Wabashpress.ru

Техника Гидропрессы
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение Марки Кирпича По Прочности

Определение Марки Кирпича По Прочности

определение марки кирпича по прочности

Прочность кирпича – это свойство материала сопротивляться разрушению и деформациям под действием напряжений, возникающих от внешних нагрузок или других факторов (неравномерная усадка, нагревание и т.п.). Прочность материала обусловлена силами взаимодействия его структурных частиц (атомов, молекул). Количественно оценивается пределом прочности, т.е. предел прочности (временное сопротивление) – это напряжение, соответствующее наибольшей (разрушающей) нагрузке в момент разрушения материала к единице площади. Напряжение – это равнодействующая внутренних сил, приходящаяся на 1 см2 поперечного сечения материала. Разрушение – это ослабление между частицами при нарушении сплошности структуры. Различают хрупкое, т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение материала.

Оборудование для производства кирпича и плитки предполагает обязательное испытание тестовых образцов на пределы прочности, перед запуском линии на полную мощность. Далее мы подробней рассмотрим методы и подходы в определении прочности материалов.

Кирпич является стеновым материалом, поэтому при эксплуатации он испытывает сжимающие и изгибающие нагрузки. Для определения марки кирпича по прочности как на сжатие, так и при изгибе определяют на целом кирпиче, используя прессовое оборудование (рис. 1).

Для этого в местах опирания и приложения нагрузки поверхность выравнивают цементным или гипсовым раствором с песком состава 1:1 с В/Ц=0,4-0,42 или применяют прокладки из технического войлока, резинотканых пластин.

Предел прочности при изгибе RИЗГ, МПа, образца вычисляют по формуле

где F — разрушающая нагрузка, Н (кгс); l — расстояние между осями опор, мм (см); α — ширина образца, мм (см); b — высота образца по середине пролета, мм (см).

Схема испытаний кирпича на изгиб

Рис. 1. Схема испытаний кирпича на изгиб

Определение марки кирпича по прочности на сжатие

Предел прочности при сжатии определяют на образцах, состоящих из двух целых кирпичей или из двух его половинок. По ГОСТу допускается определять марку кирпича по прочности на сжатие при испытаниях на половинках кирпича, после его тестирования на изгиб. Для определения предела прочности при сжатии кирпича пластического формования из двух кирпичей или двух половинок изготавливают образцы в виде куба.

Для этого приготавливают цементно-песчаный раствор состава 1:1 с В/Ц=0,4-0,42. Кирпич погружают в воду на 1 мин. На горизонтальную пластину укладывают лист бумаги, слой раствора толщиной 3-5 мм и первый кирпич или его половинку, затем слой раствора и вторую часть образца. При этом поверхности излома при использовании половинок кирпича должны быть направлены в противоположные стороны.

Верхнюю поверхность второго кирпича или половинки выравнивают цементным раствором толщиной 3-5 мм, укладывают лист бумаги и прижимают стеклом.

Перед испытанием на марку прочности керамического кирпича, образец выдерживают в течение 3 суток в помещении при температуре (20±5) °С и относительной влажности воздуха 60-80 % для набора прочности цементно-песчаного раствора.

Определяя предел прочности при сжатии, можно для выравнивания поверхностей сухих образцов применять прокладки из технического войлока, резинотканых пластин, картона.

Образцы, выполненные по технологии Полусухое прессование керамического кирпича, испытывают насухо, не выравнивая их поверхности. Предел прочности при сжатии RСЖ, МПа, определяют по формуле

где F — разрушающая нагрузка, Н (кгс); А — площадь поперечного сечения образца как среднее арифметическое значение площадей верхней и нижней его поверхности, мм2 (см2). При вычислении предела прочности при сжатии образцов утолщенных кирпичей результаты вычислений умножают на коэффициент 1,2.

По значениям пределов прочности при сжатии и изгибе определяют марку кирпича по таблице на рис. 2.

Марка прочности кирпича

Рис. 2. Марка прочности кирпича глиняного обыкновенного

Упрощенный способ определения марки кирпича по прочности

Молоток массой 1 кг берут за нижнюю часть рукояти, локоть прижимают к туловищу у пояса, ударником молотка касаясь плеча. Удар наносят по наибольшей грани кирпича. В зависимости от степени разрушения кирпича по таблице на рис. 3 определяют его марку.

В условное обозначение стеновых керамических материалов (кирпичи, камни), кроме показателя марки по прочности, входит значение морозостойкости в количествах циклов замораживания и оттаивания и буквенные обозначения: К — керамический, Р — рядовой, Л — лицевой, П — пустотелый, О — одинарный, У — утолщенный (для кирпича), У — укрупненный (для камня), Пр — профильный. В конце обозначения указывается СТБ.

  • кирпич керамический рядовой пустотелый одинарный марки по прочности 150, по морозостойкости F15 будет иметь буквенное обозначение — кирпич КРПО-150/15/СТБ1160-99;
  • камень керамический рядовой укрупненный марки по прочности 150, по морозостойкости F15, будет иметь буквенное обозначение — камень КРУ 150/15/СТБ1160-99.

Рис. 3. Определение ориентировочной марки кирпича

Предел прочности кирпича

Предел прочности кирпича определяют нагружением до разрушения испытываемых образцов материала с помощью гидравлических прессов или разрывных машин (рис.4). Испытание проводят на образцах (кубах, цилиндрах, призмах, балочках), форма и размеры которых указаны в стандартах на соответствующий материал.

Читайте так же:
Почему нельзя перевозить холодильник лежа

Рис. 4. Пресс для испытания кирпича на прочность

Кирпичи в конструкциях подвергаются сжатию, растяжению, кручению, срезу, изгибу. В целом, некоторые строительные материалы хорошо сопротивляются сжатию и значительно хуже – растяжению и изгибу. Например, природные каменные материалы, бетон и др. Поэтому такие материалы используются в конструкциях, работающих преимущественно на сжатие. Металлы и дерево имеют высокую прочность, как на растяжение, так и на сжатие и изгиб. Поэтому их применяют в конструкциях, работающих на изгиб, сжатие и растяжение.

Вместе с тем разрушение кирпича, в физическом понимании, состоит в отделении частичек материала друг от друга. И особенностью поведения под нагрузкой, например, каменных (хрупких) материалов является то, что при сжатии они тоже разрушаются от растягивающих напряжений, возникающих в направлениях, перпендикулярных действию сжимающей нагрузки, т.е. вследствие разрыва материала в поперечном направлении. Разрушение их обусловлено развитием микротрещин отрыва, направленных параллельно действующему усилию. Сначала по всему объёму возникают микроскопические трещины отрыва. С ростом нагрузки микротрещины отрыва соединяются, образуя видимые трещины, направленные параллельно или с небольшим наклоном к направлению действия сжимающих сил. Затем трещины раскрываются, что сопровождается кажущимся увеличением объёма, и наступает полное разрушение.

Наклон трещин разрыва обусловлен силами трения, которые развиваются на контактных поверхностях – между плитами пресса и гранями образцов (кубов, призм). Поэтому после разрушения образцы (кубы) приобретают форму усечённых пирамид, сложенных вершинами. Если при осевом сжатии образца устранить влияние сил трения смазкой контактных поверхностей, трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление уменьшается примерно вдвое (рис. 5). Однако согласно стандартам, образцы материалов при определении прочности на сжатие испытывают без смазки контактных поверхностей.

Рис. 5. Схема деформирования образцов бетона при сжатии: а – при наличии трения по опорным плоскостям; б – при отсутствии трения

Предел прочности при сжатии или растяжении вычисляют делением максимальной нагрузки при разрушении образца (F) на площадь первоначального поперечного сечения (A):

Предел прочности при изгибе определяют на образцах призмах, расположенных на двух опорах. Сила (F) прикладывается, как правило, в середине образца.

где l – расстояние между опорами, см; b – ширина образца, см; h – высота, см.

Нагрузка выражается в меганьютанах (МН), площадь – в квадратных метрах (м2). Поэтому предел прочности, как и напряжение, в Международной системе единиц (СИ) измеряется МН/м2 или в МПа. В некоторых нормативных документах сохраняется размерность показателя предела прочности в технической системе единиц – кгс/см2.

На величину прочности испытываемых кирпичей оказывают влияние размеры и форма образцов, характер обработки их поверхности, скорость нарастания нагрузки и другие факторы. Поэтому при испытании кирпича необходимо строго придерживаться указаний стандарта.

Согласно статистической теории прочность образцов лимитирована дефектами, содержащимися в их объёме. С увеличением объёма образца повышается вероятность существования в нем крупного дефекта. Поэтому средняя прочность образцов одного и того же материала возрастает с уменьшением их размеров. Такая зависимость получила название масштабного фактора. Чтобы исключить влияние масштабного фактора при установлении прочности материалов, надо либо строго придерживаться стандартных размеров образцов, либо пользоваться масштабными коэффициентами, равными отношению прочности образцов произвольных размеров к прочности стандартных образцов.

Различают теоретическую (прочность с идеальной структурой) и реальную (техническую) прочность кирпича. Теоретической прочности соответствует напряжение, возникающее в кирпиче, равное силе межатомного притяжения. Считается, что значения прочности материалов, полученных экспериментально, на несколько порядков меньше значений теоретической прочности. Это обусловлено дефектами структуры существующих материалов, из-за чего нагрузка при испытаниях распределяется неравномерно по сечению образца.

Предел прочности при сжатии кирпича колеблется в довольно широких пределах. Например, у керамического кирпича от 7,5 до 30 МПа, у бетона – до 115 МПа и более (рис. 6).

Рис. 6. Прочность и модуль упругости некоторых строительных материалов

По прочности строительные материалы обычно подразделяют на марки, классы или сорта. Методы испытания для определения прочности путём разрушения испытываемых образцов называются разрушающими. Однако традиционные методы определения прочности с изготовлением стандартных образцов не всегда соответствуют реальной прочности материала в конструкциях. Более достоверными результаты могли быть при испытании выбуренных кернов из конструкции. Однако это приведёт к ослаблению конструкций.

Читайте так же:
Радиус основания конуса 3 м

В строительной практике применяются и неразрушающие способы контроля прочности. Количественная оценка свойств материала такими способами производится по косвенным показателям – скорости распространения ультразвукового импульса (ультразвуковой способ), по частоте собственных колебаний (резонансный), величине пластической деформации (механические) и др.

Из механических методов наиболее распространён так называемый метод НИИ Мосстроя с помощью молотка конструкции К.П. Кашкарова или Н.А. Физделя (рис. 7). Он основан на том, что при ударе молотком по поверхности испытываемого материала одновременно образуется два отпечатка: на материале и на эталонном стержне в молотке. Затем по величине соотношения диаметров отпечатков и предварительно построенному тарировочному графику определяют прочность материала ГОСТ 26690.

Коэффициент конструктивного качества (удельная прочность) оценивается по отношению прочности материала к его средней плотности. Наиболее эффективными являются материалы, имеющие наименьшую плотность и наиболее высокую прочность. Физически коэффициент конструктивного качества выражает собой максимальную высоту столба из данного материала, когда в основании под действием собственной массы возникают разрушающие напряжения.

Рис. 7. Молоток Кашкарова для определения прочности строительного материала

Прочность грунтов на одноосное сжатие. Группы скальных грунтов.

Рассмотрим подробнее, какие типы скальных грунтов бывают по прочности.

Москва. 08 сентября, 2021

Метод проведения испытания изложен в ГОСТ 12248-2010. Для организации испытаний применяется образец грунта с ненарушенным сложением. В зависимости от типа грунта, требования к образцу варьируются.

Требования к образцам при проведении испытаний.

Для грунтов скальных и полускальных типов: (крупнообломочных, трещиноватых, песчаных):

• Форма – кубическая или цилиндрическая;
• Сечение – от 40 до 100 мм (для трещиноватого – от 60 мм);
• Соотношение диаметра к высоте – 2:1,8;
• Максимальный размер частиц – 1/10 диаметра или стороны;

Для глинистых грунтов:

• Форма – цилиндр;
• Диаметр – от 38 мм;
• Соотношение диаметра к высоте – 2,5:1,8;
• Максимальный размер включений и агрегатов – до 1/6 диаметра;

пресс для проведения испытаний на одноосное сжатие скальных грунтов

Оборудования и инструменты для проведения испытаний грунтов.

  1. Пресс с отполированной поверхностью для создания вертикальной нагрузки;
  2. Прибор для измерения вертикальной и поперечной деформации грунта.

Образец ставят в центре опорной плиты пресса, пресс опускают на образец. Скорость увеличивают постепенно, по 0,1-0,5 МПа/с для скального и полускального типов грунтов, и на 0,5-0,2 МПа/с для глинистого.

Далее проводят замеры вертикальной деформацию с точностью до 0,01 мм для глинистого грунта и до 0,001 мм для прочих типов грунтов. За время проведения испытаний фиксируют от 10 промежуточных результатов.
Процесс сжатия происходит до того момента, пока грунт не начнет разрушаться. Глинистые грунты могут продолжительное время оставаться целыми. Посему их прочностные характеристики определяют в момент, когда деформации подвержен образец на 15% от первоначальной высоты.

После завершения опыта предел прочности вычисляют по формуле:

Прочность на одноосное сжатие разных типов грунтов

Прочность на одноосное сжатие имеет весомые отличия, в зависимости от типа, анализируемого грунта. На прочность влияют такие факторы как структура материала, а также иные факторы.

Как измерить прочность на одноосное сжатие скальных грунтов

Также прочность на одноосное сжатие зависит от типа, анализируемого грунта. На прочностные характеристики влияют также факторы, такие как структура материала, а также иные факторы.

Все типы скальных грунтов относятся к самым прочным породам. Их показатель прочности меняется, ориентируясь на несколько факторов, такие как:

Особенность структуры грунта
Максимальную прочность имеют связи в кристаллических решетках минералов горной породы, преобладающие в магматических и метаморфических грунтах. Также не уступают им цементационные, образованные глинистыми минералами, известняком, железистыми и кремнистыми соединениями. Они встречаются во всех типах скальных грунтов. Гораздо слабее смешанные и коагуляционные контакты между частицами, которые быстро растворяются в воде.

Дисперсность
Скальные грунты – это неоднородные материалы. Они состоят из зерен разного размера, прочно связанных между собой кристаллическими или цементационными связями. Чем больше выражена зернистость, тем лучше грунт переносит вертикальные нагрузки. Крупные кристаллы менее устойчивы к нагрузкам, чем мелкие.

Дефекты
Чем больше в грунте дефектов (в кристаллических решетках, внутри агрегатов и конгломератов, между разными частями массива), тем легче он поддается разрушению. Наибольшей прочностью обладают однородные скальные и метаморфические грунты с минимальным количеством дефектов – гранит, мрамор, кварцит.

Выветрелость, пористость и трещиноватость
Эти три параметра тесно связаны между собой. Чем больше степень выветривания грунта, тем больше в нем появляется трещин и пор разного размера. Это негативно сказывается на прочности материала при одноосном сжатии.
Наибольшей выветрелостью обладают грунты, которые располагаются близко к поверхности. Осадочные породы быстрее разрушаются под воздействием факторов внешней среды, чем магматические или метаморфические.

Читайте так же:
Смазка для триммера штиль

Влажность
Вода и растворенные в ней соли – это агрессивная химическая среда. Она проникает в мельчайшие поры и трещины, способствует ослаблению и разрыву связей между минералами. Влага действует на грунты как растворитель, порода под ее действием размягчается. Такое явление наиболее свойственно осадочным грунтам – загипсованным известнякам и доломитам. Это способствует снижению сопротивления грунта вертикальной нагрузке.

Прочность может временно повышаться при полном заполнении пор грунта жидкостью. Но после отжатия воды под действием пресса он снижается.

В таблице представлена прочность на одноосное сжатие некоторых скальных грунтов.

Большая разница между минимальным и максимальным показателем связана со степенью выветрелости и трещиноватости грунта. Они зависят от расположения массива. Чем ближе он к поверхности земли, тем более разрушающее действие оказывает на грунт внешняя среда. На показатель в каждом конкретном случае могут также повлиять минеральный состав и наличие слабых пород.

Как видно из таблицы, самой большой прочностью при одноосном сжатии обладают магматические грунты. Среди них выделяются гранит, диорит, базальт и габбро. Почти не уступают им кварциты из группы метаморфических грунтов. Высокой прочностью также обладает известняк с включениями кварца.

Скальные и полускальные грунты разделяются на типы по прочности на основе сопротивления одноосному сжатию (ГОСТ 25100-2020).

Информацию об этом вы найдете в таблице:

Как измерить прочность на одноосное сжатие дисперсных грунтов

Дисперсные грунты состоят из отдельных частиц разного размера. Они могут связываться между собой в конгломераты и агрегаты. Контакты между зернами цементационные, коагуляционные, физические (за счет силы трения).

Прочность дисперсных грунтов намного ниже, чем у скальных.

На показатель влияют такие факторы:

Он во многом определяет тип связей между частицами и дисперсность грунта. Глинистые минералы (монтмориллонит, каолинит) способны связывать воду, за счет чего возникают дополнительные коллоидные связи между отдельными частицами. Дисперсность монтмориллонитовых грунтов выше, чем у коалинитовых, поэтому и контактов между отдельными зернами больше. Такие глинистые грунты обладают большей прочностью на сжатие.
Показатель зависит и от содержания катионов в грунте. Она увеличивается при высоком содержании натрия, гидрата азота, марганца, снижается при появлении магния, кальция и калия. Самые низкие показатели у грунтов с высоким содержанием алюминия.

В естественном сложении дисперсный грунт обладает большей прочностью. При нарушении его природной структуры разрушается часть физических и коагуляционных контактов, что делает грунт более чувствительным к нагрузкам.

Прочность возрастает, если давление прикладывается перпендикулярно грунтовых слоев.

От количества влаги зависит консистенция грунта. Она бывает твердой, полутвердой, пластичной и текучей. Лучше всего сопротивляются вертикальному давлению твердые и полутвердые глинистые грунты. В них преобладают прочные цементационные связи. При увеличении влажности контакты ослабевают, на первое место выходят слабые коагуляционные связи. Поэтому грунт теряет прочность.

При одноосном сжатии плотность увеличивается, а вместе с ней растет и прочность. Но эта закономерность нелинейная. В определенный момент, при максимальной плотности, показатель прочности почти не меняется.

При вертикальных нагрузках крупные зерна разрушаются быстрее, чем мелкие. Поэтому неоднородные грунты с крупными включениями более слабые, чем мелкозернистые.

Среди дисперсных грунтов самой высокой прочностью обладают литифицированные (окаменевшие) сухие глины. Но при повышении влажности они довольно быстро теряют это качество.

Прочность на одноосное сжатие мерзлых грунтов

Основной фактор, который влияет на сопротивление сжатию мерзлых грунтов, – это включения льда. Они выступают цементирующим веществом и обеспечивают прочные контакты между отдельными частицами.

Самые высокие показатели наблюдаются при влажности 80-90%. Когда она возрастает, прочность на сжатие падает из-за морозного пучения. Показатель снижается, если температура приближается к нулю, так как это вызывает таяние леденистых включений.

Значение имеет и тот факт, в какой форме находится лед. Прочность высокая, когда в грунте есть много тонких прослоек льда (до 10-30 см в толщину). Мелкие кристаллы в порах негативно влияют на показатель. Снижается способность к сопротивлению вертикальному давлению при наличии в грунте массивных ледяных глыб (с толщиной, превышающей 30 см).

Прочность грунтов на сжатие важно определять перед началом любого строительства. Она позволит правильно рассчитать тип фундамента, этажность здания. Правильно вычислить показатель могут только специалисты. Поэтому экономить на профессиональных геодезических исследованиях не стоит.

Прочность при сжатии

Прочность при сжатии – важное механическое свойство. Характеризуется пределом прочности породы при сжатии в сухом состоянии. Действующий стандарт на блоки подразделяет породы по Этому показателю на три класса: прочные (свыше 80 МПа), средней прочности (40—80 МПа), и низкопрочные (5—40 МПа).

Читайте так же:
Последовательное соединение проводников формулы

Рис. 16. Схема гидравлического пресса для испытаний образцов на сжатие

Стандарт на камни бортовые (ГОСТ 6666—81) допускает изготовление этой продукции из горных пород с пределом прочности при сжатии не ниже, МПа: для изверженных пород – 90, метаморфических и осадочных – 60. Стандарт на камни брусчатые (ГОСТ 23668—79) допускает изготовление их из изверженных пород с пределом прочности не ниже 100 МПа. Стеновые камни из горных пород (ГОСТ 4001 – 84) в зависимости от предела прочности при сжатии подразделяются на 14 марок (от 4 до 400).

1 – станина; 2 – гидроцилиндр; 3 – поршень, 4 – нижняя плита; 5 – испытываемый образец камня; в – верхняя плита; 7 – установочный винт; 8 – манометры; 9 – насос

Определение предела прочности горных пород при сжатии производят на пяти образцах кубической формы с ребром 40—50 мм или цилиндрах диаметром и высотой 40 – 50 мм. Каждый образец перед испытанием очищают щеткой от рыхлых частиц, пыли и высушивают до постоянной массы. Затем тщательно обрабатывают на шлифовальном станке грани образцов, к которым будет приложена нагрузка, для обеспечения их параллельности. После этого образцы измеряют штангенциркулем, устанавливают в центре опорной плиты пресса (рис. 16), имеющей разметку для центровки образцов, и прижимают верхней плитой пресса, которая должна плотно прилегать по всей поверхности верхней грани образцов.

Нагрузку на образец при испытании увеличивают непрерывно и постоянно со скоростью, обеспечивающей его разрушение через 20—60 с после начала испытаний. Величина разрушающей нагрузки должна составлять не менее 10 % от предельно развиваемого прессом усилия. Момент разрушения образца устанавливают по началу обратного движения указательной стрелки силоизмерителя при работающем нагружающем устройстве.

Предельную (разрушающую) нагрузку определяют по положению -фиксирующей стрелки пресса. Если она отсутствует, надо внимательно следить за указательной стрелкой. За предельную нагрузку принимают наибольшее число делений, достигнутое движущейся стрелкой. При испытаниях образцов низкопрочных пород разрушение более продолжительно и нередко наблюдается плавный сброс нагрузки; в этом случае за предельную нагрузку принимают наибольшее число делений по шкале, которое было достигнуто указательной стрелкой.

Для вычисления предела прочности при сжатии определяют разрушающее усилие непосредственно по силоизмерителю или по тарировочным таблицам, прилагаемым прессу. При использовании манометров разрушающее усилие может быть определено как произведение площади поршня пресса на максимальное давление масла в прессе в момент разрушения образца (по показанию манометра).

Предел прочности образца при сжатии Rсж, МПа, вычисляют с точностью до I МПа по формуле

где P – разрушающее усилие пресса, Н; F – площадь поперечного сечения образца, м 2 .

Предел прочности породы при сжатии вычисляют как среднее арифметическое результатов испытаний пяти образцов. Значения этого показателя для большинства видов облицовочного камня, используемого в строительстве, даны в приложении.

Кроме предела прочности горных пород при сжатии в сухом состоянии, в процессе проведения испытания обычно определяют также и значение этого показателя у пород в водонасыщенном состоянии, что необходимо для оценки размягчения породы. Эти испытания проводятся аналогично вышеописанным (испытания сухих образцов) с той лишь разницей, что перед раздавливанием на прессе образцы выдерживаются в сосуде с водой комнатной температуры в течение 48 ч.

Прочность бетона на сжатие

Прочность бетона на сжатие

Когда перед человеком возникает вопрос о покупке бетонной смеси или готового изделия, то в первую очередь он задумывается о качестве продукции, ведь это напрямую связано с безопасностью строительного сооружения.

Определение понятия прочности бетона: марка и класс

Основополагающей характеристикой бетона является его показатель прочности, который выражается в виде класса и марки.

Для выполнения необходимых задач в строительстве пользуются соответствующими классами. Так, для гидросооружений нужен один класс, а при бетонировании фундамента под одноэтажный дом – другой.

Марка бетона «М» выражает усреднённые значения прочности, единицы измерения – кгс/см 2 , класс бетона обозначается литерой «В» и выражается в МПа. Разница между этими двумя понятиями выражается не только в виде буквы и единицы измерения.

Главное отличие заключается в том, что марка указывает на среднюю величину предела прочности, а класс – на точные значения, расхождение составляет меньше 5%. Для сложных расчётов используют класс бетона, т. к. с применением марки возникает риск ошибки, при котором настоящие показатели окажутся меньше расчётных. Например, в характеристиках указывается М100 и В7,5. Расшифровывается это так: точное усилие, необходимое для разрушения, составит 7,5 МПа, а обобщенная нагрузка равна 100 кгс/см 2 , т. е. фактически эта цифра может быть и 105, и 103,6, и 93, и 97,2 и пр.

Читайте так же:
Технология газовой сварки стали

Класс и марка бетона по прочности на сжатие по ГОСТ

Таблица 1 – Сравнительная характеристика бетонов разных классов и марок

Масштабный коэффициент α бетона

Документы, которые применяются при определении прочности

Требуемая прочность жёстко регулируется. Есть в наличии несколько основных документов для вычисления этой характеристики:

  • ГОСТ 10180-2012 – применяется для образцов из готовой бетонной смеси;
  • ГОСТ 28570-2019 – рассчитан для бетонных образцов;
  • ГОСТ 22690-2015 – для крупных сооружений без создания проб-образцов.

Способы определения прочности: испытание бетона на сжатие

Существует два метода:

  • разрушающий;
  • неразрушающий.

При первом способе измеряют минимальные усилия, приложенные для поломки кубов и цилиндров, которые вырезают, выпиливают или выбуривают из целых изделий. Скорость увеличения силы нагрузки при этом постоянна. После выполнения испытания вычисляется итоговое значение таких усилий.

При втором способе нахождения требуемого показателя воздействуют механически на заданное место (удар, отрыв, скол, вдавливание, отрыв со скалыванием, упругий отскок). Точка приложения прибора не должна быть на краю или напротив арматуры. Далее находят результат по выраженной градации.

Рассчитывать на полную правдивость не стоит, имеется погрешность до 10 % для каждого из видов проверок.

Как выбирают образцы при разрушающем методе

  1. Пробы из бетонной смеси.

Для испытаний приготавливают образцы кубической и цилиндрической формы. Эталонным считается куб с длинной грани 150 мм.

  • Все экземпляры создают в специальных формах, перед использованием конструкции смазывают маслом. Далее наполнят её бетонной смесью и уплотняют.
  • Утрамбовывают при помощи штыкования стальным стержнем, виброплощадки или глубинного вибратора.
  • Через сутки все затвердевшие образцы достают и размещают в боксе с нормальными условиями (влажность – 95%, температура – +20 °С). Иногда заготовки размещают в водной среде или в автоклаве.
  1. Образцы из готовых бетонных изделий.

Экземпляры для проверки прочности получают методом вырубки, выпиливания или выбуривания из целых изделий. В месте отбора не должно быть арматуры в точке, где извлечение не понесёт за собой снижение несущей способности. Пробы делают вдали от стыков и края изделия. Образцы извлекают из средней части пробы как на рисунке.

Горизонтальное формование бетона

Вертикальное формование бетона

Предварительная подготовка к испытаниям

Прежде чем приступить непосредственно к испытаниям, все образцы измеряют и осматривают – нет ли трещин, сколов, рытвин. Если имеются скалывания более 10 мм, рытвины диаметром 10 мм и более и глубиной от 5 мм, образцы выбраковывают.

Также производят обмеры на наличие линейной погрешности, несоответствие перпендикулярности близлежащих граней, смещения от прямолинейности и плоскостности. Если обнаружены такие недочёты, грани и плоскости подвергают шлифованию или выравнивают быстротвердеющим веществом толщиной не больше 5 мм.

Как образцы бетона проходят испытания

Все приготовленные образцы одной группы испытывают на прочность в течение одного часа. Силовое нагружение производят не прерываясь, с постоянной скоростью увеличения нагрузки до разрушения. При этом, время от начала нагружения до его окончания – не меньше 30 с.

Во время проверки пользуются специальными строительными стендами:

  • образцы кладут на нижнюю плиту пресса по центру;
  • после совмещают верхнюю плиту и экземпляр, чтобы они находились плотно друг к другу;
  • далее подают силовую нагрузку со скоростью 0,6±0,2 МПа/с.

Расчёты испытаний: формула

Прочность бетона на сжатие (R, МПа) считают с погрешностью до 0,1 МПа по формуле:

Формула расчета прочности бетонаОбозначения:

  • F – максимальная сила, Н;
  • A – площадь грани под нагрузкой, мм;
  • α – масштабный коэффициент, который приводит прочность к эталонной;
  • KW – коэффициент, необходимый для ячеистого бетона, учитывающий влажность образцов.

Коэффициенты высчитывались экспериментально и представлены в таблице 2.

Таблица 2 – Масштабный коэффициент α

Сравнительная характеристика бетонов разных классов и марок

KW = 1, исключение – ячеистый бетон, его можно найти в таблице ГОСТа 10180.

Показатель прочности бетона рассчитывают как среднее арифметическое от прочности всех образцов, участвовавших в проверке: если образцов 3, то среднее арифметическое значение двух образцов с высшей прочностью.

Показатель прочности на сжатие – это такой показатель, который невозможно подделать. Проверку этой характеристики выполняют только аккредитованные лаборатории и строительные организации, которые сами подвергаются неоднократным проверкам – у них есть лицензии, подтверждающие право на выполнение тех или иных работ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector