Wabashpress.ru

Техника Гидропрессы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Свойства алюминия

Свойства алюминия

Алюминий — химический элемент главной подгруппы третьей группы третьего периода ПСХИ Менделеева Д. И., с атомным номером 13. Обозначается символом AL (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий — лёгкий, немагнитящийся металл серебристо-белого цвета, легко поддающийся ковке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкость к коррозии обуславливается образованием оксидной плёнки на поверхности, защищающей от дальнейшего воздействия агрессивной среды.

Физические свойства алюминия. Плотность — 2,7 г/см³, температура плавления — порядка 658-660 °C, удельная теплота плавления — 390 кДж/кг, температура кипения — 2500 °C, удельная теплота испарения — 10,53 МДж/кг, временное сопротивление литого алюминия — 10…12 кг/мм², деформируемого — 18…25 кг/мм², сплавов — 38…42 кг/мм².

Твёрдость по Бринеллю — 24…32 кгс/мм², высокая пластичность: технический алюминий — 35 %, чистый алюминий — 50 %, прокатывается в фольгу. Модуль Юнга — 70 ГПа. электропроводность — 0,0265 мкОм·м, теплопроводность — 1,24×10−3 Вт/(м·К), обладает высокой светоотражательной способностью.температурный коэффициент линейного расширения 24,58×10−6 К−1 (20…200 °C). Образует сплавы практически со всеми прочими металлами.

Впервые алюминий был выделен как самостоятельное вещество в Европе Гансом Эрстедом в 1825 году. Современный метод, основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало широчайшей сфере применения алюминия в нашей жизни

Физические и химические свойства объясняют огромное значение алюминия в мировой экономике. Без него аэрокосмическая индустрия никогда не получила бы развития. Алюминий и сплавы на его основе необходимы для производства автомобилей, в машиностроении, микроэлектронике, да наверно вообще во всех отраслях промышленности. Самые разные виды продуктов из алюминия используются в современном строительстве. Алюминий практически вытеснил медь в качестве проводников и кабелей для высоковольтных линий ЛЭП. Половина кухонной посуды, продаваемой каждый год во всем мире, сделана именно из алюминия и его сплавов. Производство современных зеркал немыслимо без алюминиевой пудры. В производстве строительных материалов используется как газообразующий агент. Без алюминиевых банок для напитков уже невозможно представить ни одну витрину магазина, или аптеку без лекарств, упакованных в алюминиевую фольгу. А как хорошо попросту запечь мясо или рыбу в духовом шкафу, и все это не получится без алюминиевой фольги!

Как компонент используется в стекловарении, его соединения используются в качестве высокоэффективного горючего в ракетных топливах; в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Еще один пример — Алюминий зарегистрирован в качестве пищевой добавки Е173.

Если мир без алюминия представляется не самым уютным местом, то мир, в котором алюминий есть, открывает нам самые разные возможности.

Наша компания осуществляет производство и поставку на внешний и внутренний рынки сплавов алюминиевых литейных, деформируемых, алюминий технической чистоты (технический алюминий), алюминий для раскисления (раскислители) различных марок.

Цены на алюминий и его сплавы, а так же способы доставки алюминия можно уточнить, связавшись с нами по телефону или электронной почте.

Встретившись с потребностью в алюминии или сплавах алюминия Вы можете задать в поиске «купим чушку» или «купим сплав алюминия», знайте, что в случае с «куплю чушку» лучше обратиться к нам, как специалистам в области производства и поставок. Мы сможем помочь Вам подобрать интересующий Вас сплав в соответствии с потребностями и совместно скоординируем форму выпуска, сроки и период поставки.

Читайте так же:
Метчики для нарезания резьбы дюймовые

Свойства алюминия

Характерными свойствами чистого алюминия являются его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхности металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др. Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь. Прочная пленка окиси быстро покрывает свежий разрез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие пара на алюминий также не-значительно. Алюминий, не содержащий меди, достаточно стоек (в отсутствие элект-ческого тока) в естественной морской воде. В концентрированных азотной и серной кислотах алюминий также практически устойчив. В разбавленных кислотах и растворах едких щелочей алюминий быстро разрушается. Однако в растворах аммиака он достаточно стоек. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать. Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия, с другими металлами герметизируется лакировкой или другим путем.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Таблица 8-16 Химический состав технического алюминия (ГОСТ 11069-64)
классификация и химический состав алюминия

Влияние примесей на электрическую проводимость алюминия различно. Примеси, образующие с алюминием твердые растворы, сильно снижают электропроводность; примеси, не входящие в твердые растворы, почти не оказывают влияния на снижение проводимости. На рис. 8-4 показано изменение проводимости алюминия в зависимости от содержания примесей.

Рис. 8-4. Изменение проводимости алюминия в зависимости от содержания примесей.

Физические свойства алюминия марок А5; А6 и АЕ, предназначенного для изготовления шин и проводов, приведены ниже:

Плотность при 20 °С, кг/м3 . 9700

Удельное электрическое сопротивление при 20 °С (не более), мкОм м:

проволока твердая и полутвердая . 0,0283

Температурный коэффициент сопротивления в интервале 0-150 °С, . 0,004

Температурный коэффициент линейного расширения (20-100 °С), .

Теплопроводность, Вт/(м °С). 2,05

Температура плавления, °С . 660-647

Теплота плавления, Дж/кг .

Температура отжига, °С . 350-400

Средняя теплоемкость (0-100 °С), Дж/(кг °С). 240

В табл. 8-17 приведена ориентировочная зависимость механических свойств алюминия от температуры.

Алюминий: физические свойства, получение, применение, история

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью. Температура плавления 660°C.

Читайте так же:
Резка зеркала по размерам

По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.

Алюминий и его сплавы делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки — на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году. Современный метод получения разработали независимо друг от друга американец Чарльз Холл и француз Поль Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Применение

Алюминий широко применяется как конструкционный материал . Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий ).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной пленки его тяжело паять.

Благодаря комплексу свойств широко распространен в тепловом оборудовании.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.).

Алюминий находит широкое применение в различных видах транспорта. На современном этапе развития авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении. Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Идут исследования по разработке пенистого алюминия как особо прочного и легкого материала.

Драгоценный алюминий

В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов. С самого момента открытия в середине XIX века его считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. Стоимость его была выше цен на золото. Не удивительно, что в первую очередь алюминий нашел свое применение в создании ювелирных изделий и дорогих декоративных элементов.

В 1855 г. на Универсальной выставке в Париже алюминий был самой главной достопримечательностью. Изделия из алюминия располагались в витрине, соседствующей с бриллиантами французской короны. Постепенно зародилась определенная мода на алюминий. Его считали благородным малоизученным металлом, используемым исключительно для создания произведений искусства.

Читайте так же:
Пускорегулирующее устройство для люминесцентных ламп

Наиболее часто алюминий использовали ювелиры. При помощи особой обработки поверхности ювелиры добивались наиболее светлого цвета металла, из-за чего его часто приравнивали к серебру. Но в сравнении с серебром, алюминий обладал более мягким блеском, чем обуславливалась еще большая любовь к нему ювелиров.

Так как химические и физические свойства алюминия сначала были слабо изучены, ювелиры сами изобретали новые техники его обработки. Алюминий технически легко обрабатывать, этот мягкий металл позволяет создавать отпечатки любых узоров, наносить рисунки и создавать желаемой формы изделия. Алюминий покрывался золотом, полировался и доводился до матовых оттенков.

Но со временем алюминий стал падать цене. Если в 1854-1856 годах стоимость одного килограмма алюминия составляла 3 тысячи старых франков, то в середине 1860-х годов за килограмм этого металла давали уже около ста старых франков. Впоследствии из-за низкой стоимости алюминий вышел из моды.

В настоящее время самые первые алюминиевые изделия представляют большую редкость. Большинство из них не пережило обесценивания металла и было заменено серебром, золотом и другими драгоценными металлами и сплавами. В последнее время вновь наблюдается повышенный интерес к алюминию у специалистов. Этот металл стал темой отдельной выставки , организованной в 2000 году Музеем Карнеги в Питсбурге. Во Франции расположен Институт истории алюминия , который в частности занимается исследованием первых ювелирных изделий из этого металла.

В Советском союзе из алюминия делали общепитовские приборы, чайники и т.д. И не только. Первый советский спутник был выполнен из алюминиевого сплава. Другой потребитель алюминия — электротехническая промышленность: из него делаются провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия. Кроме того, порошок алюминия применяют во взрывчатых веществах и твердом топливе для ракет, используя его свойство быстро воспламеняться: если бы алюминий не покрывался тончайшей оксидной пленкой, то мог бы вспыхивать на воздухе.

Последнее изобретение — пеноалюминий, т.н. «металлический поролон», которому предсказывают большое будущее.

Ключевые ситуации при изучении физики. Сплавы

Наибольшие трудности при изучении физики учащиеся испытывают при решении задач, т.е. когда требуется применить знания. Эти трудности представляются ребятам настолько большими, что многие из них отказываются даже от попыток решать задачи. Отказ от решения задач еще как-то «проходил» во времена устных экзаменов по физике. Но теперь – как при прохождении Государственной итоговой аттестации, выполнении заданий Единого государственного экзамена или тестирования при поступлении – проверяют именно умение применять полученные знания, а не декларировать их.

Понимание смысла физических законов – главная цель школьного курса физики, но понимание этих законов может родиться только в осознанной деятельности по применению этих законов. Школьникам же часто предлагают алгоритмы решения задач, которые провоцируют бездумное, автоматическое применение физических формул.
Преодолеть эту принципиальную трудность можно, только неоднократно применяя законы физики в тщательно отобранных простейших ситуациях, когда смысл этих законов кристально ясен.

В школьном курсе физики тысячи задач. Однако, если посмотреть на все множество этих задач «с высоты птичьего полета», то нетрудно заметить, что подавляющее их большинство группируются вокруг нескольких десятков типичных учебных ситуаций. Эти ситуации можно назвать ключевыми. А овладение ключевыми ситуациями «даст ключи» к решению задач.

Ключевые ситуации – важнейшая связь между «теорией» и «задачами». Без этой связи теория мертва для школьника, а задачи представляются ему случайной россыпью неинтересных загадок. Однако пока еще некоторые учителя «дают» своим ученикам «теорию» отдельно, а «задачи» отдельно. После такого разрезания по живому от живой физики остаются только мертвые формулы-шаблоны для примитивных задач на подстановку.

Читайте так же:
Схема включения стабилизатора 7805

Изучение ключевых ситуаций – это живой мост между «теорией» и «задачами», причем мост с двухсторонним движением. С одной стороны, задачи рождаются при изучении ключевых ситуаций, в которых наглядно проявляется действие физических законов, с другой стороны, благодаря решению задач на основе ключевой ситуации теория осознается, т.е. становится действенной силой, а не пассивным набором фактов и формул.
И еще одна очень важная роль ключевых ситуаций. Дело в том, что результатом изучения школьного курса физики должен быть не набор решенных задач (это быстро забывается), а понимание физических законов и физическая интуиция, которая может развиваться именно при рассмотрении ключевых ситуаций.

Приложение 1. Фрагмент урока с выделением ключевой ситуации по теме «Плотность».
Приложение 2. Фрагмент урока с выделением ключевой ситуации по теме «Полые тела».
Приложение 3. Дополнительный материал по теме «Сплавы».

Приведем фрагмент урока с выделение ключевой ситуации по теме «Сплавы».

Фрагмент урока по теме «СПЛАВЫ»

Учитель. Тема урока зашифрована ребусом. Кто первый раскроет секрет?

Ученики.

Учитель. Тема урока «Сплавы».
Сплав — макроскопически однородная смесь двух или большего числа химических элементов с преобладанием металлических компонентов. Основной или единственной фазой сплава, как правило, является твёрдый раствор легирующих элементов в металле, являющемся основой сплава.
Сплавы имеют металлические свойства, например: металлический блеск, высокие электропроводность и теплопроводность. Иногда компонентами сплава могут быть не только химические элементы, но и химические соединения, обладающие металлическими свойствами. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. Макроскопические свойства сплавов всегда отличаются от свойств их компонентов, а макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения примесных фаз в металлической матрице.
Сплавы обычно получают с помощью смешивания компонентов в расплавленном состоянии с последующим охлаждением. При высоких температурах плавления компонентов, сплавы производятся смешиванием порошков металлов с последующим спеканием (так получаются, например, многие вольфрамовые сплавы).
Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В состав многих сплавов могут вводиться и неметаллы, такие как углерод, кремний, бор и др. В технике применяется более 5 тыс. сплавов.

Цель нашего урока – научиться решать задачи для определения плотности, массы или объема сплавов или веществ входящих в их состав.
Рассматривая сплавы, обычно предполагают, что объем сплава равен сумме объемов составляющих его веществ. В таком случае плотность сплава , где индексы 1 и 2 относятся к двум компонентам сплава.
Если заданы или требуется найти массы компонентов известной плотности ρ1 и ρ2, то объемы компонентов надо выразить через их массы и плотности, в результате чего формула для плотности сплава примет вид .
Часто в задаче дано или требуется найти соотношение масс компонентов сплава. Обозначим . Тогда . Эта формула связывает плотность сплава ρ и массовое отношение компонент . Из нее при следует: . Приведенные формулы позволяют по заданному значению одной из величин ( или ρ) найти значение другой.

Читайте так же:
Ножовки по дереву ручные шведские сандвик

Запишите в тетрадях:

Примечание.

1. Задача первого уровня предназначена для применения основной формулы: .
2. Задачи второго уровня похожи, поэтому целесообразно применить разные способы решения.
3. Задачи третьего уровня предусмотрены для закрепления способов решения задач предложенных ранее с добавлением дополнительных вычислений (объема и процентного отношения).

РЕШЕНИЕ ЗАДАЧ

Задачи по теме «СПЛАВЫ»:

Найдите плотность бронзы, для изготовления которой взяли 100 г меди и 30 г олова, считая, что объем сплава равен сумме объемов входящих в него металлов.

1. Кусок сплава из свинца и олова массой 664 г имеет плотность 8,3 г/см 3 . Определите массу свинца в сплаве. Принять объем сплава равным сумме объемов его составных частей.

2. В куске кварца содержится небольшой самородок золота. Масса куска 100 г, а его плотность 8 г/см 3 . Определите массу золота, содержащегося в кварце. Принять, что плотность кварца и золота соответственно равны 2,65 и 19,36 г/см 3 .

1. Сплав золота и серебра массой 400 г имеет плотность 14·103 кг/м 3 . Полагая объем сплава равным сумме объемов его составных частей, определите массу, объем золота и процентное содержание его в сплаве.

2. В чистой воде растворена кислота. Масса раствора 240 г, а его плотность 1,2 г/см 3 . Определите объем кислоты в растворе и его процентное содержание, если плотность кислоты 1,8 г/см 3 . Принять объем раствора равным сумме объемов его составных частей.

Выходной контроль:

1Асоотношение масс
2Бплотность сплава, если известны соотношения масс
3Впроцентное содержание массы одного из веществ в сплаве
4Гпроцентное содержание объема одного из веществ в сплаве
5Дплотность сплава
6Еобъем кварца
7Жплотность сплава, при заданных плотностях веществ его составляющих

Ответы: 1-Д, 2-Ж, 3-А, 4-Б, 5-В. 6-Г, 7-Е.

Домашнее задание:

Сплавы различаются по своему предназначению.
Конструкционные сплавы: стали, чугуны, дюралюминий.
Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства): бронзы, латуни.
Для заливки подшипников: баббит.
Для измерительной и электронагревательной аппаратуры: манганин, нихром.
Для изготовления режущих инструментов: победит.

Подготовьте сообщение о каком-нибудь сплаве. Расскажите о веществах, которые в него входят, о их процентном вхождении в сплав и т.д.

Задачи:

1. Найдите плотность стали (сталь — деформируемый (ковкий) сплав железа с углеродом), для изготовления которой взяли 100 г железа и 2 г углерода (углекислого газа), считая, что объем сплава равен сумме объемов входящих в него веществ.
2. Чтобы получить латунь, сплавили куски меди массой 178 кг и цинка массой 355 кг. Какой плотности была получена латунь? Объем сплава равен сумме объемов его составных частей.
3. Сплав золота и серебра массой 500 г имеет плотность 11 г/см3. Полагая объем сплава равным сумме объемов его составных частей, определите массу, объем золота и процентное содержание его в сплаве.

Ответы: 1. 0,098 г/см 3 , 2. 8540 кг/м 3 , 3. 50 г, 2,59 см 3 , 10%.

Подведение итогов урока. Рефлексия

На полях рабочей тетради изобрази схематически один из рисунков, который соответствует степени усвоения материала на уроке. Солнце – мне все понятно, туча – материал интересный, но надо еще поработать, луна – я все проспал.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector