Плазменная сварка
Плазменная сварка
Что такое плазма? Это ионизированный газ (полностью или частично), в котором присутствуют как нейтральные атомы, так и заряженные электричеством. Если говорить именно о таком состоянии плазмы, то и электрическую сварочную дугу можно считать таковой. Но на практике дугу плазмой не называют, потому что ее температурный предел – это 5000-7000С, у плазмы для сварки металлов он доходит до 30000С. Поэтому плазменная резка – это высокая температура с большим запасом энергии.
Чтобы из обычной сварочной дуги сделать плазму, необходимо ее сжать и подавать на дугу газ, который под действием температуры и станет ионизироваться. Сжатие производится за счет того, что дугу загоняют в специальный прибор с узким проходом, стенки прибора при этом охлаждаются. Кстати, такой прибор называется плазмотроном. При сжатии дуги происходит ее сужение, за счет чего повышается плотность и мощность, то есть, увеличивается количество энергии на единицу свариваемой площади.
В процессе сжатия дуги в плазмотрон подается газ, из которого затем и образуется сама плазма. При нагреве газ увеличивается почти в 100 раз. Узкое сопло плазмотрона и большой объем газа создают условия, при которых ионизированный газ вылетает наружу с огромной скоростью. То есть, получается, что к тепловой энергии электрической дуги прибавляется и кинетическая энергия движущегося ионизированного газа. Отсюда и высокая мощность плазменной энергии.
Итак, сущность плазменной энергии теперь понятна. Она отличается от дуговой:
- значительной температурой;
- уменьшенным в несколько раз диаметром сварочной дуги;
- форма плазменной дуги цилиндрическая, у электрической дуги она коническая;
- давление при сварке на металл в 8-10 раз выше;
- при этом можно такую дугу поддерживать на не очень больших значениях тока – 0,2-30 ампер.
Учитывая это, можно сказать, что плазменная дуга более универсальное средство для нагрева металлических заготовок. С ее помощью производится более глубокий прогрев металла, но при этом область нагрева сильно уменьшается. Все дело в цилиндрической форме дуги, которая имеет одинаковые размеры и мощность на протяжении всей ее длины, что позволяет варить заготовки без учета длины самой дуги. А это очень важно, когда производится плазменная сварка в труднодоступных местах.
Технология плазменной сварки
Плазменную сварку металла можно проводить двумя технологическими схемами.
- Дуга располагается между заготовкой и неплавящимся электродом.
- Дуга находится внутри плазмотрона в сопле и выдувается оттуда струей плазмы.
Чаще всего для сварки металлов используется схема под номером один. Что касается газа, то обычно для этого используется аргон. В качестве электрода – стержень из вольфрама, реже меди.
Существует несколько параметров, которые делят плазменную сварку на группы. К примеру, по мощности.
- Низкая – 0,2-25 ампер.
- Средняя – 50-150 ампер.
- Высокая – больше 150 ампер.
Первая группа – самая распространенная. Это энергоемкая технология, в которой можно использовать электроды диаметром 1-2 мм. При этом сварочная дуга будет гореть даже при очень незначительных показателях силы тока – 0,2 ампера.
Как работает аппарат плазменной сварки при таких режимах?
- С помощью источника питания (малоамперного) зажигается дежурная дуга, которая горит между неплавящимся электродом и соплом плазмотрона, сопло изготавливается из меди. При этом данная деталь охлаждается водой, чтобы не расплавиться.
- Как только плазмотрон подносится к металлической заготовке, зажигается основная сварочная дуга.
- В сопло плазмотрона подается газ, из которого будет образована плазма.
- Внутри плазмотрона есть два сопла: медный – он же внутренний, керамический – он же внешний. Между ними есть пространство, по которому движется защитный газ. С его помощью закрывается зона сварки от негативного воздействия кислорода и влажности.
Необходимо отметить, что напрямую электрод от источника электрической энергии не зажигается. Между ними устанавливается специальный прибор, который называется осциллятором. Он стабилизирует сварочную дугу и при этом дает возможность зажечь ее без соприкосновения электрода с металлом.
Плазменная сварка металлических заготовок со средней величиной тока очень похожа на процесс соединения по технологии аргонодуговой. Но высокая мощность, плюс небольшая площадь нагрева делает ее более эффективной. Если говорить о том, в каком диапазоне находится этот вид плазменной сварки, то можно поставить ее между обычной электродуговой и лазерной.
Что касается эффективности, то необходимо отметить:
- глубокий провар при небольшой ширине сварочного шва;
- большое давление на сварочную ванну, что обеспечивает уменьшение слоя расплавленного металла под дугой, а это увеличивает теплоотдачу вглубь заготовки;
- процесс сваривания может проводиться без присадочной проволоки или с таковой.
Плазменная сварка при больших значениях тока – это огромное воздействие на сам металл. К примеру, данный режим сварки при плазме производится с использованием тока величиною 150 А, точно такие же показатели даст обычная электродуговая сварка при потреблении тока не меньше 300 А. При этом плазма насквозь прожигает соединяемые металлические заготовки, после чего производится проплавление и сваривание на всю глубину. То есть, сначала происходит разрезание, далее заварка.
При таком прожоге нижний слой металла не выпадает из шва. Он удерживается в зоне силами поверхностного натяжения. Вот почему очень важно правильно соблюдать режим сваривания. Потому что, увеличивая ток, можно прожечь заготовки, не удержав нижний расплавленный слой металла.
Обычно высокими токами варят низкоуглеродистые или легированные стальные сплавы, титан, алюминий и медь. Важно правильно выставить режим сварки, и, конечно, обеспечить режим охлаждения сопла. Небольшое нарушение может привести к значительному снижению качества конечного результата.
Особенности сварочных аппаратов
Плазменный сварочный аппарат, в независимости от его стоимости, будет работать долго и эффективно, если позаботиться об охлаждении сопла. Самыми распространенными сегодня являются аппараты, охлаждение в которых производится водой. Есть агрегаты и со спиртовым охлаждением.
Здесь необходимо правильно настроить подачу воды в сопло, потому что чрезмерное ее поступление создаст большое количество пара, а это причина увеличения разбрызгивания металла. Новичкам рекомендуется для этого выбирать сварочный аппарат, у которых отверстие сопла больше, чем обычно. Это снизит выделение пара, плюс увеличит захват плазменной дугой участков двух заготовок.
Что касается используемых материалов в процессе плазменной сварки, то сегодня аргон часто заменяется техническими газами: водородом, кислородом, азотом и даже сжатым воздухом, что снижает финансовые затраты. Вместо вольфрама для электродов используют стержни из циркония или гафния, что позволяет сегодня вести сварку в окислительных средах.
Чтобы обеспечить качество сварочного шва, необходимо сохранить мощность свариваемой дуги и уменьшить при этом ее давление на расплавленный металл, чтобы последний не выдувался из зоны сварки. Это напрямую влияет на формирование шва. Поэтому очень важно найти рациональное соотношение многих параметров сварочного режима: расход плазмы, силы тока, длина электрической дуги. К примеру, чтобы сварить две заготовки из алюминия или нержавейки толщиною 10 мм, необходимо увеличить диаметр канала, по которому движется плазма наружу, что приводит к снижению обжатия дуги.
Но самое большое достижение – это разработка микроплазменной сварки, которую впервые провели инженеры компании «Сешерон» из Швейцарии. Плазменная сварка этого типа дает возможность соединять между собой очень тонкие листы: 0,025-0,8 мм, изготовленные из различных металлов. Этот способ сваривания сегодня активно применяется в самолетостроении, электронной, медицинской, атомной и других областях промышленности.
Наверное, надо будет сказать, что процесс плазменной сварки (видео расположено ниже) в ближайшие несколько десятков лет будет активно применяться для соединения тонких металлических заготовок. А в некоторых случаях это будет единственный вариант. Так что есть смысл к нему присмотреться более внимательно.
Как выбрать плазменный сварочный аппарат?
Технология плазменной сварки позволяет выполнять местный нагрев любого материала. С помощью этого метода можно проводить сварные, паяльные и резочные работы. Большая часть аппаратов для плазменной сварки имеют две основные части, а именно источник электропитания и сварочную горелку. У сварочных аппаратов разных производителей характеристики и дополнительные компоненты отличаются.
Плазма – это высокоионизированный газ. Ее получают преимущественно из водяного пара в горелках, который попадая через узкий просвет на электрическую дугу, продувается и эту дугу охлаждает. За счет этого пар ионизируется и образует струю плазмы, температура которой больше шести тысяч градусов Цельсия. Так как же правильно выбрать плазменный сварочный аппарат?
Популярность плазменного сварочного аппарата
Считавшийся до недавнего времени новинкой сварочный плазменный аппарат сегодня уверенно теснит позиции аппаратов электросварочных.
Причем с появлением все более компактных плазмотронов эта «эпидемия» из промышленного сектора перекинулась и на бытовой.
В настоящий момент примерно 65% задач, традиционных для электросварки, решается с помощью плазмосварочного аппарата.
Сборка металлоконструкций, монтаж трубопроводов, раскрой и сварка заготовок в машиностроении, особенно из таких «неудобоваримых» материалов, как спецсплавы, «нержавейка» и цветные металлы – вот лишь часть большого списка задач, которые приходится решать с помощью плазменного оборудования. Но плазмотрон, в отличие от электросварки, может работать и с неметаллами. С его помощью, к примеру, осуществляется оплавление поверхности железобетонных изделий – прекрасная альтернатива гидроизоляции.
Технология плазменной обработки материалов
Основными компонентами аппарата для плазменной сварки являются источник питания и особой конструкции горелка, называемая плазмотроном.
Плазмотрон имеет помещенный в кожух фторопластовый корпус, внутри которого установлен электродный узел. К горелке подводится рабочая (плазмообразующая) смесь, защитный газ и охлаждающая среда, если только не применяется воздушное охлаждение.
В качестве плазмообразующей смеси может применяться:
- аргон в чистом виде;
- аргон с примесью водорода;
- аргонно-гелиевая смесь;
- воздух;
- водород;
- азот;
- смесь воды и спирта (эта технология появилась относительно недавно).
Под воздействием электрического разряда рабочая среда превращается в плазму, которая представляет собой ионизированный газ. Температура плазмы может достигать 30 тыс. градусов. При этом плазменная дуга сжимается в тончайший пучок, благодаря чему ее удельная мощность, приходящаяся на 1 кв. мм поперечного сечения многократно увеличивается. Это позволяет использовать плазму для решения таких задач, с которыми электроразрядная дуга с ее температурным пределом в 5 тыс. градусов эффективно справиться не может.
Но высокая температура – это только одно из преимуществ, которыми обладает аппарат для плазменной сварки. К числу достоинств этих устройств, также, относят:
- высокий КПД;
- малый расход защитных газов;
- небольшую площадь прогрева материала и, как следствие, малую усадку шва и почти полное отсутствие деформаций;
- возможность применения данного оборудования для сваривания неметаллических материалов с металлическими.
Конечно, для предотвращения опасных ситуаций необходимо ознакомиться с техникой безопасности при сварочных работах.
Разновидности плазменных сварочных аппаратов
Различные модели плазменного аппарата для сварки и резки можно классифицировать по нескольким признакам — принципу действия и мощности.
- аппараты с силой тока от 0,1 до 20 А: данный вид обработки материалов называется микроплазменным. Такие устройства получили наибольшее распространение;
- наиболее простые микроплазменные аппараты работают только в режиме постоянного горения дуги. Более функциональные версии поддерживают импульсный режим. Возможности такого прибора можно использовать более гибко: импульсный режим позволяет уменьшить температуру в зоне сварки, что бывает необходимо в определенных случаях (при работе с тонколистовыми заготовками, например);
- аппараты с силой тока от 20 до 100 А: по своим возможностям плазменная сварка на токах средней величины приблизительно соответствует аргонно-дуговой сварке, для которой применяются вольфрамовые электроды (неплавящиеся);
- аппараты с силой тока свыше 100 А: установки этого класса способны проплавить насквозь заготовку практически любого размера, создавая за один проход прочный равномерный шов по всей толщине деталей.
По принципу действия:
- плазменно-дуговые аппараты: обрабатываемый материал подвергается воздействию направленного потока раскаленного ионизированного газа;
- воздушно-плазменные аппараты: функцией этих установок является исключительно разрезание заготовки. Выплавляемый плазмой материал выдувается из зоны резания струей сжатого воздуха;
- наконец, плазменное оборудование может предназначаться для работ вручную либо в автоматическом режиме.
Плазменная технология сварки и резки экологична и экономична
Плазменные сварочные аппараты мобильны и компактны, что позволяет работать даже в стесненных условиях. По сравнению с популярными электродуговыми технологиями качество такой резки поражает. Ширина реза плазменных аппаратов зачастую не превышает двух миллиметров. Металл изменяет свою структуру только в зоне реза. Плазменную технологию можно применять для любых линий реза. Шов получается ровный, тонкий и аккуратный даже при пайке с использованием твердых припоев и сварки металлов.
Мощность, которую потребляют плазменные горелки, обычно невысока, поэтому источник питания для нее компактный и легкий.
Сварочная горелка также не отличается большой массой, поэтому использование плазменных сварочных аппаратов весьма эргономичное решение.
При плазменной сварке происходит локальный нагрев места реза, так как дуга из плазмореза нагревает металл очень быстро, и остальной материал не успевает нагреться.
Когда дуга проходит по намеченной линии, материал плавится газом под давлением только в месте продувки. Благодаря этому можно избежать термических деформаций заготовки. Рез получается ровный и аккуратный, а кромки не требуют последующей обработки.
С помощью ручной плазменной резки можно выполнять прямые, фигурные, а также уникальные резы на металле – для этого нужно лишь вести горелку по намеченной кривой. Максимальная толщина реза металла зависит от силы тока, на которую рассчитана установка плазменной резки.
К достоинствам плазменной сварки можно отнести её безопасность, так как необходимость в использовании горючих взрывоопасных газов отпадает. Эксплуатация не требует крупных затрат, ведь для многих аппаратов достаточно наличие бытовой сети переменного тока и дистиллированной воды для генерации пара.
Плазменная сварка
частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа. В центральной части сварочной дуги газ нагрет до температур 5000-30000° С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму. Плазменную струю, используемую для сварки и резки, получают в специальных плазматронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах. Вдуваемый в камеру газ, сжимая столб дуги в канале сопла плазматрона и охлаждая его поверхностные слои, повышает температуру столба. В результате струя проходящего газа, нагреваясь до высоких температур, ионизируется и приобретает свойства плазмы. Увеличение при нагреве объема газа в 50-100 и более раз приводит к истечению плазмы со сверхзвуковыми скоростями. Плазменная струя легко расплавляет любой металл.
Дуговую плазменную струю для сварки и резки получают по двум основным схемам. При плазменной струе прямого действия изделие включено в сварочную цепь дуги, активные пятна которой располагаются на вольфрамовом электроде и изделии. При плазменной струе косвенного действия активные пятна дуги находятся на вольфрамовом электроде и внутренней или боковой поверхности сопла. Плазмообразующий газ может служить также и защитой расплавленного металла от воздуха. В некоторых случаях для защиты расплавленного металла используют подачу отдельной струи специального, более дешевого защитного газа. Газ, перемещающийся вдоль стенок сопла, менее ионизирован и имеет пониженную температуру. Благодаря этому предупреждается расплавление сопла. Однако большинство плазменных горелок имеет дополнительное водяное охлаждение. Дуговая плазменная струя — интенсивный источник теплоты с широким диапазоном технологических свойств. Ее можно использовать для нагрева, сварки или резки как электропроводных металлов, так и неэлектропроводных материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия). Тепловая эффективность дуговой плазменной струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости перемещения горелки (скорости сварки или резки) и т. д. Геометрическая форма струи может быть также различной (квадратной, круглой и т. д.) и определяться формой выходного отверстий сопла.
Отличительные особенности плазменной сварки по сравнению с аналогами газовой, электродуговой в среде защитного газа, электроннолучевой и лазерной сваркой, процесс плазменной сварки имеет преимущества:
— высокая стабильность и устойчивость сжатой дуги, в том числе на малых токах, при увеличенной длине дуги, на любой полярности тока;
— высокая универсальность выбора режима;
— высокая концентрация тепловвода уменьшает объем расплавляемого основного и присадочного металла, уменьшает в ряде случаев количество дефектов в шве, снижает сварочные деформации;
— импульсные режимы плазменной сварки уменьшают перегрев изделия, опасность прожогов и сварочные деформации, улучшают структуру шва;
— ведение процесса плазменной сварки на постоянном токе обратной полярности повышает качество и стабильность свойств сварного шва за счет эффекта катодной очистки, проявляющегося в удалении оксидных и адсорбированных пленок со свариваемых поверхностей;
— возможность полной механизации и автоматизации технологического процесса;
— отсутствие включений вольфрама в сварном шве;
— возможность исключения разделки кромок свариваемых деталей за счет повышенной проплавляющей способности сжатой дуги;
— полное исключение разбрызгивания расплавленного металла при сварке;
— возможность формирования шва без усиления или ослабления, заподлицо с основным металлом;
— автоматизированная плазменная сварка проникающей дугой позволяет получить швы минимальной ширины, при этом расходы на оборудование существенно ниже, чем при лазерной или электроннолучевой сварке.
Примеры применения плазменной сварки
Создание неразъемных соединений однородных и разнородных металлов и сплавов, заварка дефектов литья, сварка листов, проводников, микродеталей, алюминиевых емкостей для молока и др. различных резервуаров, облицовочных панелей из нержавеющих сталей и титановых сплавов, медных шин и др. изделий, микроплазменная сварка зубных протезов.
Экономическая эффективность плазменной сварки определяется:
— экономией расходуемых материалах (газе, вольфраме, присадке), времени сварки;
— повышением эксплуатационных характеристик сварных конструкций:
— снижением затрат на подготовку свариваемых кромок, на устранение брака, на зачистку шва и на правку сваренных изделий.
Что такое плазменная сварка и какое оборудование применяется
Теплогенерирующие параметры плазмы гораздо выше, чем у других сварочных методов. Чтобы контролировать режим разогрева, нужен охлаждающий контур – циркулирующая по нему вода отводит избыточное тепло, из-за этого большие энергопотери. Основные расходные материалы – сопло (горелка выходит из строя при перегреве), тугоплавкие вольфрамовые электроды. Для производства плазменного оборудования нужны огнеупорные материалы, поэтому стоимость сварочных аппаратов в разы выше, чем для электродуговой или аргоновой сварки.
Технологические сложности не пугают, плазменная сварка нередко применяется в промышленности, особенно, если нужны качественные соединения. Ровные швы не нужно зашлифовывать. Метод применим для алюминия и других сложных сплавов.
Устройство и принцип работы
Принципиальное отличие плазменного метода – высокая температура плазмы (до 8000°С), подаваемой в рабочую зону. Ванна расплава защищается атмосферой аргона, постоянный температурный режим стабилизирует система охлаждения. Без нее плазмотрон расплавится, плазма разогревается до 30 тысяч градусов.
В сущности, плазменная сварка заключается в способности аргона переходить в плазму под действием дуги. Ток работает как плазмогенератор, пронизывает электропроводный аргон.
Плазмообразование под действием прямого или переменного тока происходит в плазмотроне. Это открытый с двух сторон конус, сужающийся к низу, в котором по центру расположен тугоплавкий электрод (для этого применяют вольфрамовые с добавками лантана, тория, циркония, иттрия), а внизу – сопло. Из него под большим давлением вырывается плазма.
В качестве плазмообразующего газа применим аргон с добавлением водорода. Он принудительно нагнетается в конус сверху. Поле создается путем подведения тока к двум полюсам: электроду и наружной части горелки. При ионизации и нагреве газ моментально расширяется, он вытесняется за счет внутренних сил мощной струей. Регулятором подачи плазмы выступает сопло. От его диаметра зависит толщина плазменного потока. Размер плазмотрона зависит от режима работы. Чем выше токи, чем больше верхний и выходной диаметры. Одновременно со струей плазмы к рабочей зоне в непрерывном режиме подводится аргон для создания защитного облака, предохраняющего расплав от контакта с кислородом, содержащимся в воздухе. Благодаря аргону, швы получаются чистые, без включений окалины.
Плазменная сварка заключается в способности аргона переходить в плазму под действием дуги
Устройство и основные типы аппаратов
В общем случае в состав оборудования для плазменной сварки входят:
- Горелка (плазматрон).
- Источник электропитания (инвертор).
- Баллон с плазмообразующим газом.
- Баллон с защитным газом.
- Система водяного охлаждения.
- Кабель-пакет.
Горелка представляет собой сложное устройство, в котором устанавливается электрод, имеются трубопроводы для подачи газов и охлаждающей жидкости, а также проходит электрический кабель, по которому к электроду подается напряжение питания.
Схема плазменной сварки
Конструкция горелки зависит от мощности аппарата. В аппаратах малой мощности используются горелки с выдвижным катодом, который с помощью кнопки управления может замыкаться на анод-сопло и возбуждать дугу.
Для ручной плазменной сварки используются горелки, которые имеют вид пистолета. Такое устройство удобно держать в руках. Для плазменно-водяной сварки используется горелка в виде пистолета с разрядной камерой и парообразующим устройством.
Для более мощных аппаратов используются горелки с неподвижным катодом. Основные ее части:
- катод;
- полость для рабочего газа;
- полость для защитного газа;
- анод (с полостью для охлаждения);
- корпус.
Примерная стоимость горелок для плазменной сварки на Яндекс.маркет
Горелки для мощных аппаратов не имеют ручек, поскольку они крепятся непосредственно на манипуляторах или станках для сварки.
В аппаратах в качестве источника питания чаще всего используются инверторы, которые почти полностью вытеснили трансформаторные источники. Современные импульсные преобразователи на IGBT-транзисторах обеспечивают стабильный рабочий ток, который может регулироваться для различных рабочих режимов работы аппарата.
Примерная стоимость инверторов для плазменной сварки на Яндекс.маркет
Для образования плазмы используются воздух, кислород, аргон и азот.
Для защиты ванны сварки применяют инертные газы – азот, аргон, пары спирта или ацетона.
Кабель-пакет предназначен для соединения аппарата с горелкой. В кабель-пакете размещаются:
- шланги для подачи рабочего и защитного газов;
- шланги для подачи и отвода водяного охлаждения;
- провода подачи основного тока;
- провода запуска дуги;
- цепи системы управления.
В бытовых аппаратах к горелке подключаются только цепи подачи тока. Поэтому в этом случае говорят просто о кабеле питания.
Виды плазменной сварки
Используют два метода подключения тока: деталь-электрод; электрод-корпус горелки. Проводится условное деление на виды по мощности генератора, рабочим параметрам оборудования:
- микроплазменная проводится на низких токах, проварка неглубокая, металл не повреждается (ей посвящен отдельный раздел);
- сварка на средних токах, до 25А, соединяют детали от 3 мм и выше;
- работа с большим амперажем, до 150 А, способ подходит для варки толстостенных деталей или прошивного сваривания металла.
Плазменная сварка прямого действия
Принцип подключения тока для создания дуги такой же, как в электродуговой сварке: один полюс подается на электрод (минус при прямой полярности), другой присоединяется к обрабатываемому металлу. Создается прямая дуга, направленная на деталь. Принцип создания плазмы двухэтапный:
- сначала клемму присоединяют к соплу, чтобы ионизировать проходящий по плазмотрону газ;
- после плазмообразования клемму перебрасывают на свариваемую деталь, происходит пробой дуги на деталь, плазма вырывается из сопла.
Вот что такое плазменная сварка прямого действия. Струя плазмы регулируется силой тока, газ, вырывающийся из сопла, не только поддерживает дугу, но и защищает рабочую зону.
Про оборудование
Работа с плазмой невозможна без соответствующего оборудования. Сварочный аппарат для плазменной сварки довольно компактный, обычно его вес не превышает 10 килограммов (самый компактный около 5 кг). Для образования плазмы требуется подключить к аппарату установку с газом для работы. Защитить сварное соединение от окислов поможет инертный газ, также подключаемый к аппарату. Ну и конечно горелка, она подключается на выходе аппарата.
Вспомним о том, что плазменная сварка производится при очень высоких температурах, а это требует охлаждения сопла плазмотрона. В любом аппарате для плазменной сварки имеется отсек с охлаждающей жидкостью.
Оборудование для плазменной сварки действительно дорогое — аппарат малой мощности с минимальным набором функций стоит около 30 тысяч рублей. Соответственно, чем больше настроек (пайка, закалка), тем дороже агрегат.
Плазменная сварка косвенного действия
Дуга возникает за счет подвода одного из полюсов к тугоплавкому электроду (при прямой полярности это минус), другого – к оболочке плазмотрона (плюс). Плазменная дуга зависит от давления плазмообразующего газа. Он при ионизации и разогреве увеличивается в объеме до 50 раз. Плазменная сварка косвенного действия более экономичная по газу. При малом расходе образуется стабильная дуга, она с большой силой вырывается из сопла. Температура плазмы косвенного метода ниже, чем у прямого. Такие установки больше подходят для напыления порошков, создания термоэффектов. Дуга за счет давления газа с силой устремляется к металлу, косвенный метод позволяет варить металлы с низкой электропроводностью (нихром; стали, легированные висмутом и другие справы). Подача защитного газа автономная.
Аппараты прямого и косвенного действий
В зависимости от способа горения дуги различают аппараты:
- прямого действия;
- косвенного действия.
В аппаратах первого вида электрическая дуга возбуждается между электродом и свариваемой деталью. При этом дуга вначале возбуждается при малых токах между соплом и деталью, а после касания плазмой детали образуется основная дуга. Питание дуги может осуществляться как постоянным, так и переменным током. Возбуждение дуги осуществляется, как правило, с помощью дополнительного осциллятора.
При сварке вторым способом источник питания подключается к электроду и соплу горелки. В результате между ними образуется электрическая дуга, а на выходе горелки – струя плазмы. Интенсивность струи регулируется давлением газа. Возникновение мощной плазменной струи объясняется тем, что газ, переходя из одного состояния в другое, расширяется почти в 50 раз. Этот способ менее распространен, хотя он и имеет свои достоинства, а именно:
- обеспечивается устойчивая работа при малых токах;
- уменьшается потребление газа;
- при работе отсутствует разбрызгивание.
Оборудование для плазменной сварки
Внешне устройства мало чем отличаются от других аппаратов. Они по весу и габаритам сопоставимы с инверторами, аргонно-дуговыми сварочниками, электродуговыми полуавтоматами. Функциональность профессионального оборудования для плазменной сварки поражает — помимо сварки и резки предусмотрены операции:
- воронения – химико-термическая обработка для получения нужного оттенка металла;
- термического оксидирования черных сплавов – образования тугоплавкого диоксида кремния;
- порошкового напыления красителей и защитных составов – создается ровная пленка на поверхности детали;
- закалки – термического упрочнения внутренней структуры сплавов за счет снятия внутренних напряжений.
Установки для плазменной сварки различаются по мощности: от 20 А до 250-ти. Для работы с деталями свыше 2 мм агрегат стоит в пределах от 20 до 49 тысяч. На базе электродуговой сварки плазменное оборудование можно сделать самим, соорудив горелку с плавящимся электродом. Потребуется сварочный аппарат, комплект газовых рукавов для создания защитной атмосферы и шланги для подвода воды к горелке.
Общие сведения
Плазма состоит из ионизированного газа, и, вместе с тем, есть одним из четырех физических состояний вещества. Нынешние плазменные устройства для сварки могут производить температуру от 5000 до 10000 °C.
Такие аппараты называют еще плазмотронами. Эти приспособления для резки и сварки плазмой могут образовывать дуги трех типов: прямую, косвенную, комбинированную.
Дуга склонна к распаду, поэтому перед началом работы ее особым способом «закручивают». После такой процедуры создается тонкая устойчивая дуга, так как газ почти мгновенно ионизируется.
В результате, образуется дуга высокой мощности, которая может создавать энергию в некой точке. Плавка основного металла производится как раз в этой точке.
Независимо от состава и плотности металла, плазменная дуга может нагреть почти каждый. Она способна выполнять нагрев даже до температуры плавления или кипения. Для этого нужно лишь создать дугу достаточной мощности.
Защита дополнительной сварочной зоны осуществляется за счет инертного газа. Для этого подходят органические ацетоновые пары, аргон или азот. Конструкция плазменной горелки такова, что она способна сразу подавать и плазму, и защитный газ.
Таким образом, сварочная ванна прямо в процессе проведения работ защищена. Швы выходят хорошего качества, а металл не поддается коррозии.
Преимущества и недостатки
Основные позитивные моменты плазменного метода:
- доступность – плазмотроном дополняют имеющееся базовое сварочное оборудование;
- из-за высокой температуры в рабочей зоне, под защитной атмосферой образуются однородные по структуре соединения;
- глубина провара контролируется;
- скорость образования швов высокая, снижается объем трудозатрат;
- универсальность – метод применим для любых сплавов, можно варить и резать металл, проводить наплавку порошков.
- стоимость оборудования и работ высокая;
- сложность технологического процесса, необходимы определенные знания и навыки, спецподготовка;
- плазмотрон требует дополнительного ухода, чистки, замены горелки и электрода;
- необходим подвод плазмообразующего газа в плазмотрон;
- нужно охлаждение плазмотрона, чтобы он не выходил из строя;
- большие энергопотери.
Плазменная сварка чаще применяется в промышленных объемах, для индивидуальных работ этот метод слишком затратен.