Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Судовые двигатели внутреннего сгорания (СДВС)

Судовые двигатели внутреннего сгорания (СДВС)

ИА Neftegaz.RU. Первые судовые двигатели внутреннего сгорания (ДВС) появились в начале 20-го века. Датское судно Зеландия, построенное в 1912 г, имело дизельную установку с 2-мя дизелями мощностью по 147,2 кВт.

В настоящее время основную часть устанавливаемых на судах главных энергетических установок составляют ДВС.

Паротурбинные установки имеют только суда с мощностью двигателей от 14700 до 22 100 кВт.

Дизельная энергетическая установка состоит из 1-го или нескольких основных двигателей, а также из обслуживающих их механизмов.

В зависимости от способа осуществления рабочего цикла ДВС разделяют на 4-тактные и 2-тактные.

Дополнительное увеличение мощности достигается с помощью наддува.

По частоте вращения ДВС разделяются на:

  • малооборотные дизели с частотой вращения 100-150 об/мин, которые непосредственно приводят в движение судовой движитель;
  • среднеоборотные — 300-600 об/мин, которые приводят в движение судовой движитель через редуктор.

В 60-х гг одновременно с появлением винтов регулируемого шага начали в качестве главного двигателя применять нереверсивные ДВС вначале на малых судах, траулерах и буксирах, а затем и на больших торговых судах. За счет этого конструкция двигателей упростилась.

Машинное отделение (дизель со вспомогательными механизмами).

Судовая энергетическая установка с ДВС изображена на рисунке.

Кроме главного двигателя предусмотрены еще 2 вспомогательных, которые приводят во вращение генераторы.

Для обслуживания главного и вспомогательных двигателей используются вспомогательные механизмы и системы, а также система трубопроводов и клапанов.

Топливная система предназначена для подачи топлива из цистерн к двигателю.

При этом для уменьшения вязкости топливо подогревается и освобождается в сепараторах и фильтрах от жидких и твердых примесей.

Система смазки служит для прокачивания смазочного масла через двигатель с целью уменьшения трения между трущимися поверхностями, а также для отвода части полученного от двигателя тепла и очистки масла.

Система охлаждения предусмотрена для отвода от двигателя тепла, которое проникает в основном через стенки цилиндра и возникает во время сжигания топлива, а также для охлаждения циркулирующего смазочного масла.

Эта система состоит из насосов для пресной и морской воды и охладителей воды и масла.

Пусковая установка, включающая в себя компрессоры, резервуары сжатого воздуха, а также трубопроводы и клапаны, служит для пуска главного и вспомогательных двигателей.

Наряду с указанными выше вспомогательными системами главного и вспомогательных двигателей в машинном отделении находятся и другие судовые механизмы общего назначения.

Принцип действия 4-тактного ДВС показан на рисунке ниже.

В 4-тактном двигателе рабочий цикл осуществляется за 2 поворота коленчатого вала, т. е. за 4 хода поршня.

Механическая работа совершается только за время 1-го такта, 3 остальных служат для подготовки.

При 1-м такте поршень движется в направлении коленчатого вала.

Под воздействием возникающего при этом разрежения воздух через открытый всасывающий клапан устремляется в цилиндр.

В дизеле без наддува давление всасываемого воздуха равно атмосферному, в дизеле с наддувом к цилиндру подводится уже предварительно сжатый воздух. Во время 2-го такта при закрытых всасывающих клапанах предварительно поступивший воздух перед поршнем подвергается сжатию, за счет чего повышаются температура и давление.

Топливоподкачивающий насос, привод которого согласован с движением соответствующего поршня, повышает давление топлива.

При достижении давления 19,62-39,24 МПа топливо через форсунку впрыскивается в цилиндр, в котором у дизелей без наддува давление сжатого воздуха составляет 2,94-3,43 МПа и температура 550-600°С, а у дизелей с наддувом соответственно 3,92-4,91 МПа и 600-700°С.

Принцип действия 4-тактного дизеля.

Топливо впрыскивается незадолго до того момента, когда поршень достигнет верхнего положения.

Впрыснутое и тщательно распыленное топливо в сжатом воздухе нагревается, испаряется и вместе с воздухом образует горячую самовоспламеняющуюся смесь. 3-й такт является рабочим.

Во время процесса сгорания топлива образуются горячие газы, которые вызывают увеличение давления над поршнем в дизелях без наддува от 4,41 до 5,4 МПа, а в дизелях с наддувом — от 5,89 до 7,85 МПа.

Под давлением силы, возникающей за счет давления газов, поршень движется вниз, газы расширяются и производят при этом механическую работу.

Во время 4-го такта открывается выпускной клапан и отработавшие газы выходят наружу.

4-тактные судовые ДВС изготовляются как многоцилиндровые двигатели. Они устроены так, что рабочие такты равномерно распределяются по отдельным цилиндрам.

Принцип действия 2-тактного дизеля.

В рабочий цикл 2-тактного дизеля входят 2 такта, или 1 оборот коленчатого вала.

1-й такт, называемый сжатием, начинается, когда поршень находится в нижнем положении.

Впускные окна в боковых стенках цилиндра открыты. Через эти окна проходит предварительно сжатый продувочный воздух, давление которого должно быть выше давления находящихся в цилиндре расширившихся газов. Одновременно продувочный воздух через открытый выпускной клапан вытесняет отработавшие газы из цилиндра и наполняет цилиндр новой дозой. Когда впускные окна закрываются поршнем, к цилиндру воздух не подводится. Так как одновременно закрывается и выпускной клапан, воздух в цилиндре сжимается. Этот процесс не показан на рисунке.

Читайте так же:
Что лучше электробритва или бритвенный станок

Впрыскивание топлива и воспламенение происходит точно так же, как и в 4-тактном ДВС.

Во время 2-го такта — рабочего (или расширения) — расширяющиеся газы совершают механическую работу.

В конце этого такта впускные окна открываются поршнем и процесс продувки цилиндра начинается снова.

Отработавшие газы могут выйти из цилиндра через внешний клапан, либо через управляемые поршнем выпускные окна.

Под наддувом дизельного двигателя понимают подачу к цилиндрам большего количества воздуха, чем требуется для заполнения всего цилиндра при такте всасывания.

Цель наддува заключается в том, чтобы способствовать сжиганию наибольшего количества топлива за 1 рабочий цикл.

Это означает повышение мощности двигателя без увеличения его размеров (диаметра, хода и числа цилиндров), а также частоты вращения.

Наддув можно осуществлять за счет предварительного сжатия воздуха перед цилиндром.

Во всех выпускаемых 4-тактных судовых ДВС предварительное сжатие воздуха происходит с помощью центробежного компрессора, который приводится в действие газовой турбиной, работающей на отработавших газах дизеля.

Принцип действия газотурбинного нагнетателя.
1 — турбина, работающая на отработавших газах; 2 — отработавшие газы; 3 — свежий воздух; 4 — компрессор; 5 — коленчатый вал; 6 — цилиндр; 7 — поршень.

Принцип действия компрессора показан на рисунке выше. Поступивший из компрессора воздух проходит через фильтры. После открытия впускного клапана сжатый воздух подается через воздушный коллектор к соответствующим цилиндрам.

В двухтактных дизелях предварительное сжатие воздуха происходит в центробежных компрессорах, в пространстве под поршнем, а также в поршневых компрессорах, приводимых в действие двигателем. Давление наддувочного воздуха достигает 0,14-0,25 МПа. На рисунке ниже показан в разрезе главный малооборотный дизель с наддувом.

Принцип действия малооборотного двухтактного дизеля: а — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра; b — одновременно происходит сжатие и всасывание; с — рабочий такт и предварительное сжатие; d — предварительно сжатый воздух вытесняет отработавшие газы из цилиндра двигателя без выходного клапана.

2-тактные дизели изготовляют в виде многоцилиндровых рядных двигателей с 10-12 цилиндрами.

Диаметр цилиндров больших 2-тактных дизелей достигает 1000 мм, ход — 1500-2000 мм.

Мощность цилиндра при общей мощности двигателя более 29 440 кВт составляет от 2900 до 3700 кВт.

В связи с этим ДВС можно использовать в качестве главных двигателей и на крупных судах.

2-тактные дизели имеют очень большие размеры и массу.

Их удельная масса достигает 40-55 кг/кВт. При мощности, например 14 720 кВт, масса составляет 600-800 т.

4-тактный дизель (рядный двигатель).
1 — наддувочный агрегат; 2 — охладитель наддувочного воздуха; 3 — трубопровод отработавших газов; 4 — трубопровод наддувочного воздуха; 5 — трубопровод охлаждающей воды; 6 — масляный трубопровод; 7 — топливный трубопровод; в — распределительный вал; 9 — приводное колесо; 10 — промежуточные шестерни; 11 — приводное колесо коленчатого вала; 12 — коленчатый вал; 13 — шатун; 14 — поршень; 15 — цилиндровая гильза; 16 — камера охлаждающей воды; 17 — крышка цилиндра; 18 — выпускной клапан; 19 — впускной клапан; 20 — топливный клапан; 21 — штанга; 22 — топливный насос; 23 — маслораэбрызгивающее кольцо; 24 — масляная ванна картера; 25 — станина двигателя; 26 — блок цилиндров.

Четырехтактные дизели применяют на судах либо в составе дизель-генераторных установок, либо в качестве главного двигателя в многовальных энергетических установках (по одному дизелю на один движитель) и, соответственно, в многодвигательных установках для одного движителя. Применение среднеоборотных дизелей в качестве главного двигателя дает следующие преимущества:

— увеличение надежности (при выходе из строя одного двигателя остальные продолжают работать);

— уменьшение габаритов и собственной массы деталей (например, клапанов, поршней, кривошипных механизмов, подшипников и т. д.);

— уменьшение удельной массы, которая в зависимости от мощности составляет от 14 до 35 кг/кВт (для мощностей около 2200 кВт).

Среднеоборотные дизели используются также в дизель-электрических энергетических установках в качестве главного двигателя.

4-тактный дизель V-образной конструкции.
1 — поршень; 2 — цилиндровая гильза; 3 — коленчатый вал.

Устройство и теория двигателей внутреннего сгорания

Устройство и теория двигателей внутреннего сгорания

В данной статье разберем устройство и теорию двигателей внутреннего сгорания, рассмотрим из чего они состоят и как работают. Вы найдете основные понятия и термины, описывается конструкция и работа двигателя.

  • по способу приготовления горючей смеси — с внешним смесеобразованием (карбюраторные, инжекторные, газовые двигатели) и с внутренним смесеобразованием (дизели),
  • по роду применяемого топлива — бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе),
  • по способу охлаждения — с жидкостным и воздушным охлаждением,
  • расположению цилиндров — рядные и V-образные,
  • по способу воспламенения горючей (рабочей) смеси—с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).

Дизельные — это двигатели, работающие на дизельном топливе с воспламенением от сжатия. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.

Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом. По принципу работы такие двигатели практически не отличаются от бензиновых и мы не будем их рассматривать. Однако, если вы переоборудовали свой автомобиль «на газ», то советую изучить статью Газобаллонное оборудование. Схема ГБО.

  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания (топливная),
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.
Устройство двигателя внутреннего сгорания

схема одноцилиндрового двигателя, как он работает

Для начала, возьмем простейший одноцилиндровый двигатель и разберемся с его устройством и работой. Рассмотрим протекающие в нем процессы, и выясним откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.

Одна из основных деталей двигателя — цилиндр 6, в котором находится поршень 7, соединенный через шатун 9 с коленчатым валом 12. При перемещении поршня в цилиндре вверх и вниз его прямолинейное движение шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик 10, который необходим для равномерности вращения вала при работе двигателя. Сверху цилиндр плотно закрыт головкой, в которой находятся впускной 5 и выпускной клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала 14 через передаточные детали 15. Распределительный вал приводится во вращение шестернями 13 от коленчатого вала. Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения.

Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Понятия и термины при работе двигателя

Верхняя мертвая точка (ВМТ) — это крайнее верхнее положение поршня.

Нижняя мертвая точка (НМТ) — это крайнее нижнее положение поршня.

Ход поршня — это расстояние, пройденное от одной мертвой точки до другой. За один ход поршня коленчатый вал повернется на полоборота.

Камера сгорания (сжатия) — это пространство между головкой цилиндра и поршнем, расположенным в ВМТ.

Рабочий объем цилиндра — это пространство, освобождаемое поршнем при перемещение его из ВМТ в НМТ.

Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров двигателя. При малых объемах (до 1 л.) его выражают в кубических сантиметрах, а при больших — в литрах.

Полный объем цилиндра — сумма объема камеры сгорания и рабочего объема.

Степень сжатия — это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. В бензиновых двигателях степень сжатия бывает от 8 до 12, а в дизелях — от 14 до 18. Степень сжатия не стоит путать с компрессией, т.к. это два разных понятия.

Такт — процесс (часть цикла), который происходит в цилиндре за один ход поршня. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называют четырехтактным.

Как работает двигатель внутреннего сгорания

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).

При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре — в верхней (ВМТ) и нижней части (НМТ). В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения.

Рабочий цикл четырехтактного двигателя: а) впуск, б) сжатие, в) рабочий ход, г) выпуск.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом и состоит из тактов впуска, сжатия, рабочего хода и выпуска. Подробнее в статье Принцип работы ДВС. Рабочие циклы двигателя.

Устройство автомобилей

Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания (ДВС) является основным силовым агрегатом, и его дальнейшее совершенствование имеет большие перспективы.

Автомобильный поршневой двигатель внутреннего сгорания представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в цилиндрах топлива в механическую работу.

Основу механической части любого поршневого двигателя составляют кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ) .
Кроме того, тепловые двигателя оснащены специальными системами, каждая из которых выполняет определенные функции по обеспечению бесперебойной работы двигателя.
К таким системам относятся:

  • система питания;
  • система зажигания (в двигателях с принудительным воспламенением рабочей смеси) ;
  • система пуска;
  • система охлаждения;
  • система смазки (смазочная система) .

Каждая из перечисленных систем состоит из отдельных механизмов, узлов и устройств, а также включает специальные коммуникации (трубопроводы или электропровода) .

механизмы и системы автомобильных двигателей

Кривошипно-шатунный механизм двигателя

Кривошипно-шатунный механизм (КШМ) двигателя преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Очевидно, что передавать вращательное движение между отдельными механизмами, агрегатами и узлами автомобиля значительно проще, чем циклическое поступательное движение, которое описывает поршень, перемещаясь в цилиндре.
Кроме того, конечное звено трансмиссии автомобиля – его колеса – перемещают автомобиль посредством вращения, поэтому назначение КШМ вполне понятно.
Можно допустить, что для транспортного средства, перемещающегося по дороге с помощью, например, шагающих устройств или циклических движителей, преобразование поступательного движения во вращательное не является обязательным. Но автомобиль — колесное транспортное средство (по определению) , что обуславливает присутствие кривошипно-шатунного механизма в конструкции автомобильного двигателя.

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) обеспечивает поступление в цилиндры двигателя заряда рабочей смеси (в двигателях с внешним смесеобразованием) или воздуха (в двигателях с внутренним смесеобразованием) , а также для удаления (выпуска) отработавших газов и продуктов сгорания топлива.
При этом газораспределительный механизм должен обеспечивать обмен газов в цилиндрах в строго определенное время, соответственно тактам работы двигателя, и в необходимом количестве, обеспечивающем качественный состав рабочей смеси для полного сгорания топлива и получения максимального эффекта от выделяемой при этом теплоты.

Система питания двигателя

В цилиндрах автомобильного двигателя сгорает смесь воздуха (точнее – кислорода, содержащегося в воздухе) и горючего, в качестве которого чаще всего используются дизельное топливо (солярка) , газовое топливо, либо бензин. Система питания предназначена для подачи топлива и воздуха в цилиндры двигателя в нужном количестве и определенных пропорциях.
Различают два основных типа систем питания двигателей: системы с внешним смесеобразованием , в которых воздух и топливо смешиваются вне цилиндра двигателя, а также с внутренним смесеобразованием , в которых топливо и воздух подаются в цилиндры раздельно и смешиваются внутри цилиндра.

К первому типу можно отнести системы питания, оснащенные специальным смесительным устройством – карбюратором, обеспечивающим распыл топлива в воздушной струе и перемешивание компонентов смеси, которая затем поступает в цилиндры двигателя. К двигателям с внешним смесеобразованием относятся некоторые типы двигателей с впрыском бензина (инжекторные двигатели с центральным или распределенным впрыском во впускной коллектор) , а также многие типы газовых двигателей.

Ко второму типу относятся дизельные и инжекторные системы питания с непосредственным впрыском, обеспечивающие заполнение цилиндров двигателя атмосферным воздухом с последующим впрыском топлива с помощью специальных устройств непосредственно в камеру сгорания, где и происходит смешивание топлива с кислородом воздуха. При этом воспламенение смеси в дизельных двигателях осуществляется посредством сильного сжатия самовоспламенением, а в инжекторных — принудительно, от искры.
Некоторые типы газовых двигателей тоже используют внутреннее смесеобразование.

Система зажигания

Назначение этой системы – принудительное воспламенение рабочей смеси в бензиновых и газовых двигателях. Дизельные двигатели не нуждаются в системе зажигания – воспламенение рабочей смеси в них осуществляется благодаря высокой степени сжатия воздуха в цилиндрах, который в буквальном смысле становится раскаленным.

В современных двигателях чаще всего используется воспламенение смеси искровым электрическим разрядом, однако, это – не единственное возможное техническое решение – так, например, в конструкциях первых тепловых двигателей внутреннего сгорания применялись запальные трубки, воспламеняющие рабочую смесь горящим веществом.
Возможны и другие способы поджигания смеси, однако, наиболее удобной для практического применения в настоящее время считается электроискровая система зажигания.

Система пуска двигателя

Система пуска обеспечивает вращение коленчатого вала двигателя при его запуске. Это необходимо для начала функционирования механизмов и систем, обеспечивающих работу двигателя – кривошипно-шатунного и газораспределительного механизмов, систем питания и зажигания.

Для запуска современных автомобильных двигателей чаще всего применяются системы пуска с помощью привода от специального электрического двигателя – стартера. Этот способ запуска двигателя внутреннего сгорания является удобным, надежным и легко осуществимым. Однако, существуют и другие технические решения этой задачи, например, посредством пневматического мотора, работающего на запасе сжатого воздуха в ресиверах (специальных баллонах) автомобиля или полученного от небольшого компрессора с электроприводом.

Простейшая система пуска двигателя – заводная рукоятка, с помощью которой водитель (или его помощник) проворачивают коленчатый вал, обеспечивая тем самым начало работы механизмов и систем двигателя. В недалеком прошлом заводная рукоятка являлась непременной принадлежностью, которую водитель брал с собой в путь. Однако, при несомненной простоте этого «устройства», комфорта и удобства использования автомобиля такой метод пуска двигателя не добавляет, поэтому в кабине современного автомобиля заводную рукоятку (или, как ее называли в шутку водители – «кривой стартер») вы найдете вряд ли.
Кроме того, с помощью ручного пуска сложно запустить дизель – не позволяет высокая степень сжатия и вероятность травмирования водителя при запуске.

Система охлаждения двигателя

Как и следует из названия, эта система предназначена для поддержания баланса температуры работающего двигателя. Сжигание рабочей смеси в цилиндрах сопровождается сильным нагревом узлов и деталей двигателя, которые нуждаются в постоянном охлаждении, чтобы избежать перебоев в работе и поломок, обусловленных, например, температурными расширениями металла или даже прогоранием деталей и элементов конструкций.
Наиболее распространены два типа систем охлаждения, применяемые в автомобильных двигателях – жидкостная и воздушная; о принципах их действия можно догадаться по названию.

воздушная система охлаждения двигателя

Из теплотехники известно, что для эффективного охлаждения двигателя необходим теплообменник, имеющий большую площадь поверхности для передачи тепла. В двигателях с жидкостным охлаждением в качестве такого теплообменника используется радиатор, состоящий из большого количества трубок, сквозь которые перемещается нагретая жидкость, отдавая тепло стенкам. Суммарная площадь поверхности трубок в радиаторе очень большая, а эффективность отвода тепла повышается специальным вентилятором, установленным рядом с радиатором.

В двигателях с воздушным охлаждением для этих целей применяют оребрение поверхностей наиболее нагреваемых деталей (цилиндров и их головок) , в результате чего площадь теплообмена значительно увеличивается.
Воздушные системы охлаждения на современных быстроходных двигателях применяются редко из-за низкой эффективности (по сравнению с жидкостной системой охлаждения) . Чаще всего охлаждение воздухом используют в низкооборотистых, мотоциклетных или небольших двигателях внутреннего сгорания, не предназначенных для выполнения тяжелой механической работы, а также для работы в условиях хорошего обдува (самолетные ДВС) .

Система смазки двигателя

Система смазки предназначена для уменьшения потерь механической энергии на преодоление сил трения, возникающих между сопрягаемыми подвижными деталями в кривошипно-шатунном и газораспределительном механизмах.
Кроме того, смазывание деталей способствует уменьшению их износа и частичному охлаждению.

Чаще всего в конструкции автомобильных двигателей применяется смазка деталей под давлением, когда из отдельного резервуара масло подается по трубопроводам и каналам с помощью насоса к деталям, нуждающимся в смазке.
Некоторые детали механизмов смазываются благодаря разбрызгиванию масла или посредством периодического окунания в масляную ванну.

Представленный ниже видеоролик поможет лучше понять общее устройство поршневого двигателя внутреннего сгорания.

Принцип работы ДВС: Виды двигателей, Устройство двигателя, Рабочий цикл ДВС

Двигатель внутреннего сгорания — один из ключевых элементов конструкции транспортного средства. Он представляет собой внушительный агрегат, принцип работы двигателя внутреннего сгорания основывается на изменении энергии для действия определенных частей агрегата.

Двигатель внутреннего сгорания

Виды моторов

Существует три вида двигателей, встречаемых в транспортных средствах:

  • поршневой
  • роторно-поршневой
  • газотурбинный

Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.

Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.

Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.

Устройство мотора

Прежде, чем разбираться с принципом работы, стоит сначала понять, как устроен силовой агрегат и что входит в его конструкцию. Так как поршневые считаются наиболее востребованными, рассматриваться будет именно такое устройство. К основным деталям следует отнести:

  1. Цилиндры, образующие отдельный блок
  2. Головку блока с ГРМ
  3. Кривошипно-шатунный механизм

Последний приводит в движение коленчатый вал, заставляя его вращаться. Механизм передает валу энергию, получаемую от двигающегося поршня, который в несколько тактов меняет свое положение. Движение поршня регулирует энергия тепла, возникающая в результате горения топлива.

Устройство двигателя внутреннего сгорания

Невозможно представить и организовать движение силового агрегата без установленных в нем механизмов. Так, например, ГРМ меняет положение клапанов, за счет чего удается обеспечить регулярную подачу топлива, впуская и выпуская определенные составы. Система поступления новых газов и выхода отработавших налажена.

Работа двигателя возможна только при одновременной работе всех включенных в конструкцию деталей, механизмов и других элементов. Также вместе с ними должны бесперебойно действовать следующие системы:

  • зажигания, основная роль которой заключается в воспламенении топлива,
  • содержащего также воздух;
  • впускная, регулирующая своевременную подачу воздуха внутрь цилиндра;
  • топливная, благодаря которой удается обеспечить подачу топлива для сгорания и дальнейшей работы транспорта;
  • система смазки, снижающая износ трущихся деталей конструкции во время их работы;
  • выхлопная, посредством действия которой удается удалить отработавшие газы, в результате чего снижается их токсичность.

Также работает система охлаждения, регулирующая температуру внутри агрегата и следящая за тем, чтобы она была оптимальной.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Четыре такта работы двигателя внутреннего сгорания

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector