Контакторы и магнитные пускатели
Контакторы и магнитные пускатели
В начале данной статьи хотелось бы сразу определиться в чем заключается разница между контактором и магнитным пускателем, так как данный вопрос зачастую ставит в тупик даже самых опытных специалистов-электриков, при этом многие полагают, что разница между ними заключается в их конструкции, габаритных размерах или величине коммутируемого (номинального) тока, однако это не так. Поможет разобраться нам с этим вопросом ГОСТ 30011.4.1-96 в котором приведены следующие определения:
Контактор — это коммутационный аппарат с единственным положением покоя, оперируемый не вручную, способный включать, проводить и отключать токи в нормальных условиях цепи, в том числе при рабочих перегрузках.
Пускатель — это комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя, с защитой от перегрузок.
Как следует из определений выше, контактор — это устройство предназначенное для коммутирования (включения/отключения) каких либо нагрузок, т.е. любых нагрузок, в то время как пускатели — это комплекс устройств предназначенный для управления конкретно электродвигателем, а так же обеспечивающий его защиту от перегрузок, при этом сами контакторы входят в состав пускателей:
Как видно на картинке выше в состав пускателя входят: контактор — для включения и отключения электродвигателя, тепловое реле — для защиты электродвигателя от перегрузок, кнопки — для управления контактором, все перечисленные устройства помещаются в общий корпус.
Так же согласно того же ГОСТ 30011.4.1-96 пускатели бывают следующих видов:
Пускатель прямого действия — Пускатель, одноступенчато подающий сетевое напряжение на выводы двигателя.
Реверсивный пускатель — Пускатель, предназначенный для изменения направления вращения двигателя путем переключения его питающих соединений без обязательной остановки двигателя.
Пускатель с двумя направлениями вращения — Пускатель, предназначенный для изменения направления вращения двигателя путем переключения его питающих соединений только во время остановки двигателя.
Таким образом пускатель прямого действия предназначен для запуска, остановки и защиты электродвигателя, в то время как реверсивный пускатель помимо всего вышеперечисленного позволяет менять направление вращения двигателя.
Как видно на картинке выше в состав реверсивного магнитного пускателя входят два контактора переключение между ними меняет порядок чередования фаз что приводит к изменению направления вращения электродвигателя. (Подробнее об изменении направления вращения электродвигателя и схеме работы реверсивного пускателя смотрите здесь.)
Существуют так же так называемые модульные контакторы — это компактные контакторы предназначенные для установки на DIN рейку, в остальном их устройство и принцип работы такой же как и у обычных контакторов.
Теперь разобравшись с понятиями контактора и пускателя приступим к изучению принципа их работы.
Устройство и принцип работы контактора
Как видно на картинке выше электромагнитный контактор состоит из следующих основных элементов: магнитопровода состоящего, в свою очередь, из подвижной и неподвижной частей, электрической катушки, силовых контактов, предназначенных для включения и отключения нагрузки, в состав которых входят подвижные контакты, которые крепятся к подвижной части магнитопровода и неподвижные контакты, которые крепятся к верхней части корпуса контактора, блок-контактов предназначенных для использования в цепях управления, а так же пружины которая обеспечивает поддержание в разомкнутом состоянии состоянии силовых контактов.
Управление контактором осуществляется путем подачи напряжения на электрическую катушку, при прохождении через нее электрического тока создается электромагнитное поле протекающее через магнитопровод, при этом неподвижная часть магнитопровода совместно с электрической катушкой работают как электромагнит который, как видно на рис.2 выше, преодолевая сопротивление пружины, притягивает верхнюю подвижную часть магнитопровода с закрепленными на ней подвижными контактами, таким образом происходит замыкание силовых контактов, при снятии напряжения с катушки контактора электромагнитное поле исчезает переставая притягивать подвижную часть магнитопровода которая под воздействием пружины возвращается в исходное положение размыкая силовые контакты.
В состав большинства современных контакторов входит только один блок-контакт, однако некоторые схемы управления требуют большего их количества, в этом случае на магнитный пускатель устанавливается дополнительная приставка имеющая несколько блок-контактов:
Как видно на картинке выше данная приставка (блок контактов) устанавливается на верхнюю часть контактора соединяясь с его подвижными силовыми контактами.
Выбор контакторов (магнитных пускателей) и их характеристики.
Выбор контакторов и магнитных пускателей осуществляется по их следующим техническим характеристикам:
1) По типу коммутируемой нагрузки определяется необходимая категория применения
В соответствии с ГОСТ 12434-83 и ГОСТ Р 50030.4.1-2002 существуют следующие категории (области) применения контакторов (пускателей):
2) По номинальному току
Номинальный ток — одна из главных характеристик определяющая максимальный ток который контактор способен длительно выдерживать, а так же обеспечивать его коммутацию (включение/отключение).
Расчет номинального тока пускателя (контактора) для электродвигателя можно произвести с помощью нашего онлайн калькулятора либо по методике приведенной ниже.
Существуют следующие стандартные значения номинальных токов контакторов (пускателей), в Амперах:
6,3; 10; 16; 25; 40; 63; 80; 100; 125; 160; 250; 400; 500 Ампер
Примечание: Модульные контакторы выпускаются на номинальные токи до 100 Ампер.
Зачастую контакторы и магнитные пускатели в зависимости от их номинального тока условно делят на следующие величины (от нулевой до седьмой величины):
Номинальный ток пускателя для управления электродвигателем можно выбрать исходя из его мощности по следующей таблице:
Так же можно произвести расчет тока пускателя самостоятельно по следующей методике:
Номинальный ток пускателя должен быть больше либо равен номинальному току двигателя:
Iном. МП⩾ Iном. двигателя
Номинальный ток двигателя можно узнать из его паспортных данных, либо рассчитать по формуле:
Iном=P/√3Ucosφη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Так же расчет тока электродвигателя можно произвести с помощью нашего онлайн калькулятора.
Номинальный ток контактора используемого не для управления электродвигателем определяется исходя из тока управляемой им электросети:
Iном. контактора⩾ Iрасч. сети
Расчетный ток сети можно определить с помощью нашего онлайн калькулятора, либо рассчитать его самостоятельно по формуле:
Iсети=(Pсети*Кп)/cosφ, Ампер
- Pсети— суммарная мощность всего подключаемого к контактору электрооборудования, в киловаттах;
- Kп — коэффициент перевода (Для однофазной сети 220В: Kп=4,55; Для трехфазной сети 380В: Kп=1,52);
- cosφ — коэффициент мощности, принимается равным от 0,95 до 1 — для бытовых электросетей и от 0,75 до 0,85 — для промышленных электросетей.
3) По номинальному напряжению втягивающей катушки
Напряжение катушки — это параметр характеризующий величину напряжения которое должно быть подано на выводы катушки контактора для его срабатывания. Следовательно номинальное напряжение катушки определяет и напряжение цепи управления (напряжение на кнопках управления).
Существуют следующие стандартные значения номинального напряжения катушек контакторов (пускателей), Вольт:
12, 24, 36, 48, 110, 127, 220, 380, 500, 660 Вольт
Наиболее часто применяются контакторы с катушками на 220 и 380 Вольт, контакторы с катушкой на напряжение 48 Вольт и ниже как правило применяются в помещения с повышенной опасностью (особоопасных) в отношении поражения человека электрическим током, для того что бы напряжение на кнопках пультов управления было безопасным.
4) По номинальному напряжению изоляции
Номинальное напряжение изоляции контактора (пускателя) — это максимальное напряжение сети на которое рассчитана изоляция контактора (пускателя), превышение данной величины приведет к пробою изоляции и как следствие выходу из строя контактора. Следовательно номинальное напряжение контактора должно быть больше либо равно напряжению сети:
Uном. МП⩾ Uсети
В сетях напряжением 220/380 Вольт, как правило, применяются контакторы на номинальное напряжение по изоляции 400 либо 660 Вольт.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Что такое модульный контактор и для чего он нужен
Для включения/отключения электрических потребителей (в том числе мощных), необходим электромагнитный коммутационный аппарат, способный обеспечить дистанционное управление оборудованием. Таким прибором является модульный контактор, обладающий компактными размерами, способный работать без шума и вибрации. Благодаря своим качествам, он может применяться как на производстве, так и в быту и общественных заведениях. О конструкции устройства, его видах и технических характеристиках пойдет речь в данной статье.
Описание устройства, его назначение
Модульный контактор (МК) – это компактный электромагнитный прибор, предназначенный для коммутации силовых цепей постоянного и переменного тока в нормальных режимах. Это значит, что устройство не выполняет защиту оборудования от коротких замыканий, перепадов напряжения и других сетевых изменений, а также рабочих перегрузок.
Внешний вид модульных контакторов от разных производителей
Очертания, форма прибора, его габариты и наличие крепления на DIN рейку, позволяют ему эргономично вписаться в электрощите рядом с другими устройствами автоматики и защиты (автоматические выключатели, реле контроля фаз, прочее).
Устройства способны работать в сетях с напряжением до 660 Вольт и номинальным током до 100 Ампер.
Применение МК
Модульные контакторы могут применяться для подключения мощных промышленных потребителей и дистанционного управления ими. В сочетании с реле времени они способны осуществлять автоматическое включение/отключение системы вентиляции через определенные временные промежутки. Взаимодействуя с датчиком уровня, МК может выполнять коммутацию насосного оборудования, запуская его при поднятии жидкости к отметке max и останавливая при опускании до min значения.
С таким же успехом они используются в бытовых целях, например для управления электрическим отоплением. Команда на включение или отключение в данном случае подается температурным реле.
Одно из самых распространенных применений рассматриваемые устройства получили в схемах управления электрическими двигателями. С их помощью можно составить схему обычного пуска, либо предусматривающую реверс оборудования (изменение направления вращения).
Практический совет: При использовании МК для подключения электродвигателей, рекомендуется предусмотреть установку в цепи теплового реле, обеспечивающего защиту потребителя от перегрузки.
Основные составляющие элементы и принцип работы
Действие модульного контактора основано на его конструкции, которая заслуживает отдельного внимания. Все детали компактно размещены в корпусе из термостойкой пластмассы, обладающей достаточной прочностью. Зажимы вводных клемм расположены на лицевой панели, что облегчает доступ к ним даже в случае установки прибора в электрощите. Здесь же находится окошко индикации состояния МК (при включении в окошке появляется красный флажок).
Внутренняя конструкция устройства
Основные детали можно увидеть на приведенной ниже картинке, где:
2 – клемма вывода катушки управления;
3 – клемма силового контакта;
4 – неподвижный магнитопровод;
5 – сердечник (подвижная часть);
6 – катушка управления;
7 – кольцо магнитопровода (короткозамкнутое);
8 – неподвижный контакт;
9 – подвижный контакт;
10 – рычаг индикатора вкл./выкл.
Внутреннее устройство МК с указанием его основных частей
Принцип работы изделия
При включении прибора, напряжение подается на катушку, создавая электромагнитное поле, притягивающее подвижный сердечник к неподвижному магнитопроводу. Подвижные контакты приводятся в действие и производят замыкание или размыкание (в зависимости от исходного положения) с неподвижными контактами.
За счет системы рычагов движение якоря передается на индикатор, сигнализирующий о включении/отключении электрической цепи.
Виды и классификация изделий
Различают два вида контакторов: механические и электромагнитные. Последний вид получил наибольшее распространение благодаря ряду преимуществ, которыми обладает:
- бесшумная работа;
- отсутствие вибрации;
- применимость в цепях постоянного и переменного тока;
- наличие моделей для однофазных и трехфазных сетей;
- компактные габариты, допускающие установку на DIN рейку рядом с другими приборами.
Модульные контакторы выпускаются с разным количеством полюсов, от одного до четырех. Отсюда следует их классификация, как одно-, двух-, трех- и четырехполюсные.
Кроме того, МК могут отличаться по техническим характеристикам, например силе тока, номинальному напряжению, наличию дополнительных контактов. Данная информация указывается на передней панели изделия.
Схемы подключения потребителя через модульные контакторы
В зависимости от типа оборудования предусмотрены несколько вариантов коммутации с помощью рассматриваемого устройства. Наиболее используемыми являются:
- простая схема, с использованием одного МК;
- реверсивная схема;
- схема подключения однофазного потребителя.
Пример каждой схемы приведен на следующих ниже изображениях:
Простая схема подключения трехфазного двигателя через МК
На данной схеме, управление производится кнопками «Пуск» и «Стоп». От перегрузки электродвигатель защищен тепловым реле. Для предупреждения разрушительного действия токов короткого замыкания, в цепи предусмотрен автоматический выключатель.
Следующая схема изображает подключение электродвигателя с возможностью реверса (вращения вала в одну или другую сторону по выбору оператора). Такая функция необходима довольно часто, например, на подъемных установках или сверлильных станках.
Здесь также присутствуют средства защиты — автоматический выключатель и тепловое реле. Однако вместо одного коммутирующего устройства, устанавливаются два. Как известно, чтобы изменить направление вращения двигателя, необходимо поменять местами две фазы. Эту функцию и выполняет второй модульный контактор, у которого чередование фаз изменено.
Реверсивная схема подключения электродвигателя с использованием двух МК
Следующая схема демонстрирует подключение однофазного потребителя. В данном случае это электрический насос, хотя может быть и осветительная сеть или конвектор (принцип от этого не меняется).
Схема подключения насоса от однофазной сети через модульный контактор
Обзор фирм производителей модульных контакторов
Современный рынок изобилует множеством разных коммутационных приборов, среди которых присутствуют и электромагнитные. Модульные контакторы пользуются особой популярностью, в связи с чем, представлены разнообразными моделями, как отечественных, так и зарубежных производителей. Все они обладают высоким качеством и надежностью. Тем не менее, цены на изделия заметно разнятся.
Для сравнения, в таблицу сведены некоторые товары от разных фирм:
Название бренда | Страна | Наименование изделия | Количество полюсов | U ном., Вольт | Цена, руб. |
Schneider Electric | Франция | Acti 9 ICT 63A 4NO | 4 | 400 | 10780 |
IEK | Китай | КМ63-40 4Р 63А | // | // | 2000 |
ABB | Швейцария | ESB-63-40 (63A) | // | // | 5600 |
TDM | Россия | КМ63/4 4АР 63А | // | // | 1600 |
EKF | Россия | КМ 3Р 63А | 3 | // | 2500 |
Значения стоимости, указанные в таблице, представляют усредненные данные из интернет-магазинов, поэтому не могут использоваться в качестве ссылок или для составления смет.
Технические параметры указанных в таблице изделий схожи, однако, цены у всех разные. Во многом сказывается имя бренда, но выбор всегда остается за пользователем. Многие считают, что знаменитые производители лучше отслеживают качество продукции и, соответственно, заслуживают большего доверия. Главное не приобретать товар сомнительного происхождения.
Практический совет: Приобретая модульный контактор, необходимо интересоваться наличием сертификата соответствия на него, а также предлагаемыми гарантиями. Известные бренды всегда представляют на свои товары гарантийные обязательства.
Ошибки, допускаемые при монтаже МК
Наиболее часто встречаемые ошибки, совершаемые при подключении электрооборудования через модульные контакторы, являются следствием невнимательности или игнорирования правил эксплуатации.
Ошибка 1. Отказ от установки в силовую цепь защитных средств автоматики.
Это чревато нарушениями режима работы оборудования, которое оказывается незащищенным от аварийных режимов и сетевых изменений. Результатом может стать его выход из строя или поражение обслуживающего персонала электрическим током (в случае возникновения утечки тока на корпус).
Ошибка 2. Отсутствие на реверсивной схеме «защиты от дурака», то есть дополнительных контактов, исключающих одновременное включение двух режимов запуска.
Такой недочет может стать причиной короткого замыкания и серьезной поломки.
В заключение нужно отметить, что модульный контактор является универсальным коммутационным устройством, прекрасно подходящим для использования на производстве и в быту. Главное условие — соблюдение техники эксплуатации и правил безопасности.
Подключение электрических конвекторов через контактор
Отопление электрическими конвекторами отличается малой инерционностью. Чтобы поддерживать комфортную температуру, приборам приходится работать в повторно-кратковременном режиме. При высокой нагрузке и частоте включения невозможно разместить устройства коммутации в одном корпусе с термостатами, которые традиционно выполняются в виде компактной панели. Поэтому такой вид отопления подразумевает организацию двух сетей: нагрузочной или силовой, а также контрольной, которая управляет работой первой сети.
Компактные и модульные контакторы позволяют коммутировать достаточно высокие нагрузки — до 63 А на каждом полюсе. При этом сила тока в цепи питания самого контактора ничтожна, она редко оказывается выше нескольких десятых долей ампера. Столь малая нагрузка вполне по силам цепям управления термостатирующих устройств всех типов. Таким образом, включение и выключение нагревательных приборов выполняется ступенчато, что способствует увеличению срока службы и ремонтопригодности всей системы отопления.
Схема и принцип работы трёхполюсного контактора: 1 — неподвижные силовые контакты; 2 — подвижный сердечник с контактами; 3 — нагрузка; 4 — электромагнитная катушка
Важно понимать, что контактор способен управлять значительной нагрузкой не только за счёт более массивных токоведущих частей и увеличенной площади контакта. Механизм этих приборов предусматривает возможность сверхбыстрого замыкания и размыкания контактной группы, плюс внутри корпуса расположены устройства для ускоренного гашения электрической дуги. Именно эти отличия позволяют контакторам срабатывать по нескольку сотен раз в течение суток не испытывая перегрева и без образования нагара на контактных поверхностях. Поэтому установка контактора строго рекомендована даже если коммутационная способность релейной группы термостата (обычно 10 или 16 А) существенно превосходит токи потребления, например, при подключении к ней конвектора мощностью 500–800 Вт.
Метод управления
В отличие от магнитных пускателей для управления двигателями и другого рода потребителями, контактор для конвекторов работает по иному принципу. В случае коммутации электрических отопительных приборов не требуется устройство схемы самоподхвата. Таким образом, контактор не обязательно должен иметь дополнительные блокирующие контакты, их наличие приводит лишь к неоправданному удорожанию электрической установки.
Поскольку питанием катушки контактора управляет дополнительное устройство, схема сборки оказывается крайне простой. К месту установки терморегулятора прокладывается провод из трёх или более жил. Две из них — фаза и ноль — питания самого термостата. При этом фаза также используется в качестве питания средней точки релейной группы. Третья и прочие дополнительные жилы — возврат сигнала для подключения одного или нескольких контакторов.
Схема подключения конвекторов через контактор: 1 — автоматические выключатели; 2 — кросс-модуль; 3 — контактор; 4 — терморегулятор; 5 — электрические конвекторы
Место размещения терморегулятора определяется с учётом двух обстоятельств. Первое — требование к удобству доступа для управления, при этом терморегулятор не должен нарушать интерьерную композицию. Второй аспект — близость к месту размещения датчика температуры. Обычно термочувствительный элемент размещают на потолке, при этом температура отсечки выбирается на 3–4 °С выше той, которая должна соблюдаться в обитаемой зоне помещения. Гистерезис срабатывания выбирают в пределах 2–3 °С, таким образом, запас перегретого воздуха в верхней зоне обеспечивает минимальную инерционность, которая обеспечивает помещение остаточным теплом во время простоя нагревательных приборов.
Забегая вперед отметим, что такая схема управления не всегда оказывается самой удобной и потому не является единственной. Сам факт использования контакторов допускает возможность применения абсолютно разных систем управления: удалённого, таймингового, а также комбинированного и даже с переключением на ручное.
Место установки и проводка
Несмотря на компактные размеры модульных контакторов, их не принято размещать в жилых помещениях. Причина тому проста: модульный щиток даже скрытого типа нарушает внешний вид отделки, к тому же в процессе работы контакторы не могут похвастать абсолютно нулевым уровнем шума. Однако размещение устройств коммутации в обитаемых помещениях и не требуется, всё равно электроснабжение линий питания электрическим отоплением осуществляется от ВРУ, именно там лучше всего располагать управляющую сборку.
Естественно, все конвекторы в здании необязательно должны подключаться через один контактор, управляемый единственным терморегулятором. Как правило, для каждой жилой комнаты собирается своя схема, в которой, в зависимости от количества конвекторов, используется либо несколько однополюсных контакторов, либо один многополюсный. Подключение нескольких линий на один полюс контактора крайне нежелательно, иначе ремонтные работы на одном участке потребуют отключения всей группы.
Практика подключения мощных электроприборов отдельными линиями полностью вписывается в специфику современного электромонтажа. В отличие от розеточных групп общего назначения, в отопительной электросети не принято использовать распределительные коробки. От щита управления к каждому конвектору прокладывается отдельный кабель 3х2,5 мм2, к которому подключается только один нагревательный прибор.
В зависимости от плана здания, компоновка электрической распределительной сети может отличаться. Скажем, если в крупном здании имеется возможность размещения промежуточных щитков в необитаемой зоне, от ВРУ к ним будет следовать по одной магистральной линии, защищённой отдельными автоматами. В каждом щитке устанавливается сборка контакторов, подключенных сигнальным проводом к местному управляющему устройству, ну а дальше отдельными линиями прокладывается разветвлённая сеть питания потребителей.
Электрический монтаж
Типичная схема сборки электрощитка начинается с вводного устройства, в качестве которого в данном случае оптимально подходит дифференциальный автомат. Его выходные клеммы соединяются перемычками с кросс-модулем, от которого выполняется дальнейшая разводка. Поскольку контакторы не предназначены для защиты от токов короткого замыкания, для оптимальной компоновки электротехнических устройств лучше использовать двухрядные щитки. В верхнем ряду устанавливается требуемое количество автоматических выключателей для защиты каждой линии. Непосредственно под каждым из автоматов устанавливается соответствующий ему контактор, к которому подключается фазный проводник той линии, которой он управляет. При подключении кабелей питания конвекторов защитный и рабочий нулевые проводники не объединяются ни в одной точке схемы, их разводят на разные колодки кросс-модуля.
Схема подключения электрических конвекторов: 1 — вводной автомат; 2 — счётчик; 3 — УЗО/дифавтомат; 4 — кросс-модуль; 5 — автоматический выключатель; 6 — терморегулятор; 7 — датчик температуры воздуха; 8 — контактор; 9 — электрический конвектор
Ситуация осложняется в тех случаях, когда устройства управления также монтируются в модульном щитке. Это могут быть как программируемые термореле с выносным датчиком, так и приборы удалённого управления («Кситал») или логические контроллеры (CCU). В таких случаях щиток должен быть трёхрядным: в верхнем ряду устанавливают вводное устройство вместе с приборами управления и автоматики, нижние два отводят для размещения автоматических выключателей с контакторами.
Поскольку линии питания конвекторов относятся к проводке стационарного типа, их следует выполнять кабелем с однопроволочными жилами в виниловой изоляции. Такие жилы не требуют опрессовки для подключения к клеммам, достаточно просто зачистить их и свернуть в кольцо. При числе управляемых линий более двух крайне желательно выполнить маркировку: в месте ввода кабеля в щиток цепляется поясная бирка, при этом фазная жила обжимается соответствующей кабельной меткой на конце.
Проводка цепи управления, как говорилось, представлена кабелем с тремя или более жилами. Нейтральная (синего цвета) подключается к соответствующей колодке кросс-модуля, фазная — к выводу низкотокового защитного автомата. Остальные жилы согласно маркировке подключаются к клеммам катушек контакторов, обозначенным буквой А с индексом 1 или 2. Вторая клемма соединяется перемычкой с нейтральной колодкой кросс-модуля.
Примечание: такое подключение корректно только если напряжение питания катушек контакторов сетевое, если же используются устройства на 24 или 36 В, схема дополняется понижающим трансформатором. При этом в сигнальном кабеле, идущем к терморегулятору, должна быть предусмотрена дополнительная жила, по которой пониженное напряжение подаётся на среднюю точку контактов релейной группы терморегулятора.
Повышение гибкости работы системы
В заключение отметим, что работа электрических конвекторов в автоматическом режиме не всегда удобна. Так происходит, если один из группы нагревательных приборов, подключенных к одному терморегулятору, располагается вблизи рабочего места и температура в этой зоне существенно превышает комфортную.
Выход из такой ситуации заключается в установке на щитке переключателя на ручную работу, что можно сделать даже после полного завершения монтажа электросети. Суть заключается в том, чтобы врезать в корпус щитка обычный двухпозиционный тумблер с двумя группами контактов обязательно встречного типа включения. В этих же целях можно использовать и двойные модульные кнопки с фиксацией. Первый контакт устанавливается в разрыв фазы питания катушки, второй используется для принудительной подачи питания и, соответственно, включения линии на постоянной основе. При работе в ручном режиме конвектор управляется либо встроенным регулятором температуры, либо розеточным термостатом проходного типа.
Подключение конвектора через розеточный терморегулятор
Точно такой же принцип можно использовать для перевода системы с удалённого контроля на местную автоматику или для переключения на работу по таймингу, что часто используется в зданиях, не предназначенных для постоянного проживания. Разница в устройстве схемы небольшая: вместо того, чтобы переключать фазу питания катушки одного контактора, происходит встречная коммутация фазы питания терморегулятора и второго, альтернативного источника управляющего сигнала. Чтобы исключить встречное включение, достаточно не использовать один фазный провод для подключения контактной группы и питания самого устройства.
Как подключить реле времени к магнитному пускателю
Как правило, допустимая максимальная нагрузка любого реле времени не так велика, как необходимо. Для усиления выхода реле с целью управления более мощной нагрузкой разумно воспользоваться магнитным пускателем. Схема подключения к пускателю не представляет собой ничего сложного и любой начинающий электрик сможет осуществить такое подключение без особых сложностей.
Прежде чем приступить к изучению особенностей подключения, опишем особенности и назначения реле времени и магнитного пускателя.
Реле времени
Реле времени представляет собой простое современное автоматическое устройство. Здесь все понятно на интуитивном уровне и такие приборы очень широко используются в самых разных схемах для автоматизации технологических операций.
В наше время задачи реле времени могут выполняться программируемыми логическими контроллерами, однако, «старые» приборы еще не полностью вытеснены.
Предназначение реле времени — коммутация электроцепей с предварительно установленной временной выдержкой.
Современные реле времени представляют собой временные контроллеры, которые можно запрограммировать для решения конкретных задач.
Эти приборы способны обеспечивать нужный интервал времени, учитывая определенный алгоритм подключения элементов в электроцепи. Чаще всего они применяются при необходимости автоматического запуска устройств через определенный интервал времени, после того, как поступил основной сигнал.
Самые разные конструкции реле времени определяют применение прибора на бытовом и промышленном уровне.
Принцип работы определяет пять главных типов реле:
- Электромагнитное замедление. Такой прибор может применяться исключительно в цепях постоянного тока. Задержка во времени происходит из-за дополнительной обмотки, которая препятствует увеличению магнитного потока.
- Пневматическое замедление. Здесь применяется пневматический демпфер, который изменяет отверстие забора воздуха.
- Анкерный или часовой механизм. Здесь электромагнит взводит специальную пружину, которая замыкает реле после отсчета установленного времени.
- Использование двигателя. Здесь применяется синхронный электрический редуктор, двигатель и электромагнит. Первые два элемента сцепляются электромагнитом.
- Электронное реле. Здесь применяются микроконтроллеры, позволяющие программировать задержки включения.
Электромагнитный пускатель
Электромагнитный пускатель представляет собой электрический аппарат, который позволяет запускать, останавливать и защищать трехфазные асинхронные электрические двигатели.
Кроме того, эти приборы позволяют запускать и выключать любые виды нагрузки, к примеру, элементы нагрева, источники освещения и другие.
Производятся электромагнитные пускатели в одиночном или сдвоенном исполнении. Последние обладают механической защитой от одновременного запуска.
Приборы открытого исполнения используются в панельных установках, их применяют внутри закрытых специализированных шкафов, а также в других местах, которые надежно защищены от мелких частиц и механических повреждений.
В отличие от них, защищенные пускатели могут применяться внутри помещений, если среда не сильно запылена. Есть и пускатели, которые обладают надежной защитой от влаги и пыли, они могут использоваться как на внутренних, так и на наружных установках.
Особенности монтажа
Чтобы пускатель и реле времени смогли надежно работать, их нужно правильно установить. Устройства должны быть жестко закреплены.
Нельзя устанавливать приборы в местах, которые могут подвергаться ударам и вибрациям, например там, где установлены электромагнитные аппараты (больше 150 А), создающие удары и вибрации во время включения.
Если к контактам магнитного пускателя подключается один проводник, нужно загибать его П-образно, чтобы предотвратить перекос пружинной шайбы зажима.
Если подсоединяются два проводника, они должны быть прямыми, и каждый должен располагаться с одной стороны винта зажима. Обязательно нужно проверить надежность закрепления проводников.
Перед подключением к пускателю концы медных проводников нужно залудить, а многожильные скрутить. Однако нельзя смазывать контакты и подвижные детали пускателя.
Простая схема подключения
Для начала будет рассмотрена самая простая схема подключения реле времени. Первым делом нужно закрепить прибор на стене, он должен размещаться в строго вертикальном положении с допустимым отклонением примерно 10 градусов.
Также нужно учесть, что нормальная работа прибора возможна в диапазоне от –10 до +50 ºС. При этом максимально допустимая влажность должна составлять 80%.
Нужно убедиться в том, что прибор надежно закреплен. Также следует обесточить сеть. Только после этого можно приступать к его подключению. Нужно снять крышку реле и заземлить прибор. Затем подключить электрическую сеть к контактам, как показано на рисунке ниже.
Контакты, которые пронумерованы цифрами 1 и 2 используются здесь для подачи напряжения от сети 220 В. Для представленной на схеме модели таймера, питание подводится в верхней части, а для управления выключением и включением предусмотрены контакты в нижней части прибора.
В данном случае на разрыв отводится фазный проводник, а ноль подается на нагрузку (в данном случае электролампы).
Средний контакт под номером 4 использован для подачи фазы от электрического щита, она может коммутироваться отдельно с подключениями 3 или 5.
Соединение 4–5 является нормально открытым (н.о.), а 3–4 нормально замкнутым (н.з.). (Для тех, кто не понимает слово «нормально» — состояние, когда выходное реле не сработало, в том числе, когда нет напряжения питания на клеммах 1–2).
Это довольно простое подключение и выполнить его способен даже начинающий электрик.
Схема подключения к магнитному пускателю
Если реле времени используется для контроля работы более мощной нагрузки, например, электродвигателя, понадобится подключение магнитного пускателя.
Этот прибор предназначен здесь для запуска, а также разгона до номинальной скорости электрического двигателя. Также пускатель обеспечивает непрерывность его работы, при необходимости отключает питание, обеспечивая защиту электродвигателю.
Магнитные выключатели могут использоваться не только для подключения электродвигателей. Их широко применяют и при других многокиловаттных нагрузках, для подключения обогревателей, уличного освещения и другого.
Для подключения выбран магнитный пускатель типа C-09D10. Схема подключения выглядит следующим образом:
Каждый пускатель содержит два контакта, которые используются для подключения выводов катушки. При подаче на катушку будет создано магнитное поле, втягивающее подвижный сердечник с подвижными контактами и траверсой, которые к нему закреплены. В зависимости от марки пускателя рабочее напряжение может составлять 110, 220 или 380 В.
Как и в предыдущей схеме, можно задействовать н.о. контакты 4–5 или н.з. 3–4.
Запуск электродвигателя
Для того, чтобы запустить электрический двигатель используется схема «Звезда-Треугольник», которая включает применение независимой временной выдержки во время запуска с режима «звезда» и перехода двигателя в рабочий режим «треугольник».
Здесь применяется реле времени RT-SD. Прибор регулирует время отключения режима «звезда» от 1 с до 10 минут. Кроме того, предусмотрена регулировка времени от предустановленных настроек и переключение режима «звезда-треугольник».
Однако такое реле можно использовать и в системах бытовой и промышленной автоматики для регулировки работы отопительных и вентиляционных систем и осветительных приборов.
Преимущество использования реле времени RT-SD заключается в следующем. Движки большой мощности при запуске обладают пусковым током, который в 5–6 раз выше рабочего. Как раз поэтому во время запуска электродвигателя по схеме «звезда-треугольник» используется прибор RT-SD.
Он позволяет снижать пусковой ток мощных двигателей во время запуска в режиме «звезда», а также при переключении в режим «треугольник», обеспечивая работу электродвигателя на номинальных значениях.
Реле времени в данном случае представляет собой альтернативу прибору плавного пуска. И в силу дороговизны последнего, реле RT-SD применяется очень часто. Кроме того, при запуске электродвигателя также используется магнитный пускатель, который подключается к реле как показано на схеме выше.
Применение кнопочного поста совместно с реле времени
Реализовать возможность запуска двигателя не только от реле времени, но и от кнопочного поста можно, добавив второй пускатель и собрав специальную схему «подхвата».
Внешний вид кнопочного поста с двумя кнопками
Рассмотрим принципиальную схему ниже. При нажатии на кнопку «ПУСК» происходит срабатывание Пускателя 1 и замыкание соответствующего контакта K1.1, подключенного параллельно кнопке «ПУСК». При отпускании этой кнопки, напряжение питания продолжает поддерживать Пускатель 1 во включенном состоянии и, соответственно, параллельный контакт K1.1 — в замкнутом.
Одновременно с контактом K1.1 замыкается контакт K1.2, который непосредственно включает Пускатель 2, управляющий нагрузкой. В момент срабатывания реле времени происходит срабатывание «контакта реле времени» и включение Пускателя 2.
В момент нажатия на кнопку «СТОП» (по умолчанию она замкнута) происходит размыкание цепи и Пускатель 1 отключается. Состояние Пускателя 2 при этом будет зависеть только от состояния реле времени.
Пускатель может управлять, к примеру, двигателем или еще чем-то. Если числа его контактов не достаточно, то их количество может быть увеличено специальными приставками.
Запуск нагрузки кнопкой на заданное время
По просьбе читателя Сергея публикуем схему, реализовав которую, появится возможность запускать нажатием кнопки исполнительное устройство на заданное время. Например, двигатель. Устройство задержки РВО-П2-15 выбрано случайным образом, подойдет любое другое со сходными параметрами.
Схема простая и приводится без пояснений:
Для правильной работы РВО-П2-15, необходимо выполнить его настройку согласно паспорту:
Настройки реле обязательно проводить в отключенном состоянии!
- Чтобы устройство задержки включалось одновременно с подачей питания, необходимо DIP-переключатель 4 перевести в положение 2.
- DIP-переключателями 1–3 выбрать диапазон времени.
- Установить заданное время выдержки.
В окончание
Перед тем, как запустить собранную электрическую схему, нужно провести ее наружный осмотр, а также осмотр всех приборов.
Нужно убедиться, что все подключения осуществлены правильно и в случае подачи напряжения не произойдет замыкания или перегорания приборов. Также стоит проверить надежность закрепления проводников в зажимах.
Усиление выхода реле времени с помощью магнитного пускателя не представляет собой ничего сложно. Оно используется очень широко при подключении не только электродвигателей, но и других приборов промышленного и бытового типа.
Одной из главных задач мастера-электрика является изучение инструкции, которая прилагается к реле времени и магнитному пускателю.
Другая задача — правильно определить назначение зажимов на корпусе приборов. Если всё сделать грамотно, можно обеспечить успешное управление электроприборами на предприятии или в домашних условиях.
Где купить оборудование
Приобрести таймер или реле времени можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых приборов есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»: