зрения, такое сравнение чисел твёрдости, полученных разными методами и имеющих разную размерность, лишено всякого физического смысла.
Определение твердости древесины методами Бринелля и Янка
Для измерения твердости дерева применяются разные типы методов:
- Статистические (по Бринеллю, Роквеллу, Кнупу, Викерсу) представляют собой вдавливание сверхтвердого предмета в поверхность древесины. Этим предметом может служить алмазный конус или металлический шарик; их деформацией можно пренебречь;
- В динамические методах (по Шору, Морину, Бауману, Шварцу, Граве) происходит создание в материале отпечатка шариком при ударной нагрузке;
- В некоторых случаях твердость определяется по сопротивлению абразивному изнашиванию и шлифованию.
Графическая схема измерения твердости древесины по: а) Бриннелю; б) Роквеллю; в) Виккерсу.
Метод Юхана Августа Бринелля
Для того, чтобы определить твердость древесины применяют метод Бринелля. Его результатом является числовой показатель, в России и Европе он указывается на древесине и обозначает ее твердость. Суть самого метода состоит в следующем: в небольшой фрагмент исследуемого материала с силой 100 кг вдавливается небольшой стальной шарик диаметром 10 мм. Лунку, которая после этого остается, измеряют. Твердость дерева и показатель на шкале Бринелля тем выше, чем меньше след от шарика.
При выборе паркетного покрытия имеет смысл ознакомиться с тем, какую твердость по шкале Бринелля имеет выбранный материал. В целях увеличения длительности срока службы при изготовлении качественного паркета обычно используется древесина среднего уровня твердости. Перед тем, как совершить окончательный выбор материала для оформления пола, не будет лишним посмотреть характеристики самых популярных древесных пород.
Подверженность механическому воздействию напрямую зависит от того, насколько высоко значение показателя твердости. Чем оно выше, тем меньше вероятность обнаружить царапины даже после длительной эксплуатации.
В таблице ниже представлены численные значения твердости наиболее распространенных древесных пород по Бринеллю. Эти сравнительные данные позволяют понять, какой вид древесного материала имеет наибольшую твердость. Самые твердые древесные породы являются и самыми дорогими: как правило, это экзотические сорта дреесины.
Таблица твердости древесины по Бринеллю
Можно сказать, что твердость древесного материала отражает его способность сопротивляться внедрению инородного тела определенной формы. Условно можно выделить три группы деревьев: мягкие, твердые и очень твердые. Показатель торцовой твердости мягких деревьев равен 40 МПа. К твердым относится древесина с торцовой твердостью в диапазоне от 40 до 80 МПа. Очень твердые породы дерева характеризуются торцовой твердостью свыше 80 МПа.
Показатель твердости древесного материала обязательно должен быть учтен при обработке фрезером или пилой. Также необходимо учесть и то, что вызывают трудности сучки и наросты: их твердость выше, чем у самого дерева.
Показатель ударной вязкости отражает то, насколько хорошо древесный материал способен поглощать работу при ударе, сохраняя при этом целостность. Для его определения проводятся испытания на изгиб. Шарик из стали диаметром 2,5 см сбрасывают с высоты 50 см на небольшой образец древесины. Величина образца зависит от значения показателя твердости дерева: чем меньше твердость, тем больше площадь. В среднем показатель ударной вязкости лиственных пород деревьев превышает в 2 раза показатель хвойных пород. Имеет смысл принимать его во внимание и в случаях, когда древесина подвергается систематическому истиранию и используется в изготовлении лестниц и перил, оформлении пола.
Метод Габриэля Янка
Метод измерения твердости Янка отличается от Бринелля тем, что для испытания берется стальной шарик немного большего диаметра (11.28 мм вместо 10 мм по Бринеллю) + замеряют не образовавшуюся в результате падения шарика лунку, а силу, с которой необходимо вдавить шарик в древесину, чтобы он углубился в нее на 50% своего диаметра.
В таблице не приведены диапазоны, в которых находится значение твердости различных видов древесины. Значения по шкале Янка заимствованы из англоязычных источников и соответствуют древесине после атмосферной сушки, ее влажность при этом составляет 12%.
Порода дерева и особенности климатических условий местности, в которой оно растет, в конечном итоге являются определяющими факторами для твердости древесины, поэтому даже внутри одного и того же образца породы бывает колоссальный разброс значений. В Европейских странах и в России твердость обычно указывается в единицах по шкале Бринелля, а в США широко используются данные по шкале Janka.