Wabashpress.ru

Техника Гидропрессы
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Понижающие трансформаторы. Виды и работа. Особенности

Понижающие трансформаторы. Виды и работа. Особенности

Большинство электрических бытовых устройств работает от сети питания 220 В. Иногда необходимо понизить это напряжение до определенного значения, чтобы подключить низковольтные потребители нагрузки. Такими потребителями могут быть галогенные светильники, низковольтные нагреватели, светодиодные ленты и множество других.

Такое снижение напряжение могут выполнить понижающие трансформаторы, которые приобретают в магазине, или изготавливают самостоятельно. Такие трансформаторы популярны в электротехнике и радиоэлектронике, а также в бытовых условиях.

Особенности конструкции

Основной частью трансформатора выступает ферромагнитный сердечник, на котором расположены две обмотки, намотанные медным проводником. Эти обмотки разделяют на первичную и вторичную, в зависимости от принципа действия. На первичную обмотку подается сетевое напряжение, а с вторичной – снимается пониженное напряжение для потребителей нагрузки.

Ponizhaiushchii transformator konstruktsiia

Обмотки связаны между собой переменным магнитным потоком, который наводится в ферромагнитном сердечнике. Между обмотками нет электрического контакта. Первичная обмотка имеет большее количество витков, чем вторичная. Поэтому напряжение на выходе понижено.

Обычно понижающие трансформаторы со всеми элементами находятся в корпусе. Однако не все модели его имеют. Это зависит от фирмы изготовителя, а также назначения трансформатора.

Обозначение на схеме

Ponizhaiushchie transformatory oboznacheniia

Принцип действия

Работу понижающего трансформатора можно описать следующим образом. Действие трансформатора основывается на принципе электромагнитной индукции. Напряжение, подключенное на первичную обмотку, образует в ней магнитное поле, которое пересекает витки вторичной обмотки. В ней образуется электродвижущая сила, под действием которой возникает напряжение, отличное от входного напряжения.

Разница в количестве витков первичной и вторичной обмоток определяет разницу между входным и выходным напряжением понижающего трансформатора. В процессе функционирования трансформатора возникают некоторые потери электроэнергии, которые неизбежны, и составляют около 3% мощности.

Чтобы вычислить точные величины параметров трансформатора, нужно сделать определенные расчеты его конструкции. Электродвижущая сила может возникать при подключении трансформатора только к переменному току. Поэтому большинство бытовых электрических устройств работает от сети переменного тока.

Понижающие трансформаторы входят в состав многих блоков питания, стабилизаторов и других подобных устройств. Некоторые модели трансформаторов могут содержать несколько выводов на вторичной обмотке для разных групп соединений. Такие виды приборов стали популярными, так как являются универсальными, и обладают многофункциональностью.

Разновидности
Понижающие трансформаторы имеют различные исполнения, в зависимости от конструкции и принципа действия:

Ponizhaiushchie transformatory tipy

  • Тороидальные. Такой вариант модели трансформатора (рисунок «а») также применяется для незначительных мощностей, имеет сердечник формы в виде тора. Он отличается от других моделей малым весом и габаритами. Применяется в радиоэлектронных устройствах. Его конструкция позволяет достичь более высокой плотности тока, так как обмотка хорошо охлаждается на всем сердечнике, показатели тока намагничивания самые низкие.
  • Стержневые. На рисунке «б» изображен стержневой вид трансформатора, в конструкции которого обмотки охватывают сердечники магнитопровода. Такие модели чаще всего выполняют для средней и большой мощности приборов. Их устройство довольно простое и дает возможность легче изолировать и ремонтировать обмотки. Их преимуществом является хорошее охлаждение, вследствие чего требуется меньше проводников для обмоток.
  • Броневые. В этом виде трансформатора (рисунок «в») магнитопровод охватывает обмотки в виде брони. Остальные параметры идентичны стержневому виду, за исключением того, что броневые трансформаторы в основном выполняют маломощными, так как они имеют меньший вес и цену в сравнении с предыдущим вариантом, из-за простой сборки и меньшего количества катушек.
  • Многообмоточные. Наиболее популярными являются двухобмоточные 1-фазные понижающие трансформаторы.

Ponizhaiushchie transformatory obmotki

Для получения нескольких различных величин напряжений от одного трансформатора применяют несколько вторичных обмоток на сердечнике. Эти обмотки разные по числу витков и выдаваемому напряжению.

  • Трехфазные. Такая модель применяется для понижения напряжения трехфазной сети. Такие понижающие трансформаторы применяются не только в промышленности, но и для бытовых нужд.

Ponizhaiushchii transformator trekhfaznyi

Они могут быть изготовлены из 3-х однофазных трансформаторов на общем сердечнике. Магнитные потоки всех фаз в сумме равны нулю. Промышленные образцы проходят испытания по определенным параметрам. Результаты испытаний сравнивают с документацией. Если нет соответствия, то трансформатор подлежит выбраковке. 3-фазный трансформатор имеет соединение обмоток по схеме треугольника или звезды. Схема звезды характерна общим узлом выводов всех фаз. Соединение треугольником выполняется последовательной схемой фаз в кольцо.

  • Однофазные. Такие трансформаторы имеют подключение питания от однофазной сети, фаза и ноль поступают на одну первичную обмотку. Принцип их работы аналогичен всем остальным видам трансформаторов. Это наиболее популярный вид устройств.

Ponizhaiushchii transformator odnofaznyi

Основные свойства
Маркировка трансформаторов зависит от его свойств. Основными свойствами понижающих трансформаторов являются:
  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии. К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой. Проводники бывают различных форм сечения:
  • Круглая.
  • Прямоугольная (шина).
По способу намотки обмотки делят:
  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.
Достоинства и недостатки
Достоинства
  • Применение понижающих трансформаторов, как в промышленности, так и в домашних условиях можно объяснить необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.
Недостатки
  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.
Как выбрать понижающие трансформаторы
При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:
  • Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
  • Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
  • Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.
Читайте так же:
Фотоэлемент для включения света на улице
Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус. Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:
  • Наружный осмотр, очистка от пыли и грязи.
  • Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  • Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань. При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Как разобрать, перемотать, а потом собрать силовой трансформатор? FAQ Часть 4

В статье рассмотрены приёмы разборки, сборки и перемотке трансформаторов, в зависимости от конструкции каркаса и сердечника.

Самые интересные ролики на Youtube

Страницы 1 2 3 4

Как разобрать и собрать трансформатор?

Наиболее удобными для перемотки являются трансформаторы на витых броневых и стержневых магнитопроводах, так как их сборка и разборка занимает считанные минуты.

Однако при сборке требуется точное сопряжение отдельных частей магнитопровода. Поэтому при разборке, обязательно пометьте сопрягаемые части магнитопровода, чтобы в последствие их можно было правильно собрать.

При производстве витых броневых и стержневых магнитопроводов, лента наматывается на шаблон, а затем весь пакет разрезается. Половинки сердечника маркируются так, чтобы при сборке можно было восстановить положение сердечника имевшее место до разрезания.

Чтобы предотвратить вибрации и гудение, можно во время сборки склеить половинки магнитопровода клеем на основе эпоксидной смолой. Небольшое количество клея нужно нанести на зеркальные сопрягающиеся части магнитопровода.

Если после разборки магнитопровода, на нём остались остатки старой эпоксидной смолы, то их можно удалить при помощи самой мелкой наждачной шкурки (нулёвки).

При промышленной сборке, в смолу добавляют в качестве наполнителя ферромагнитный порошок.

При нескольких сборках и разборках трансформатора на витых броневых сердечниках, могут переломиться лапки стягивающего хомута.

Чтобы этого не произошло во время тестирования, можно стянуть магнитопровод 8-10-тью слоями изоляционной ленты.

Стержневые витые и штампованные магнитопроводы могут иметь как один каркас поз.2, так и два каркаса поз.1 с обмотками расположенными симметрично.

Первичные и вторичные обмотки двухкаркасных трансформаторов следует распределять равномерно на оба каркаса.

От взаимного положения каркасов, зависит относительная фазировка обмоток.

  1. Самодельный кольцевой трансформатор.
  2. Промышленный неразборный кольцевой трансформатор.
  3. Кольцевой витой магнитопровод.

Кольцевые магнитопроводы не требуют сборки-разборки, так как сами и являются каркасом для обмоток.

  1. Ш-образная пластина.
  2. Замыкатель.
  3. Трансформатор.

Броневые штампованные магнитопроводы, с так называемым Ш-образным железом, тоже можно перематывать, но их разборка может занять намного больше времени, чем все остальные операции. Дело в том, что при сборке таких трансформаторов, последние пластины набора часто вбиваются молотком. Если же трансформатор ещё и прошёл пропитку вместе с магнитопроводом, то разборка может превратиться в сущий ад.

Пластины пропитанного парафином магнитопровода после разборки можно сварить в воде, чтобы отделить от парафина. Парафин же легко удалить с поверхности воды после того, как он застынет.

Если магнитопровод пропитан лаком, то после разборки, пластины нужно хорошо прожечь в бензине, но это имеет смысл только при ремонте какой-нибудь дорогостоящей аппаратуры.

Чтобы было легче разобрать трансформатор, следует сначала удалить все замыкатели, а затем попытаться выбить несколько Ш-образных пластин с какого-нибудь края или середины, если в середине есть пластины установленные не в перекрест.

Пример разборки и сборки штампованного броневого магнитопровода.

Это выходной трансформатор лампового однотактного УНЧ, поэтому Ш-образные пластины и замыкатели собраны с магнитным зазором. Мне нужно превратить его в силовой трансформатор, для чего я должен собрать Ш-образные пластины в перекрест.

Чтобы быстро собрать трансформатор, можно сразу вставлять и Ш-образные пластины и замыкатели.

Очень часто у радиолюбителя после перемотки таких трансформаторов, остаются лишние пластины. Это снижает габаритную мощность трансформатора.

Для того чтобы все пластины вошли в каркас, вставляйте Ш-образные пластины и замыкатели заусенцами вниз.

Когда половина пластин будет вставлена, установите однообразно (не в перекрест) две Ш-образные пластины без замыкателей. Не вставляёте эти пластины до конца. Затем продолжите вставлять пластины до 2/3 всех пластин. Вставьте оставшуюся 1/3 часть Ш-образных пластин без замыкателей. Вот, что у Вас должно получиться. Обычно остаётся несколько пластин, которые невозможно всунуть в каркас и два десятка замыкателй.

Теперь нужно вставить оставшиеся пластины промеж двух заложенных ранее пластин и вбить их при помощи текстолитового или деревянного бруска и молотка. В завершение сборки магнитопровода, нужно вставить все замыкатели.

На картинке пластина броневого штампованного магнитопровода и трансформатор собранный из таких пластин. Это одна из самых неудачных конструкций магнитопровода. Во-первых, эти пластины не имеют отдельного замыкателя, что сильно затрудняет сборку-разборку, а во-вторых, они снабжены крепёжными отверстиями, проходящими через тело магнитопровода, что снижает габаритную мощность. От использования подобных трансформаторов лучше воздержаться.

Как намотать трансформатор?

В современных броневых и стержневых трансформаторах обмотки наматываются на жёсткий каркас. Поэтому, для закрепления каркаса, можно воспользоваться вот такими щёчками. Одну из щёчек нужно жёстко закрепить на шпильке двумя гайками, чтобы каркас вместе со щёчками при намотке не прокручивался относительно шпильки.

Вторая щёчка будет просто удерживать каркас.

Если же Вам попадётся какой-нибудь старинный трансформатор с картонным каркасом, то придётся выпилить деревянную бобышку размером чуть шире сечения магнитопровода, чтобы при намотке каркас не деформировался вместе с обмотками.

Длина бобышки должна быть равной или чуть больше высоты каркаса.

Читайте так же:
Станки для гибки листового металла

Каркас вместе с бобышкой можно прикрутить к шпильке подобным образом.

Я использую для перемотки трансформаторов вот такое нехитрое приспособление, которое с натяжкой можно назвать намоточным станком. В одни тиски зажимаю ручную дрель, а в другие счётчик оборотов.

Катушку с проводом закрепляю вот на таком мобильном устройстве, которое обычно стоит на полу, как раз под тем местом, где находится каркас.

Обмотки кольцевых трансформаторов можно намотать при помощи челнока. При мощности более 100 Ватт, число витков вторичной обмотки понижающего трансформатора столь мало, что намотка не вызывает серьёзных затруднений даже в отсутствие челнока.

Быстро изготовить челнок под любые размеры сердечника и диаметр провода можно из медной проволоки подходящего диаметра. Чем толще обмоточный провод, тем соответственно толще нужно выбирать и проволоку для челнока.

Как закрепить выводы обмоток трансформатора?

Если при намотке трансформаторов на броневых и стрежневых магнитопроводах, выводы катушки можно закрепить на контактах встроенных в каркас, то при намотке трансформатора на кольцевом магнитопроводе, такая возможность отсутствует.

Одним из способов решения этой проблемы является вывод концов обмоток гибким многожильным проводом. Особенно это полезно делать, если обмотка намотана сравнительно тонким приводом.

Припаиваем к началу катушки отрезок многожильного провода. Лучше, если это будет провод во фторопластовой изоляции (МГТФ), но можно использовать и любой другой.

Затем помещаем место пайки в небольшой кусочек электрокартона или бумаги сложенной пополам. Толщина электрокартона – 0,1мм.

Закрепляем электрокартон вместе с местом пайки на внешней стороне магнитопровода при помощи витков катушки.

К концу катушки так же, как и к началу, припаиваем отрезок многожильного провода и изолируем кусочком электрокартона. Закрепляем соединение при помощи толстых швейных ниток. Чтобы при завязывании узла нить не ослабла, можно закрепить её расплавленной канифолью или клеем.

Как изменить напряжение на вторичной обмотке не разбирая трансформатор?

Иногда возникает ситуация, когда необходимо скорректировать напряжение на вторичной обмотке понижающего трансформатора всего на 10 – 15%, но очень не хочется разбирать трансформатор.

Если на каркасе есть свободное место, то можно домотать дополнительную катушку не разбирая магнитопровод, а затем включить её в фазе или противофазе, в зависимости от того, нужно ли увеличить или уменьшить выходное напряжение. На картинке слева напряжение дополнительной катушки «II» складывается с напряжением основной катушки «III», а справа вычитается.

Программы для расчёта силовых трансформаторов.

Существует много разных программ для расчёта силовых трансформаторов. Их недостаток в том, что при вводе одних и тех же данных, результаты могут отличаться на 40-50%. И это не удивительно, так как вводимых данных явно недостаточно для точных расчётов. Кроме этого, не всегда понятно, что происходит в череве программы и какие коэффициенты она использует.

В общем, мне не удалось найти простую бесплатную программу, которая бы удовлетворяла моим требованиям. Если Вам известна такая программа, оставьте комментарий.

Если же всё-таки Вы желаете автоматизировать вычисления, можете скачать несколько программ, не требующих инсталляции (portable version), из «Дополнительных материалов».

О трансформаторе импульсном замолвите слово

Несмотря не то, что не так давно проскакивали довольно неплохо написанные статьи о расчете трансформатора импульсного источника питания, я предложу вашему вниманию свою методику, и не просто голую методику, а максимально прозрачное описание принципов, в ней использующихся.

Картинок не будет, будет около 18 несложных формул и много текста. Всех желающих приобщиться прошу на борт.

Я хочу поведать вам о том, как расчитать такого хитрого зверя, как импульсный трансформатор обратноходового источника питания. Обратноходовик, или FlyBack — это, наверное, самая популярная топология импульсного преобразователя. По моему мнению, в ИИП есть два очень важных и тонких момента — это трансформатор и петля обратной связи. В данной статье я хочу показать один из возможных наборов несложных математических уравнений, решая которые мы можем получить данные вполне реального трансформатора для флайбэка.

В интернете, в различных авторских статьях, или в AppNotes различных производетелей, можно найти различные методики расчета, которые зачастую максимально «сжаты», так, что из формул совершенно не понятно, как они получается. Я хочу сделать упор не на точность, а на максимальную наглядность и прозрачность производимых расчетов, так чтобы вы поняли, «почему так».

Далее постараюсь писать кратко и емко, так, чтобы вы смогли сесть и посчитать сразу после прочтения статьи. Эпюры напряжений и токов в обратноходовом источнике рисовать не буду, считаю, что вы достаточно подготовлены для того, что бы такие термины, как «индуктивность рассеяния», «отраженное напряжение», «пиковое значение тока через силовой ключ», «размагничивание магнитопровода» вам понятны.

Итак, считать будем трансформатор обратноходового источника питания, без корректора коэфициента мощности, как наиболее распространенный, да и «расчётка» моя пока только под него заточена.

Отдельно сделаю примечание, что подразумевается т.н. квазирезонансный режим работы преобразователя, когда накачка энергии в трансформатор начинается сразу после полного размагничивания магнитопровода. Т.е. т.н. «коэффициент безразрывности тока» =1, т.е. как только вся энергия вытекла через вторичную обмотку(и рассеялась в снабберной цепи), сразу включаем ключ и накачиваем снова. Такой режим в последнее время очень популярен в обратноходовых источниках питания, т.к. позволяет чуток поднять КПД.

Заранее оговорюсь — нижеприведенная методика весьма груба, но она «железобетонно» работает, многократно проверена на реальных трансформаторах в реальных источниках питания.

Для начала скачайте расчетку, откройте, пробегитесь глазами. В нее уже «вбиты» значения для расчета трансформатора источника питания, с выходной мощностью 100Вт.

Расчетка: к сожалению, по какой-то неведомой мне причине, публичная ссылка не отображается.
Возможно публикация публичных ссылок противоречит правилам. Надеюсь на то, что модераторы услышат этот крик души и снизошлют на меня персональную настройку фильтра, а пока можете переписать в Эксель, или маткад, все нижеприводимые формулы и получить годный результат.

Итак, поехали. Для того, чтобы начать расчет нам потребуется задаться несколькими исходными параметрами (все они выделены зеленым цветом в расчетке), а именно:

1. Выходная мощность источника питания для которого делаем трансформатор (POUTmax).
2. Выходное напряжение источника (Uout)(1).
3. Выходное напряжение служебной обмотки (Ubias)(2).
4. Минимальное напряжение питающей сети (UACmin)(3).
5. Максимальное напряжение в сети (UACmax)(3).
6. Уровень пульсаций на фильтрующем конденсаторе сетевого выпрямителя (Urpl)(4).
7. Ожидаемый КПД трансформатора (берите 0,85 и не прогадаете) (ŋ).
8. Частота работы преобразователя (5).
9. Пиковое значение тока протекающего через ключ коммутирующий первичную обмотку (ILPRpeak) (6).

Читайте так же:
Разъем для кабеля интернета

(1) Если выходные напряжения достаточно низкие- учитывайте прямое падение напряжения на диоде.
(2) В подавляющем большинстве конструкций источников питания, требуется третья обмотка, от которой будет питаться управляющая микросхема.
(3) Всегда берите с запасом, т.е. если указан диапазон 180-264, берите от 160 до 280.
(4) Этот параметр зачастую можно только угадать, берите 10% от постоянной составляющей на нем и не ошибетесь, по факту полученного рабочего прототипа «подрихтуете» расчет.
(5) Частота к преобразователях с ожиданием размагничивания сердечника- плавающая, берем «с потолка» такую, которую хотим получить при полной нагрузке.
(6) Я надеюсь вы в курсе, что форма тока треугольная, что коммутирует ключ, что такое ключ и т.п.

Итак, первая формула:
Начнем с определения индуктивности первичной обмотки, Lpr.

Для упрощения я выкину КПД, и множитель 1000, который нужен только для приведения результата к микроГенри от Генри, получится нижеследующее уравнение:

На первый взгляд совершенно непонятно как так получается. Давайте попробуем ее преобразовать. Перенеся множители справа-налево, получим.

Преобразуем правую часть, получим:

Итак, в левой части у нас энергия содержащаяся в индуктивности (учебник физики, если не понятно). В правой части имеем мощность которая расходуется за период работы преобразователя. Т.е. энергия запасенная в индуктивности первичной обмотки (на этапе накачки, от начала периода до размыкания ключа) равна мощности передаваемой в нагрузку за весь период T (от начала накачки, до полного исчерпания энергии в трансформаторе и начала нового импульса).

В установившемся режиме то, что закачали в трансформатор из сети, должно равняться тому, что слили в нагрузку. Т.е. все рассуждения предполагают, что наш источник уже работает, а не стартует.

Оставим-же пока эту формулу (1), мы потом воспользуемся ею в расчётке, я лишь хотел продемонстрировать как она так получается.
Теперь о параметрах. Присмотримся к формуле. Зафиксировав (выбрав на свое усмотрение) три из четырех неизвестных, мы можем получить значение четвертой.

Мощность (POUTmax), мы уже задали.

Частота, ее можно просто выбрать по своему желанию. Не мудрствуя лукаво тыкнем скажем 50кГц и не проиграем. Лезть за 150кГц не стоит, так как потери на переключение станут неоправданно высокими, да еще скинэффект, не нужно это нам во флайбэке.

Пиковое значение тока через первичную обмотку, и одновременно ключ- ILPRPeak, это параметр на нервах которого мы будем играть. Выбирая его значение ILPRPeak, мы изменяем Lpr, а вместе с ней еще много чего другого. В моей расчетке будем менять ILPRpeak и наблюдать за другими ячейками таблицы, в которых будут находится результаты других формул. Опять-же, ближе к реальности, для 100Вт источника можно задаться для начала ILPRpeak= 3…4A.

Просто попробуйте подставить в ячейку различные числа, и вы увидите, как изменятся другие производные параметры. В частности, выбирая пиковый ток «первички», мы смотрим на «отраженное» напряжение, и исходим из соображений наличествующих у нас ключей. Так же этот параметр влияет на пиковое значение тока «вторички», что тоже важно, ибо во флайбэках токи имеют форму прямоугольного треугольника, и пиковые значения в разы превышают действующие, т.е. если ток нагрузки 5А, то пиковое может быть и 50, ориентируйтесь на наличествующие диоды и потери в меди обмотки.

Тут упрощать нечего, думаю понятно, что мы получаем самое худшее значение постоянного напряжения, с учетом просадки на буферном конденсаторе, что стоит за сетевым выпрямителем, или за ККМ.

В формуле (3) мы вычисляем, сколько времени должен быть открыт ключ, чтоб ток в индуктивности, при приложении к ней нашего самого худшего UDCmin вырос от нуля до желаемого ILPRpeak.

Частотой мы задались ранее, период посчитали в (4). На 1000 умножаем потому, что желаемую частоту мы записали в кГц а не в 1000-х Герц.

Оставшаяся часть периода, которая будет посвящена передаче энергии в нагрузку, вычисляется по формуле (5).

Максимальный коэффициент заполнения для худшего напряжения в сети и максимальной просадки на фильтрующем конденсаторе вычисляем в (6).

«Отраженное» напряжение. Наш трансформатор, хоть и обратноходовый, но таки трансформатор, а значит коэффициент трансформации к нему так-же применим. Если на нашей вторичной обмотке во время протекания тока через выпрямительный диод, апряжение (например) 12.7В, то через соотношение количества витков это напряжение трансформируется в первичную обмотку (ведь магнитный поток «омывает» одновременно все обмотки).

Формула (7), немного хитрая, попробуем ее «раскрутить». Получим:

(7.1) Демонстрирует один очень важный момент, называемый в народе «равенство вольт*секундных интервалов». Возможно справедливость утверждения (7.1) не очевидна, или не сразу понятна, пока используем полученное с помощью (7) численное значение как есть, в его правомерности не сомневайтесь.

Надеюсь вы хорошо понимаете, что на обратном ходу, первичная обмотка, для постоянного напряжения, что на фильтрующем конденсаторе- просто кусок проволоки, т.е. если наш фильтрующий конденсатор все еще заряжен до 310В, то при разомкнутом силовом ключе, протекании тока через вторичную обмотку, постоянка попросту «проходит» через первичку и прикладывается к ключу, но вместе с ней, к ключу добавляется еще отраженное напряжение. И самое печальное, что оно суммируется с постоянкой. И это без учета выброса от индуктивности рассеяния, имейте это ввиду, в расчетке данное обстоятельство специально выделено красным шрифтом.

Тогда (8) показывает, какое напряжение будет приложено к силовому ключу на обратном ходу. Можно сразу прибавить к максимальному напряжению, на которое расчитан ключ, еще сверху вольт этак 200 и не ошибетесь. Макетирование покажет реальную амплитуду выброса напряжения порожденного индуктивностью рассеяния.

Теперь можем посчитать коэффициент трансформации трансформатора, например таким образом:

Я называю этот коэффициент трансформации «обратным», т.к. считается он задом наперед. Теперь классический коэффициент трансформации, который можно получить:

Далее посчитаем максимальное напряжение, которое будет приложено к выпрямительному диоду на прямом ходу преобразователя. Думаю вы хорошо понимаете, что оно будет складываться из напряжения на фильтрующем конденсаторе нагрузки, которое в рабочем режиме, можно считать постоянным, и трансформированного, через коэффициент трансформации, напряжения приложенного к первичной обмотке.

Читайте так же:
Режимы автоматической сварки под флюсом

И не забываем, что выбросы от паразитных индуктивностей обмоток трансформатора, действуют и на диод в т.ч. Если речь идет о источниках с высокими выходными напряжениями, берите запас по напряжению минимум 200В. Для низковольтных, как минимум 1.5, и внимательно смотрите осциллографом на выпрямитель.

Из (12) получаем индуктивность вторичной обмотки трансформатора. Правило которое используется в формуле гласит, что «индуктивности обмоток трансформатора соотносятся как квадраты их витков», т.к. выражение можно представить как:

Далее посчитаем пиковый ток вторичной обмотки. Готовьтесь получить тут достаточно большие цифры, потому, что это «обратноход», и ток у него во «вторичке» — треугольный, и пиковое значение может быть ощутимо больше тока нагрузки.

Данная формула преобразуется точно также как и первая формула для ILPRpeak.

В (14) вычисляется действующее значение тока через вторичную обмотку трансформатора. Обяснить почему корень из (1-Q)/3 я не могу, вероятно это можно объяснить построив эпюры и прибегнув к геометрии. Тут же прикинем и действующее значение тока первичной обмотки.

Итак, индуктивности, токи, частоты посчитали. А как выбрать магнитопровод, спросите вы, как расчитать немагнитный зазор? Для начала мы его «прикинем», основываясь на своем жизненном опыте, а «загнав» его параметры в расчетку, поглядев посчитанную индукцию, можно выбрать другой магнитопровод. Вот захотелось мне источник мощностью 100Вт, с выходным напряжением 12В. Беру я «с потолка» магнитопровод типоразмера PQ2620.

Из его Datasheet выписываю Ae, предполагаемый зазор, и Коэффициент индуктивности для данного зазора (в даташитах Epcos, часто приводится таблица со стандартными зазорами для данного магнитопровода, и значениях Al и эквивалентной проницаемости). Если-же данных о коэфициенте Al для желаемого вами зазора, нет, придется его(зазор) изготовить, намотать пробные 100 витков, и посчитать по простой формуле Al=√(L/N^2), где L- измеренное значение индуктивности на сердечнике с пропиленным вами зазором, N — количество витков, что вы набросали(рекомендую мотать пробных 100 витков).

Объяснять что Такое Ae, G, и Al не буду, предполагая, что вы и сами знаете, зачем нужен зазор в магнитопроводе, и что такое Al. Также в расчетку можно вписать эквивалентную проницаемость сердечника с зазором, но она там не используется, чисто для красоты). В формуле (16) считаем необходимое количество витков.

Один из самых важных параметров для трансформатора- пиковое значение потока магнитной индукции.

Превышать значение 0,3 я категорически не рекомендую, а 0,4 это уже катастрофа. Так совпало, что данный магнитопровод вроде как вполне подходит под наши нужды. Индукция меньше 0,3Тл, так и хочется его заложить под наши нужды. К сожалению, расчетка не содержит формул для расчета заполненности окна магнитопровода медью, поэтому дать по ней окончательный вердикт — нельзя.

Если же индукция больше 0,3Тл, можем или выбрать более крупный магнитопровод, или увеличить зазор. Увеличив зазор мы получим уже другое значение Al и соотв. значение потока индукции.

Вообще, жизненный опыт показывает, что лучше не лезть в зазоры более 1.5мм., ибо им свойственны свои паразитные явления, такие как выпучивание линий магнитного поля, разогрев витков находящихся вблизи зазора, до температур, при которых им может настать «хана», короче от 0.2мм до 1.5мм. Меньше 0.2- температурное расширение материала может существенно изменить параметры трансформатора. Больше 1.5мм — написал выше.

Выбирая магнитопровод, а именно сравнивая различные модели, только по поперечному сечению керна (Ae), можно упустить из виду то, что длина магнитной линии тоже влияет на Al при том-же сечении, и зазоре.

Например магнитопровод PQ2620 имеет площадь сечения керна 122мм.кв, а ETD34 только 97мм.кв., но длины магнитных линий этих магнитопроводов различны, и через ETD34 можно так-же успешно прокачать 100Вт, как и через PQ2620. Я к тому, что берите и подставляйте в расчетку все феррриты, что находятся вблизи тех размеров, что, как вам кажется, могут прокачать желаемую мощность.
После расчета магнитной индукции в расчетке идет расчет количества витков вторичной обмотки и вспомогательной обмотки, на них специально останавливаться не буду, методология та-же, что и ранее.

Я надеюсь написанное выше будет вам полезно. Разработка ИИП это огромный пласт прикладной науки, и сия «расчетка» лишь маленький листик одного из талмудов, в котором собран весь опыт человечества, но она крайне полезна в прикладном плане, для разработки простеньких «флайбэков».

Моя «расчетка» (а на самом деле не моя, а унаследованная от идейного вдохновителя) довольно примитивный инструмент, поэтому я могу порекомендовать использовать сборник программ Владимира Денисенко, что легко находятся через поисковик. Тех, кто «рубит» в «силовой» теме, и имеет что сказать- вэлкам в коменты. Любая критика приветствуется!

Что непонятно — спрашивайте, я дополню статью более детальными объяснениями.

Как понизить постоянное и переменное напряжение — обзор способов

Рассмотрим типовые ситуации, когда нужно опустить напряжение, чтобы подключить прибор, который работает от переменного тока, но напряжение его питания не соответствует привычным 220 Вольтам. Это может быть, как различная бытовая техника, инструмент, так и упомянутые выше светильники.

Подключение бытовой техники из США на 110 В к сети 220 В

Пожалуй, самая частая ситуация возникает, когда человек покупает из зарубежных интернет-магазинов какой-то прибор, а по его получении определяет, что он рассчитан на питание от 110 Вольт. Первый вариант – это перемотать трансформатор питающий устройство, но большинство приборов работают от импульсного источника питания, а для подключения электроинструмента – лучше вообще обойтись без перемотки. Для этого нужно использовать понижающий трансформатор. Кроме этого вы можете понизить напряжение в сети с помощью автотрансформатора или обычного трансформатора с отводами от первичной обмотки на 110-127В – такие часто встречались в советских телевизорах и других электроприборах.

Схема сетевого трансформатора

Однако при использовании такого включения трансформатора, если произойдет, обрыв части обмотки после отвода 110 Вольт (см. рисунок ниже) все 220В подойдут на прибор, и он выйдет из строя.

Обрыв в трансформаторе

Если говорить о готовых устройствах, то можно обратить внимание на автотрансформаторы «ШТИЛЬ».

Читайте так же:
Средство для чернения металла

Штиль

Важно! При покупке трансформаторов или автотрансформаторов учитывайте номинальный ток его обмоток и мощность, которую он выдержит.

Более надежным вариантом решения проблемы будет понизить напряжение с 220 до 110В или с 220 до 127В с помощью трансформатора. На рынке есть множество компаний, которые продают такие изделия, в основном это тороидальные трансформаторы. Они бывают в металлических боксах или корпусах меньших размеров со встроенной розеткой, а также в виде адаптеров в пластиковых корпусах.

Тороидальный трансформатор в боксе

Подведём итоги, перечислив основные требования к трансформатору для питания 110В приборов:

  1. На выходе трансформатора должно быть 110В, а на входе – 220В.
  2. Мощность трансформатора должна быть больше чем мощность подключаемого прибора хотя бы на 20%.
  3. Желательно защитить первичную и вторичную цепь с помощью предохранителя.
  4. Доступ к выводам высокого напряжения должен быть ограничен, а все соединения изолированы.

Понижаем напряжение для питания низковольтных светильников

В начале статьи мы упомянули о том, что переносной светильник должен питаться от пониженного напряжения. В быту этот вопрос будет особо актуален для автолюбителей при ремонте автомобиля в гараже. Такие же светильники используются и в качестве местного источника света на станках (сверлильных, токарных, заточных и прочих).

Трансформатор 220-36 В

Для того чтобы понизить напряжение с 220 до 36В, можно использовать трансформаторы марки:

  • ОСО 0.25 220/36В;
  • ОСМ 0.063кВт 220/36;
  • ОСЗР 0.063кВт 220/36В;
  • Ящик с понижающим трансформатором ЯТП-0,25 220 36В (это готовое решение в металлическом корпусе для монтажа в помещениях, класс защиты IP54).

Трансформатор 220-12 В

Для понижения напряжения с 220 до 12В можно использовать трансформаторы марки:

  • ОСО25 220/12В;
  • TRS 300W AC 220 B-AC 12B (тороидальный не занимает много места);
  • 30ВА, 230/12В, 2,5А INDEL TSZS30/005M (маломощный для установки на DIN рейку).

Понижение напряжения в доме

Наряду со скачками в электросети часто возникает проблема с повышенным и пониженным напряжением. Это приводит к преждевременному выходу из строя нагревательных приборов, ламп и других устройств у потребителя. Допустим вам нужно понизить напряжение с 260 до 220В, значит ваш выбор – использование стабилизатора напряжения. Они бывают разных типов, самый дешевый из них – релейный, по сути это автотрансформатор, в котором реле автоматически переключают отводы от обмотки.

Если вам нужно защитить конкретный прибор, например, компьютер – используйте маломощные модели мощностью порядка 1000 ВА (1 кВа), такие, как SVEN VR-L1000, его стоимость 17-20 долларов. Но учтите, что активная выходная мощность у них меньше указанной полной в Вольт-Амперах. К примеру, модель на 1 кВА, может питать нагрузку до 0,3-0,4 кВт. Также смотрите на характеристики. Указанная модель выдерживает до 285 Вольт, но большинство моделей упираются в 260 В.

Стабилизатор SVEN

Чтобы защитить весь дом в большинстве случаев хватит модели RUCELF SRWII-12000-L её полная мощность 12000 ВА, а нагрузочная способность по активной мощности – 10000 Вт. Он выдерживает входное напряжение вплоть до 270В.

RUCELF SRWII-12000-L

Более подробно узнать о том, как выбрать стабилизатор напряжения и какие бывают стабилизаторы, мы рассказывали в статьях:

Балластный конденсатор для питания маломощных устройств

Для питания маломощных устройств можно обойтись без трансформатора – одним конденсатором. Такая схема называется бестрансфторматорный блок питания на балластном конденсаторе. Принцип его работы основан на ограничении тока с помощью реактивного сопротивления ёмкости. Ниже вы видите варианты её реализации.

Схема балластного конденсатора

Расчёт ёмкости балластного конденсатора для бестранформаторного питания производится исходя из потребления тока нагрузкой и напряжения её питания.

Расчёт ёмкости балластного конденсатора

Или по такой формуле, результат они дают приблизительно одинаковый:

Формула для расчёта ёмкости балластного конденсатора

Кстати, выражение под корнем в результате при расчётах конденсаторов для питания устройств от 5-20В даёт примерно 220, или значение равное Uвходному.

Такой источник питания подходит для подключения приёмников, светодиодов, ночников, зарядки небольших аккумуляторов и других маломощных потребителей.

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

Схема зарядного устройства

А на плате он выглядит следующим образом:

Стабилитрон на плате

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

TL431 на схеме

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Параметрический стабилизатор

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

ИМС стабилизатор

Для питания более мощных потребителей удобно использовать импульсные преобразователи для понижения и регулировки напряжения от источника питания. Примером таких устройств являются платы на LM2596, а в англо-язычных интернет-магазинах их можно найти по запросам «DC-DC step down» или «DC-DC buck converter».

LM2596

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector