Wabashpress.ru

Техника Гидропрессы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные кристаллические решетки металлов

Основные кристаллические решетки металлов

Взаимосвязь типа химической связи с видом кристаллической решетки

Вещества и кристаллические решетки

Твердые вещества бывают аморфные или кристаллические (чаще всего имеют кристаллическое строение).

Кристаллическое строение характеризуется правильным расположением частиц в определенных точках пространства. При соединении этих точек воображаемыми прямыми линиями образуется так называемая кристаллическая решетка. Точки, в которых размещены частицы, называются узлами кристаллической решетки.

В узлах кристаллической решетки могут находиться ионы, атомы или молекулы.

В зависимости от вида частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток:

· ионные,

· атомные,

· молекулярные и

· металлические.

Ионная решетка

Эту решетку образуют все вещества с ионным типом связи — соли, щелочи, бинарные соединения активных металлов с активными неметаллами (оксиды, галогениды, сульфиды), алкоголяты, феноляты, соли аммония и аминов. В узлах решетки — ионы, между которыми существует электростатическое притяжение. Ионная связь очень прочная.

Примеры: КОН, СаСО3, СН3СООК, NH4NO3, [CH3NH3]Cl, С2Н5ОК.

Свойства ионных кристаллов :

· твердые, но хрупкие;

· отличаются высокими температурами плавления;

· нелетучи, не имеют запаха;

· расплавы ионных кристаллов обладают электропроводностью;

· многие растворимы в воде; при растворении в воде диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.

Металлическая решетка

Характерна для веществ с металлической связью. Реализуется в простых веществах — металлах и их сплавах. В узлах решетки — атомы и катионы металла, при этом электроны металла обобществляются и образуют так называемый электронный газ, который движется между узлами решетки, обеспечивая ее устойчивость. Именно свободно перемещающимися электронами и обусловлены свойства веществ с металлической решеткой:

· тепло- и электропроводность;

· обладают металлическим блеском;

· высокие температуры плавления.

Атомная решетка

В узлах решетки — атомы, связанные ковалентными связями. Химическая связь — ковалентная полярная или неполярная. Атомная кристаллическая решетка характерна для углерода (алмаз, графит), бора, кремния, германия, оксида кремния SiO2(кремнезем, кварц, речной песок), карбида кремния SiC (карборунд), нитрида бора BN.

Свойства веществ с атомной решеткой :

· высокая твердость;

· высокие температуры плавления;

· нерастворимость;

· нелетучесть;

· отсутствие запаха.

Молекулярная решетка

Кристаллические решетки

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические. Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

аморфные тела

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления. По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой.

в узлах кристаллической решетки

В отличии от аморфных тел, кристаллические вещества имеют фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки, и от того какие связи удерживают их различают: молекулярную, атомную, ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества.

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия: водородные связи, силы Ван-дер-Ваальса.

молекулярная кристаллическая решетка

Связи эти слабые, поэтому молекулярная решетка – самая непрочная, температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Читайте так же:
С255 марка стали аналог ст3

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I2, P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (NH3, O2, H2O, кислоты, CO2).

Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы. Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные, так как решетку образуют только атомы углерода.

атомная кристаллическая решетка

А вот, например, в кристалле кварца (химическая формула которого SiO2) есть атомы Si и O. Поэтому связи ковалентные полярные.

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO2.
  7. Корунд, рубин, сапфир – у этих веществ состав Al2O3.

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

алмаз и графит

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы: Na + и Cl – . Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь.

ионная кристаллическая решетка

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли, оксиды металлов, щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах. Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

металлическая кристаллическая решетка

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

Как определить тип кристаллической решетки.

Кристаллические решетки 1

P.S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al2O3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.

Читайте так же:
Работа с нивелиром инструкция

Виды дефектов кристаллической решетки

Искажения в кристаллической решётке – это несовершенство правильного геометрического расположения атомов в кристаллическом твердом теле. Дефекты в кристаллах возникают в результате деформации твердого тела, быстрого охлаждения из-за высокой температуры или излучения высокой энергии (например, рентгеновских лучей или или нейтронов, падающих на твёрдое тело. Расположенные в отдельных точках — вдоль линий или на всей поверхности – эти искажения влияют на его механические, электрические и оптические свойства материала.

  • Точечные дефекты (нульмерные)
  • Линейные (одномерные)
  • Поверхностные (двухмерные)
  • Объемные (трехмерные)

Различают точечные и линейные дефекты. Первые, в свою очередь, могут быть типу Френкеля, Шоттки или примесными. Дефект Френкеля состоит из одного иона, который смещается из своей нормальной точки решетки, перемещаясь в ближайший промежуток или пространство между атомами решётки. В дефекте Шоттки решётку покидают два иона противоположного знака. Примесные искажения — это чужеродные атомы, которые замещают некоторые из атомов, которые либо составляют твёрдое тело, либо проталкиваются в пустоты.

Линейные несовершенства или дислокации являются линиями, вдоль которых проходят целые ряды атомов в твердом теле. Результирующая неравномерность зазора наиболее заметна вдоль линии, называемой линией дислокации. Линейные дефекты могут ослаблять или укреплять твёрдые тела, поэтому они даже создаются искусственно методом хонингования.

Изучение искажений кристаллической решётки важно для моделирования электрического поведения полупроводников, материалов, используемых в компьютерных микросхемах и других электронных устройствах, а также для оценки их влияния на механические свойства.

Точечные дефекты (нульмерные)

Точечные дефекты в кристаллах представляют собой искажения решётки с нулевой размерностью, т.е. ни в какой размерности они не обладают структурой решётки.

Точечные дефекты в кристаллах

Типичные точечные несовершенства подразделяются на три группы:

примесные атомы в чистом металле;

Вакансии получают путём нагревания в концентрациях, достаточно высоких для количественных исследований. Для получения аналогичных концентраций межузельных атомов точечные искажения можно получить, выполняя внешнюю работу с кристаллом. Такая работа выполняется в атомном масштабе за счет облучения энергоёмкими частицами. Столкновения между посторонними атомами и атомами решётки вызывают смещения последних от мест замещения к местам внедрения. Таким образом, вакансии и междоузлия производятся в равных количествах. Поскольку одна вакансия и одно междоузлие вместе образуют дефект Френкеля, облучение, по сути, является процессом образования такого дефекта. Это невыгодно по сравнению с экспериментальным исследованием межузельных свойств, поскольку радиационно-индуцированные изменения свойств кристаллов всегда включают роль вакансий.

При пластической деформации также образуются вакансии и межузельные частицы. Хотя деформация обходится намного дешевле, чем облучение частицами, метод не стал общепринятой процедурой для создания точечных дефектов, поскольку не позволяет производить контролируемое образование искажений независимо от сложных сетей дислокаций.

Аномально высокие концентрации точечных несовершенств встречаются в некоторых нестехиометрических интерметаллических соединениях. Здесь вакансии и внедрения уже играют роль дополнительных легирующих элементов и имеют в этом смысле термодинамическое значение.

Другие методы получения точечных дефектов — быстрая закалка, испарение на холодных подложках или лазерный отжиг — зависят от термически активированного производства.

В чистых металлах и в большинстве сплавов вакансии обеспечивают термически активированный перенос атомов и, следовательно, свойства вакансий напрямую влияют на перенос атомов. Свойства вакансии дают информацию о межатомных силах с помощью особых возмущений, которые зависят от вакантного узла решётки.

Линейные (одномерные)

Дефекты кристаллического строения металлов могут проявляться в форме линейных дефектов или дислокаций. Дислокации — это линии, вдоль которых аномально расположены целые ряды атомов твёрдого тела. Результирующая неравномерность зазора наиболее заметна вдоль линии, называемой линией дислокации. Линейные искажения могут ослаблять или упрочнять твердые тела.

Читайте так же:
Самыми большими запасами железных руд располагают

линейные дефекты в кристаллах

Поверхностные (или одномерные) дефекты могут возникать на границе между двумя зёрнами или небольшими кристаллами внутри кристалла большего размера. Ряды атомов в двух разных зёрнах могут проходить в отличающихся направлениях, что приводит к несоответствию на границе зерна. Внешняя поверхность кристалла фактически также является дефектом, потому что атомы вынуждены корректировать свое положение, чтобы приспособиться к отсутствию соседних атомов вне поверхности.

Линейные несовершенства, или, точнее, краевые дислокации, возникают тогда, когда последний слой остается незавершённым, так что в слоях, которые располагаются выше и ниже него, образуется своего рода ступенька. Поскольку длина линейных дефектов в определённом объёме стали или сплава может составлять в сумме один световой год, это открытие должно иметь большое практическое значение, поскольку структура стали зависит, среди прочего, от того, насколько она ковкая, жёсткая и пластичная. — свойства, которые материаловеды хотят постоянно оптимизировать.

Поверхностные (двухмерные)

Основная часть исследований в области химии поверхности связана с механизмами реакций на поверхности и идентификацией адсорбированных и реагирующих частиц.

поверхностные дефекты в кристаллах

Однако небольшое количество исследователей интересуются влиянием поверхности на возникновение и развитие дефектов. Структура поверхности на атомарном уровне может определять свойства материала.

Известно, что несовершенства структуры кристаллов, являясь активными центрами, контролируют многие механические и химические свойства твёрдых тел. С увеличением общего количества поверхностных дефектов растёт число атомов с различным числом разорванных связей.

Двухмерные искажения подразделяются на три группы:

Возникающие на границах зёрен.

Границы зон двойникования.

Все поверхностные структуры получаются в результате различной ориентации смежных кристаллических решёток.

Объемные (трехмерные)

Междуузельные соединения являются наиболее распространенным представителем объёмных дефектов.

объемные дефекты в кристаллах

Трёхмерные искажения решётки образуются из-за большого возмущения её размеров. Следствием такого возмущения являются изменения, которые связаны с динамическими и статическими свойствами материалов.

Объёмные несовершенства играют ключевую роль в развитии типичных структур повреждений, которые определяют не только микроструктуру, но и микрохимию сплавов.

Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

Механизм создания металлической связи предусматривает отрыв частично свободных электронов от атома с образованием катионов с положительным зарядом, формирующих “остов” кристаллической решетки и электронного облака. При этом металлический кристалл не приобретает положительного или отрицательного заряда.

Схема образования металлической связи

Общий случай формирования связывания металлических атомов в химии, соответствующий данному выше определению:

здесь n — число электронов, участвующих в образовании связи, как правило, от 1 до 3.

В левой части уравнения — атом металла, отдающий электроны, в правой — образовавшийся в результате ион.

Формула показывает, что в кристалле постоянно происходит присоединение и отдача электронов.

Схемы формирования связи на примере атомов различной валентности:

  1. K — e⁻ ⇆ K;
  2. Cu — 2e⁻ ⇆ Cu;
  3. Al — 3e⁻ ⇆ Al.

Отделяющиеся от атома электроны перемещаются на свободные валентные орбитали, которые обобществляются и позволяют всем электронам перемещаться в пределах кристалла. Отделение электронов выгодно атому с точки зрения энергетического баланса, так как позволяет сформировать электронно-стабильную оболочку.

Периодическая таблица и металлы

Объемно центрированная кристаллическая решетка металла

В XIX веке благодаря своему блестящему уму и многим годам труда Дмитрий Иванович Менделеев составил таблицу, собрав в нее все известные на то время химические элементы. Каждому из них в таблице отведено определенное положение в соответствии с числом протонов в атомном ядре. Вся таблица делится на 7 периодов (горизонтальные строки) и 8 групп (вертикальные строки). Чем больше период, тем больше радиус атома соответствующего элемента, и тем на более высоких орбиталях расположены его валентные электроны. Наоборот, чем старше группа (движение по таблице слева направо), тем больше валентных электронов находится на последней орбитали и тем меньше радиус атома.

Любой элемент таблицы можно условно отнести либо к металлам, либо к неметаллам. Металлы расположены по левую сторону от диагонали бор (B) – полоний (Po). Если взглянуть на таблицу, то можно сразу понять, что количество металлов в несколько раз превышает число неметаллов.

Читать также: Таймер 555 принцип работы

Характерные кристаллические решетки

Виды кристаллических решеток металлов

Металлические кристаллы подразделяются на 3 основных типа:

  1. Объемно-центрированную
    кубическую решетку, в которой, помимо размещения атомов в четырех вершинах куба, один из них размещается в центре объемной фигуры. Такой тип организации твердого вещества характерен для ряда металлов, включая K, Na и Li, вольфрам, хром, ниобий и др.
  2. Гранецентрированная
    кубическая решетка характеризуется расположением атомов в центре граней. Всего в ячейке задействовано 10 атомов, 4 в вершинах и 6 на гранях. Такая решетка встречается у меди, драгметаллов (серебра и золота) и металлов платиновой группы: Pd, Pt.
  3. Гексагональное строение
    решетки предполагает размещение атомов в углах и внутри 6-гранной призмы. Ячейка состоит из 15 атомов и свойственна магнию, кальцию, осмию, бериллию и ряду других металлических элементов.
Читайте так же:
Оборудование для полировки бетона

Общими свойствами всех решеток являются высокая симметрия и плотная упаковка составляющих их атомов. Некоторые элементы периодической таблицы формируют уникальную структуру, например, элементарная ячейка In имеет тетрагональное строение.

Для сплавов, являющихся химическими соединениями, также характерно образование кристаллов перечисленных видов, при этом атомы каждого металла занимают определенное место в структуре.

Например, в сплаве никеля и алюминия атомы Al размещаются по углам, а атом Ni — в центре ОЦК ячейки. Свойства сплава и его структура влияют на класс прочности изделия, изготовленного из этого материала.

Объемно центрированная кристаллическая решетка металла Объемно центрированная кристаллическая решетка металла Объемно центрированная кристаллическая решетка металла

Различные вещества

  • Алмаз. Минерал обладает высокой ценностью и после огранки используется в ювелирных украшениях. Так в чём же заключается секрет популярности этого камня? Атомы углерода составляют основу всей решётки. Между атомами минерала существует прочная ковалентная связь. Для кристаллической решётки алмаза характерно плотное содержание атомов в виде куба. Другими словами, узлами считаются атомы углерода, а своеобразными гранями куба являются прочные ковалентные связи. Такой минерал считается самым прочным на планете, и неизвестно, сколько таких своеобразных кубов включает в себя цельный алмаз.
  • Графит. Углерод также может быть и в другой кристаллической модификации. Атомная решётка данного элемента включает в себя только атомы углерода, ей присуща слоистая структура. В графите каждый атом связан тремя атомами углерода. Из-за этого он обладает металлическим блеском, высокой теплопроводностью.
  • Кристаллическая решётка йода имеет молекулярный тип. Атомы молекул соединяются ковалентными связями, но молекулы химического элемента имеют слабые силы притяжения. Это характеризует йод тем, что он имеет малую твёрдость, низкую температуру плавления.
  • Натрий. Представитель металлической кристаллической решётки. Между катионами, расположенными в узлах решётки, двигаются электроны. Они, присоединяясь к катионам, нейтрализуют их заряд, в свою очередь, нейтральные атомы отпускают часть электронов, преобразуясь в катионы. Такой тип кристаллической решётки наделяет металл пластичностью, электро- и теплопроводностью.
  • Сухой лёд. Или оксид углерода в затвердевшем виде. Имеет молекулярную кристаллическую решётку в форме куба. Молекулы удерживаются между собой слабыми связями. иффузия читайте в нашей статье.

Это интересно: как определить валентность по таблице Менделеева?

Физические свойства металлической связи

Физические характеристики металлических кристаллов обусловлены способностью обобществленных электронов свободно перемещаться внутри кристалла.

Ковка металла

Характеристики, отличающие подобные вещества:

    хорошая электропроводность

, благодаря наличию условно свободного электронного облака;

— большинство металлов можно гнуть и ковать.

Высокий уровень организации вещества обусловливает металлический блеск. Следует иметь в виду, что повышение прочности при пластической деформации и легировании приводит к образованию частично ковалентной связи.

При деформации могут возникать области повышенной прочности и низкими пластическими свойствами, похожие на вещества с ковалентной связью (например, алмаз).

Металлический тип

В своём строении напоминает молекулярную, но имеет всё же более прочные связи. Отличие данного типа в том, что на её узлах находятся положительно заряженные катионы. Электроны, которые находятся в межузловом пространстве, участвуют в образовании электрического поля. Они ещё носят название электрического газа.
Простые металлы и сплавы, характеризуются металлическим типом решётки. Для них характерно наличие металлического блеска, пластичность, тепло- и электропроводность. Они могут плавиться при различных температурах.

ВидыВеществаСвойства
АтомнаяАлмаз, графит, кремний, борТвёрдые, тугоплавкие, не растворяются в воде
МолекулярнаяЙод, сера, белый фосфор, органические веществаНетвёрдые, легко плавятся, летучие
ИоннаяСоли, оксиды и гидроксиды тяжёлых металловТвёрдые, хрупкие, легкоплавкие, электропроводны
МеталлическаяМеталлы и сплавыБлестящие, ковкие, тепло- и электропроводны.

Положение неметаллов и металлов: таблица Менделеева

По внешним признакам и физическим свойствам не всегда можно выяснить, к какой группе относится химический элемент. Свойства металлов и неметаллов можно определить по расположению в периодической таблице.

Читайте так же:
Сборка ящика учета электроэнергии 380в

Для этого нужно зрительно провести диагональ от бора до астата, от 5 до 85 номера. В правом верхнем углу будут преимущественно находиться неметаллы. Их в таблице меньшинство, всего 22 элемента. Металлы находятся в правой части периодической таблицы наверху — в основном в I, II и III группах.

положение металлов и неметаллов в таблице Менделеева

Металлическая связь

Изучая атомно-кристаллическое строение металлов, следует сказать несколько слов об особенностях химической связи между рассматриваемыми элементами. Поскольку электроотрицательность металлов низкая, то, объединяясь в кристаллическую решетку, каждый атом отдает один или несколько валентных электронов. Эти электроны слабо связаны с ядром, поэтому они легко от него отрываются уже при комнатных температурах.

Совокупность валентных электронов, которые свободно движутся в пространстве между ионными остовами в кристаллической решетке металлов, называется электронным газом. Благодаря ему кусок металла легко проводит тепло и электричество.

Электрическое поле положительно заряженных ионных остовов компенсируется отрицательным полем «размазанного» по объему металла электронного газа. Такая связь называется металлической. Она кардинальным образом отличается от других типов химической связи. Например, в ковалентной атомы не отдают электроны в межатомное пространство, они становятся общими только для двух атомов. Наоборот, в ионной связи один атом полностью лишает второго валентных электронов, присоединяя их к себе, и приобретая отрицательный заряд.

Кристаллическая решетка железа при комнатной температуре

Рис. 3. Кристаллическая решетка железа

Основными строительными блоками твердых веществ, таких как соль или лед, являются молекулы. Каждая молекула состоит из двух или более атомов, например, натрий+хлор (NaCl), как у поваренной соли и водород+кислород, как у льда (H2O). В металлах, однако, такими строительными блоками являются отдельные атомы металла: атомы железа (Fe) в железном прутке или меди (Cu) в медной проволоке. Каждое зерно на рисунке 1 есть то, что называется кристаллом. В кристалле, который состоит из атомов, все атомы однородно расположены по слоям. Как показано на рисунке 2, если провести линии, которые соединяют центры атомов, то трехмерные ряды маленьких кубиков заполнят все пространство, занимаемое отдельным зерном. Эту трехмерную структуру и называют кристаллической решеткой атомов.

В железе при комнатной температуре эти кубики имеют атомы в каждой из восьми углов и один атом прямо в центре куба. Эту кристаллическую решетку называют объемноцентрированной, а геометрическое расположение атомов называют объемноцентрированной решеткой. Железо с объемноцентрированной кристаллической решеткой называют ферритом

. Другое название для феррита – альфа-железо или α-железо.

Порошковая металлургия

Технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и прессование. В порошковой же металлургии изделия производят из порошков с размерами частиц от 0,1 мкм до 0,5 мм путем формования холодным прессованием и последующей высокотемпературной обработки (спекания). Порошковая металлургия экономична в отношении материалов и, как и традиционные методы металлообработки, позволяет получать детали с нужными механическими, электрическими и магнитными свойствами. Продукция порошковой металлургии используется в различных отраслях промышленности, в том числе в авиакосмической, электронной и на транспорте.

ТЕХНОЛОГИЯ.

технологический процесс изготовления изделий из металлических порошков состоит из следующих операций: подготовка смеси для формования, формование заготовок или изделий и их спекание. Формование заготовок или изделий осуществляется путем холодного прессования под большим давлением (30–1000 МПа) в металлических формах. Спекание изделий из однородных металлических порошков производится при температуре, составляющей 70–90% температуры плавления металла. В смесях максимальная когезия достигается вблизи температуры плавления основного компонента, а в цементированных карбидах – вблизи температуры плавления связующего. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере (водород, оксид углерода), в атмосфере нейтральных газов (азот, аргон) или в вакууме.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector