Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет площади поперечного сечения круга

Расчет площади поперечного сечения круга

Площадь поперечного сечения

В инженерной и строительной практике нередко встречаются задачи по расчёту площади поперечного сечения. Если фигуру разрезать по линии, которая перпендикулярна продольной оси предмета, то полученный торец и будет поперечным сечением. Круг — один из наиболее часто встречающихся видов подобного рассечения. Такой срез присущ цилиндру, шару, конусу, тору, эллипсоиду.

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

Сечение круга

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Область применения

Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:

  1. Определение объемов емкостей.
  2. Решение задач по сопротивлению материалов и электротехнике.
  3. Расчет количества материалов при проектировании, строительстве и ремонте.
  4. Ведение поливного земледелия.

Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.

Круг имеет ряд характеристик:

  • радиус (r/R) — отрезок, соединяющий центр фигуры с его границей;
  • диаметр (d/D) — отрезок, который соединяет две точки границы круга и проходит через его центр;
  • длина окружности (C/c/L/l).

Площадь поперечного сечения круга

Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Читайте так же:
Распиновка вилки прицепа легкового автомобиля

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Как рассчитать площадь поперечного сечения круга с помощью основных формул и теорем

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

Где необходим расчёт величины, базовые характеристики фигуры

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

Как определить площадь сечения цилиндра, конуса, призмы и пирамиды? Формулы

На практике часто возникают задачи, которые требуют умения строить сечения геометрических фигур различной формы и находить площади сечений. В данной статье рассмотрим, как строятся важные сечения призмы, пирамиды, конуса и цилиндра, и как рассчитывать их площади.

Читайте так же:
Подкат для мотоцикла сорокин

Объемные фигуры

Из стереометрии известно, что объемная фигура совершенно любого типа ограничена рядом поверхностей. Например, для таких многогранников, как призма и пирамида, этими поверхностями являются многоугольные стороны. Для цилиндра и конуса речь идет уже о поверхностях вращения цилиндрической и конической фигур.

Что значит слыть: толкование, синонимы Вам будет интересно: Что значит слыть: толкование, синонимы

Если взять плоскость и пересечь ею произвольным образом поверхность объемной фигуры, то мы получим сечение. Площадь его равна площади части плоскости, которая будет находиться внутри объема фигуры. Минимальное значение этой площади равно нулю, что реализуется, когда плоскость касается фигуры. Например, сечение, которое образовано единственной точкой, получается, если плоскость проходит через вершину пирамиды или конуса. Максимальное значение площади сечения зависит от взаимного расположения фигуры и плоскости, а также от формы и размеров фигуры.

Ниже рассмотрим, как рассчитывать площади образованных сечений для двух фигур вращения (цилиндр и конус) и двух полиэдров (пирамида и призма).

Цилиндр

Круговой цилиндр является фигурой вращения прямоугольника вокруг любой из его сторон. Цилиндр характеризуется двумя линейными параметрами: радиусом основания r и высотой h. Ниже схематически показано, как выглядит круговой прямой цилиндр.

Круговой цилиндр

Для этой фигуры существует три важных типа сечения:

  • круглое;
  • прямоугольное;
  • эллиптическое.

Эллиптическое образуется в результате пересечения плоскостью боковой поверхности фигуры под некоторым углом к ее основанию. Круглое является результатом пересечения секущей плоскости боковой поверхности параллельно основанию цилиндра. Наконец, прямоугольное получается, если секущая плоскость будет параллельна оси цилиндра.

Площадь круглого сечения рассчитывается по формуле:

Площадь осевого сечения, то есть прямоугольного, которое проходит через ось цилиндра, определяется так:

Сечения конуса

Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.

Бумажный конус

Видов конических сечений существует несколько. Перечислим их:

  • круглое;
  • эллиптическое;
  • параболическое;
  • гиперболическое;
  • треугольное.

Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.

Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:

Здесь z — это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z Понравилась статья? Поделись с друзьями:

Читайте так же:
Назначение суппорта токарного станка

Площадь прямого треугольника – формула через катеты

В классическом случае, площадь треугольника находится как половина произведение стороны на высоту, проведенную к этой стороне.

Рис. 1. Площадь произвольного треугольника.

В прямоугольном треугольнике для двух из трех сторон высоты и сами стороны совпадают. Рассмотрим на примере.

Дан прямоугольный треугольник АВС с прямым углом при вершине В. Для катета ВС высотой будет катет АВ, а для катета АВ высотой служит сторона ВС. Только гипотенуза нуждается в дополнительных построениях для нахождения высоты.

Рис. 2. Прямой треугольник.

Именно из этих особенностей и вытекает формула площади прямого треугольника.

$S= <1over2>a*b$ где a и b это катеты треугольника. То есть значение двух сторон просто подставили в классическую формулу. В итоге получается самая простая из возможных формул для нахождения площади прямоугольного треугольника. Рассмотрим несколько неклассических ситуаций, когда значение катетов неизвестно.

Если в задаче о прямоугольном треугольнике дается значение высоты, то имеется в виду перпендикуляр, проведенный к гипотенузе.

Задача

  • В прямоугольном треугольнике высота равняется 8, а острый угол при гипотенузе 60 градусов. Найти площадь прямого треугольника.

Рис. 3. Пример рисунка к задаче.

Для каждой геометрической задачи существует, как минимум 3 решения.

Конкретно в нашем случае можно выделить два простых способа:

  • Найти гипотенузу и определить значение площади по классической формуле.
  • Найти каждый из катетов и найти площадь через катеты.

Рассмотрим каждый из вариантов, чтобы иметь представление о возможных путях решения подобных задач.

Обозначим треугольник АВС, проведем высоту ВН. Угол АСВ равен 60 градусов. Найдем гипотенузу. Она состоит из двух отрезков АН и НС. Найдем каждый из отрезков, сложим их и получим искомое значение.

АН найдем из прямоугольного треугольника АНВ с прямым углом у вершины Н. Сумма острых углов в прямоугольном треугольнике всегда равна 90 градусам. Значит Угол ВАС=90-60=30.

Воспользуемся тригонометрической функцией. Воспользуемся значением тангенса:

$$tg(BAC)= =sqrt<3>$$ – значение тангенса можно взять из таблицы Брадиса или запомнить его для трех характерных углов 30, 45 и 60 градусов.

Получившийся результат мы округлим до сотых. Не стоит бояться получившихся длинных дробных значений. В вычислениях они встречаются постоянно, нужно просто правильно округлять полученные значения.

По схожей схеме вычислим НС из прямоугольного треугольника ВНС.

Читайте так же:
Хон в цилиндре что это

Значение снова округлим до сотых. Два получившихся значения сложим и посчитаем значение площади.

Приведем решение через катеты и сравним результаты.

В прямоугольном треугольнике ВНС сторона ВС выступает гипотенузой. Воспользуемся значением синуса:

Значение синуса для угла в 60 градусов является табличным значением.

Подобным методом определим значение второго катета из треугольника АНВ:

Оба катета найдены, можно подсчитать значение площади:

Получившиеся значения схожи. Различие в сотых легко объясняется округлениями, которые выполнялись для удобства расчета. В подобных вычислениях расхождение в единицу считается допустимым.

Что мы узнали?

Мы досконально разобрали формулу нахождения площади прямоугольного треугольника. Показали другие варианты нахождения площади, подробно разобрали различные пути решения задач на нахождение площади прямоугольного треугольника.

Треугольная призма все формулы и примеры задач

Треугольная призма

Математика

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Призма треугольная

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы .

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Треугольная призма - высота и сечение

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

Объем призмы = площадь основания х высота

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Читайте так же:
Что такое передаточное число редуктора

Площадь боковой поверхности треугольной призмы = периметр основания х высота

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

формула определения полной поверхности призмы

так как Sбок=Pосн . h, то получим:

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы :

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.

Пример призмы

Прямая треугольная призма

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Наклонная треугольная призма с сечением

Решение:

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k 2 = S12 2 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector