Wabashpress.ru

Техника Гидропрессы
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пожар класса «D» — горение металлов

Пожар класса «D» — горение металлов

Фраза «горение металлов» у многих вызывает недоумение. Люди далекие от вопросов пожарной безопасности уверены, что металлы не горят. Однако это не совсем так. Некоторые металлы способны не просто гореть, но даже самовоспламеняться.

Основные опасности, которые несут в себе разные металлы:

  • Алюминий – легкий электропроводный металл с довольно низкой температурой плавления (660°С), в связи с чем при пожаре может произойти разрушение алюминиевых конструкций. Но самым опасным является алюминиевый порошок, который несет в себе угрозу взрыва и может гореть.
  • Кадмий и многие другие металлы под воздействием высоких температур выделяют токсичные пары. Поэтому тушение горящих металлов следует производить в защитных масках.
  • Щелочные металлы (натрий, калий, литий) вступают в реакцию с водой, образуя при этом водород и количество теплоты, необходимой для его воспламенения.
  • Чугун в виде порошка при воздействии высоких температур или огня может взорваться. Искры от чугуна могут спровоцировать возгорание горючих материалов, находящихся вблизи.
  • Сталь, которая не считается горючим металлом, также может загореться, если она находится в порошкообразном состоянии или в виде опилок.
  • Титан – прочный металл, основной элемент стальных сплавов. Плавится он при высоких температурах (2000°С) и в больших конструкциях или изделиях не горит. Но маленькие детали из титана вполне могут воспламениться.
  • Магний – один из главных элементов в легких сплавах, придающий им пластичность и прочность. Гореть могут хлопья и порошок магния. Твердый магний также может воспламениться, но только если его нагреть до температуры выше 650°С.

Как видно, гореть способны в основном измельченные металлы в виде порошка, стружки, опилок. Помимо указанных опасностей, металлы могут также стать причиной травм, ожогов и увечий людей.

Тушение пожаров класса D

Горение класса D происходит на поверхности металла при очень высокой температуре и сильным искрообразованием.

Вода как огнетушащее вещество совершенно не подходит для металлических изделий и порошков, так как многие из них вступают в реакцию с ней, вследствие чего пожар может только усилиться. Также попадание воды на горящий металл может способствовать разбрызгиванию его на людей и окружающие предметы.

Песком также нельзя тушить горящие металлы. Его применение может привести к взаимодействию этих двух материалов и усилить горение.

Для тушения металлов чаще всего используют специальные сухие порошки. Причем для каждого метала необходимо подбирать свой состав.

Горение магния и сплавов на его основе подавляется посредством сухих молотых флюсов, применяемых при их плавке. Флюсы способствуют отделению очага возгорания от воздуха с помощью образующейся жидкой пленки.

Натрий, калий и их сплав тушатся огнетушителями или установками с огнетушащими порошками ПС-1 и ПС-2. Нередко для борьбы с возгоранием этих щелочных металлом используют поваренную соль, аргон и азот.

Горящий натрий можно потушить порошкообразным графитом.

Металлический литий в случае его воспламенения потушить очень непросто. Все самые распространенные огнетушащие вещества для этого не подходят (вода, углекислота, пена и т. д.).

Для устранения возгорания металлического лития были разработаны специальные порошковые смеси ПС-11, ПС-12 и ПС-13. В их основе – различные флюсы и графит с примесями.

Возгорание лития также можно подавить путем вытеснения воздуха из очага горения при помощи аргона.

Коррозия алюминия

Алюминий – это материал, без дополнительной защиты и соблюдения правил использования склонный к появлению коррозии. Процесс приводит к его разрушению, вызывает сильную порчу изделий, непригодность к дальнейшей эксплуатации.

Чтобы понять методы защиты, рассмотрим виды коррозии алюминия, особенности ее протекания и катализаторы в зависимости от типа среды. Также затронем факторы дополнительной защиты от внешнего негативного воздействия.

Виды коррозии алюминия

В зависимости от среды, в которой находится материал и дополнительных внешних рисков, может отличаться характер протекания коррозии и ее основные характеристики, степень негативного воздействия на материал.

Далее будут приведены основные виды повреждений.

Общая коррозия (сплошная)

Легко опознать по типу протекания – на материале появляется большое количество небольших точек-язв. Постепенно алюминиевый лист становится тоньше, сильно уменьшается его прочность.

При этом истончение с течением времени протекает равномерно без концентрации в конкретном участке.

Сплошная коррозия характерна для изделий, помещенных в кислотные и щелочные среды. В них происходит смывание оксидной пленки с поверхности, поражение прогрессирует и распространяется по металлу все дальше и дальше.

В зависимости от типа сплава, стойкость материала к общей коррозии сильно отличается. Если в составе содержится мало меди, менее 0,10%, то такое алюминиевое изделие будет стойким к угрозам разрушения.

Когда меди более 0,5%, выбирать область использования алюминия нужно будет уже более осторожно. Не допускается эксплуатация без защитного покрытия и там, где попадание веществ извне может привести к созданию на поверхности сильнокислотной или щелочной среды.

Читайте так же:
Точильный камень в виде бруска 6 букв

Контактная коррозия

Коррозия алюминия на воздухе и других средах может часто проявляться в контактном виде. Этот вариант также распространен под названием гальванического.

Чтобы такой процесс запустился, в непосредственной близости друг от друга должны находиться металлы.

При этом, появляется электрический мостик – этого достаточно чтобы алюминий начал медленно портиться.

Вероятность создания катодно-анодной связи во многом зависит от того, с какими металлами ведется работа. Причиной появления гальванических поражений становится отказ учитывать особенности материалов при проектировании различных сооружений.

Во многом интенсивность распространения и сам риск появления такого поражения зависят от среды, уровня влажности, загрязненности атмосферы. Так, если воздух сухой, в нем нет посторонних примесей, вероятность развития становится значительно меньше.

На практике не рекомендуется использовать алюминий вместе с оцинкованной сталью. Потенциально это может создать большой риск появления гальванической коррозии.

Щелевая коррозия

Один из видов повреждений, характеризующийся локальным появлением. Возникает из-за того, что в щелях и углублениях часто скапливаются продукты окисления, происходит контакт между двумя металлами.

От такого поражения часто страдают детали с большим количеством выемок, заклепок, болтов. В зону риска попадают и сварные швы. Если вы используете металлоконструкцию на открытом воздухе, стоит периодически прочищать все места, где могут скапливаться грязь, песок, продукты горения и другие посторонние соединения.

Проблема может появиться даже при перевозке большого количества деталей из алюминия. В таком случае, профиль будет страдать поверхностным поражением.

Особенно велик риск в том случае, если груз во время перевозки сильно намокает, попадает под дождь, возникает конденсат. Все перечисленное актуально и для хранения алюминиевых деталей, потому лучше всего складывать их в крытом, сухом помещении, где нет риска намокания.

Нитевидная коррозия

Часто алюминиевые изделия окрашиваются, чтобы увеличить уровень защиты от коррозии и не допустить контакта с катализаторами окисления.

Но если нанести лакокрасочное покрытие с нарушениями, не зачистить поверхность материала, оставить на нем дефекты, велик риск возникновения нитевидной коррозии.

Скорость коррозии алюминия в таком случае будет достаточно высокой. Сама она проявляется в появлении на металле продольных полос, толщина которых составляет не более 0,5 мм.

Коррозия под напряжением

По сравнению с другими описанными случаями, такая проблема встречается не так часто. Но ее опасность в том, что могут быть поражены даже высокопрочные сплавы.

Причина – длительное использование алюминия под сильной нагрузкой, которая в ряде случаев может превышать предельно допустимые значения.

Если проблему не пресечь, на металле появятся трещины, он постепенно потеряет свою прочность, срок эксплуатации значительно сократится.

Межкристаллическая коррозия

Если рассмотреть алюминий под микроскопом, можно заметить его зернистую структуру. При таком варианте поражения, ржавчина начинает появляться на границе таких зерен.

Это не слишком распространенный тип повреждений. Чаще всего он встречается, когда в сплав попадает большое количество кремния и структура постепенно начинает меняться.

Подповерхностная коррозия

Еще один тип проблемы сплавов с высокой прочностью. В этом случае металл оказывается поражен в подповерхностном слое. Может произойти отслоение, возникнут иные проблемы. Использовать даже такое изделие будет уже нельзя.

Особенности влияния среды на состояние алюминия

Стойкость алюминия к коррозии во многом зависит от того, в какой среде используется материал. Внешние условия оказывают значительное влияние на качество сплава. Рассмотрим основные факторы и варианты агрессивных сред.

Воздух

Вариант защиты алюминия от коррозии будет отличаться в зависимости от того, в какой среде он используется. Есть несколько основных факторов, влияющих на вероятность возникновения проблемы и потенциальную скорость ее прогрессирования:

  • Уровень влажности среды. Материал может спокойно переносить периодическое намокание в том случае, если общий уровень влажности в остальное время будет в норме. Если же степень составляет 80% и более, риск ржавения значительно усиливается.
  • Состав атмосферы. Чем больше примесей есть в воздухе, тем быстрее начинает ржаветь цветмет. Особенно опасным является повышенная концентрация сульфатов – это часто наблюдается в промышленных зонах. Также скорость распространения коррозии усиливается когда в воздухе распылены хлориды, потому обостряться ситуация может в прибрежных территориях.
  • Количество электролита на поверхности. В случае, если материал сильно намокает и долго находится в таком положении, велик риск что он начнет ржаветь.

Почва

Грунт представляет угрозу для любого металла. Есть несколько факторов, которые могут усугубить такую проблему:

  • Высокий уровень рН.
  • Сильная электропроводимость.
  • Степень влажности.
  • Наличие микроорганизмов, производящих сероводород.
  • Однородность грунта и количества воздуха в нем.

Если в почве есть блуждающие токи, она неоднородна, присутствует большое количество кислорода, опасность возрастает.

Коррозия алюминия в воде начинается в том случае, если химический состав оказывается катализатором. Среди основных катализаторов:

  • Большое процентное содержание хлоридов.
  • Высокая концентрация тяжелых металлов.
  • Содержание магния в сплаве более 2,5%.
  • Добавление меди в сплав.
Читайте так же:
Мощность точечных светильников для натяжных потолков

Алюминиевые изделия могут применяться в разных условиях, как в пресной, так и в морской воде. Главное – обратить внимание на состав сплава и исключить нахождение рядом элементов из нержавеющей или оцинкованной стали.

Щелочь

Коррозия алюминия в кислой среде, в местах с высоким содержанием щелочей очень распространена.

Потому нужно проявлять особое внимание в случае использования таких конструкций на стройках, там, где есть риск разбрызгивания строительных растворов.

В частности, очень высоким содержанием щелочи обычно отличается бетон.

Методы защиты материалов от коррозии

Алюминий относится к типу сплавов, которые хорошо переносят опасность появления коррозии в разных условиях – в почве, на открытом воздухе, при контакте с водой.

Три рекомендации, помогающие значительно увеличить степень защищенности материала:

  • Учет особенностей сплава и области использования. В зависимости от типа среды разные элементы в сплаве могут выступать как дополнительные катализаторы коррозии. Так повышенное содержание меди может увеличить риск проблем при контакте с морской водой.
  • Исключение неблагоприятного соседства. В частности, не стоит использовать рядом изделия, материалы которых могут создавать с алюминием катодно-анодные связи.
  • Нанесение специальных покрытий. Они не допускают контакта между основным сплавом и факторами провоцирующими возникновение ржавчины. Используются различные мастики, порошковые, анодно-оксидные покрытия. Важно также учитывать условия их нанесения и правильно готовить поверхность для наращивания степени адгезии.

В случае если проблема все-таки возникнет, можно будет решить вопрос как удалить коррозию с алюминия.

Для этой цели применяется механическая очистка, специальные составы-ингибиторы, которые могут значительно увеличить степень защищенности и не допустить дальнейшего распространения повреждений.

Новая версия задачи С2 в ЕГЭ по химии 2012. Особенности и подводные камни

В 2012 году предложена новая форма задания С2 — в виде текста, описывающего последовательность экспериментальных действий, которые нужно превратить в уравнения реакций.
Трудность такого задания состоит в том, что школьники очень плохо представляют себе экспериментальную, не бумажную химию, не всегда понимают используемые термины и протекающие процессы. Попробуем разобраться.
Очень часто понятия, которые химику кажутся совершенно ясными, абитуриентами воспринимаются неправильно, не так, как предполагалось. В словаре приведены примеры неправильного понимания.

Словарь непонятных терминов.

  1. Навеска — это просто некоторая порция вещества определенной массы (её взвесили на весах). Она не имеет никакого отношения к навесу над крыльцом.
  2. Прокалить — нагреть вещество до высокой температуры и греть до окончания химических реакций. Это не «смешивание с калием» и не «прокалывание гвоздём».
  3. «Взорвали смесь газов» — это значит, что вещества прореагировали со взрывом. Обычно для этого используют электрическую искру. Колба или сосуд при этом не взрываются!
  4. Отфильтровать — отделить осадок от раствора.
  5. Профильтровать — пропустить раствор через фильтр, чтобы отделить осадок.
  6. Фильтрат — это профильтрованный раствор.
  7. Растворение вещества — это переход вещества в раствор. Оно может происходить без химических реакций (например, при растворении в воде поваренной соли NaCl получается раствор поваренной же соли NaCl, а не щелочь и кислота отдельно), либо в процессе растворения вещество реагирует с водой и образует раствор другого вещества (при растворении оксида бария получится раствор гидроксида бария). Растворять можно вещества не только в воде, но и в кислотах, в щелочах и т.д.
  8. Выпаривание — это удаление из раствора воды и летучих веществ без разложения содержащихся в растворе твёрдых веществ.
  9. Упаривание — это просто уменьшение массы воды в растворе с помощью кипячения.
  10. Сплавление — это совместное нагревание двух или более твёрдых веществ до температуры, когда начинается их плавление и взаимодействие. С плаванием по реке ничего общего не имеет.
  11. Осадок и остаток.
    Очень часто путают эти термины. Хотя это совершенно разные понятия.
    «Реакция протекает с выделением осадка» — это означает, что одно из веществ, получающихся в реакции, малорастворимо. Такие вещества выпадают на дно реакционного сосуда (пробирки или колбы).
    «Остаток» — это вещество, которое осталось, не истратилось полностью или вообще не прореагировало. Например, если смесь нескольких металлов обработали кислотой, а один из металлов не прореагировал — его могут назвать остатком.
  12. Насыщенный раствор — это раствор, в котором при данной температуре концентрация вещества максимально возможная и больше уже не растворяется.
    Ненасыщенный раствор — это раствор, концентрация вещества в котором не является максимально возможной, в таком растворе можно дополнительно растворить ещё какое-то количество данного вещества, до тех пор, пока он не станет насыщенным.
    Разбавленный и «очень» разбавленный раствор — это весьма условные понятия, скорее качественные, чем количественные. Подразумевается, что концентрация вещества невелика.
    Для кислот и щелочей также используют термин «концентрированный» раствор. Это тоже характеристика условная. Например, концентрированная соляная кислота имеет концентрацию всего около 40%. А концентрированная серная — это безводная, 100%-ная кислота.
Читайте так же:
Условное обозначение гальванического элемента

Для того, чтобы решать такие задачи, надо чётко знать свойства большинства металлов, неметаллов и их соединений: оксидов, гидроксидов, солей. Необходимо повторить свойства азотной и серной кислот, перманганата и дихромата калия, окислительно-восстановительные свойства различных соединений, электролиз растворов и расплавов различных веществ, реакции разложения соединений разных классов, амфотерность, гидролиз солей и других соединений, взаимный гидролиз двух солей.
Кроме того, необходимо иметь представление о цвете и агрегатном состоянии большинства изучаемых веществ — металлов, неметаллов, оксидов, солей.
Именно поэтому мы разбираем этот вид заданий в самом конце изучения общей и неорганической химии.
Рассмотрим несколько примеров подобных заданий.

  1. Литий реагирует с азотом при комнатной температуре, образуя твёрдый нитрид лития:
    6Li + N2 = 2Li3N
  2. При взаимодействии нитридов с водой образуется аммиак:
    Li3N + 3H2O = 3LiOH + NH3
  3. Аммиак реагирует с кислотами, образуя средние и кислые соли. Слова в тексте «до прекращения химических реакций» означают, что образуется средняя соль, ведь первоначально получившаяся кислая соль далее будет взаимодействовать с аммиаком и в итоге в растворе будет сульфат аммония:
    2NH3 + H2SO4 = (NH4)2SO4
  4. Обменная реакция между сульфатом аммония и хлоридом бария протекает с образованием осадка сульфата бария:
    (NH4)2SO4 + BaCl2 = BaSO4 + 2NH4Cl
  5. После удаления осадка фильтрат содержит хлорид аммония, при взаимодействии которого с раствором нитрита натрия выделяется азот, причём эта реакция идёт уже при 85 градусах:

    Алюминий окисляется азотной кислотой, образуя нитрат алюминия. А вот продукт восстановления азота может быть разным, в зависимости от концентрации кислоты. Но надо помнить, что при взаимодействии азотной кислоты с металлами не выделяется водород! Поэтому простым веществом может быть только азот:
    10Al + 36HNO3 = 10Al(NO3)3 + 3N2 + 18H2O

Al 0 − 3e = Al 3+|10
2N +5 + 10e = N2 03
  1. Оксид алюминия — амфотерный оксид, при сплавлении со щелочами или карбонатами щелочных металлов образует алюминаты:
    Al2O3 + Na2CO3 = 2NaAlO2 + CO2
  2. Алюминат натрия при растворении в воде образует гидроксокомплекс:
    NaAlO2 + 2H2O = Na[Al(OH)4]
  3. Растворы гидроксокомплексов реагируют с кислотами и кислотными оксидами в растворе, образуя соли. Однако, сульфит алюминия в водном растворе не существует, поэтому будет выпадать осадок гидроксида алюминия. Обратите внимание, что в реакции получится кислая соль — гидросульфит калия:
    Na[Al(OH)4] + SO2 = NaHSO3 + Al(OH)3
  4. Гидросульфит калия является восстановителем и окисляется бромной водой до гидросульфата:
    NaHSO3 + Br2 + H2O = NaHSO4 + 2HBr
  5. Полученный раствор содержит гидросульфат калия и бромоводородную кислоту. При добавлении щелочи нужно учесть взаимодействие с ней обоих веществ:

  1. Сульфид цинка реагирует с соляной кислотой, при этом выделяется газ — сероводород:
    ZnS + HCl = ZnCl2 + H2S
  2. Сероводород — в водном растворе реагирует со щелочами, образуя кислые и средние соли. Поскольку в задании говорится про избыток гидроксида натрия, следовательно, образуется средняя соль — сульфид натрия:
    H2S + NaOH = Na2S + H2O
  3. Сульфид натрия реагирует с хлоридом двухвалентного железа, образуется осадок сульфида железа (II):
    Na2S + FeCl2 = FeS + NaCl
  4. Обжиг — это взаимодействие твёрдых веществ с кислородом при высокой температуре. При обжиге сульфидов выделяется сернистый газ и образуется оксид железа (III):
    FeS + O2 = Fe2O3 + SO2
  5. Сернистый газ реагирует с кислородом в присутствии катализатора, образуя серный ангидрид:
    SO2 + O2 = SO3

    При восстановлении оксида кремния магнием образуется кремний, который реагирует с избытком магния. При этом получается силицид магния:

Задания для самостоятельной работы.

  1. Нитрат меди прокалили, полученный твёрдый осадок растворили в серной кислоте. Через раствор пропустили сероводород, полученный чёрный осадок подвергли обжигу, а твёрдый остаток растворили при нагревании в концентрированной азотной кислоте.
  2. Фосфат кальция сплавили с углём и песком, затем полученное простое вещество сожгли в избытке кислорода, продукт сжигания растворили в избытке едкого натра. К полученному раствору прилили раствор хлорида бария. Полученный осадок обработали избытком фосфорной кислоты.
  3. Медь растворили в концентрированной азотной кислоте, полученный газ смешали с кислородом и растворили в воде. В полученном растворе растворили оксид цинка, затем к раствору прибавили большой избыток раствора гидроксида натрия.
  4. На сухой хлорид натрия подействовали концентрированной серной кислотой при слабом нагревании, образующийся газ пропустили в раствор гидроксида бария. К полученному раствору прилили раствор сульфата калия. Полученный осадок сплавили с углем. Полученное вещество обработали соляной кислотой.
  5. Навеску сульфида алюминия обработали соляной кислотой. При этом выделился газ и образовался бесцветный раствор. К полученному раствору добавили раствор аммиака, а газ пропустили через раствор нитрата свинца. Полученный при этом осадок обработали раствором пероксида водорода.
  6. Порошок алюминия смешали с порошком серы, смесь нагрели, полученное вещество обработали водой, при этом выделился газ и образовался осадок, к которому добавили избыток раствора гидроксида калия до полного растворения. Этот раствор выпарили и прокалили. К полученному твёрдому веществу добавили избыток раствора соляной кислоты.
  7. Раствор иодида калия обработали раствором хлора. Полученный осадок обработали раствором сульфита натрия. К полученному раствору прибавили сначала раствор хлорида бария, а после отделения осадка — добавили раствор нитрата серебра.
  8. Серо-зелёный порошок оксида хрома (III) сплавили с избытком щёлочи, полученное вещество растворили в воде, при этом получился тёмно-зелёный раствор. К полученному щелочному раствору прибавили пероксид водорода. Получился раствор желтого цвета, который при добавлении серной кислоты приобретает оранжевый цвет. При пропускании сероводорода через полученный подкисленный оранжевый раствор он мутнеет и вновь становится зелёным.
  9. (МИОО 2011, тренинговая работа) Алюминий растворили в концентрированном растворе гидроксида калия. Через полученный раствор пропускали углекислый газ до прекращения выделения осадка. Осадок отфильтровали и прокалили. Полученный твердый остаток сплавили с карбонатом натрия.
  10. (МИОО 2011, тренинговая работа) Кремний растворили в концентрированном растворе гидроксида калия. К полученному раствору добавили избыток соляной кислоты. Помутневший раствор нагрели. Выделившийся осадок отфильтровали и прокалили с карбонатом кальция. Напишите уравнения описанных реакций.

Ответы к заданиям для самостоятельного решения:

  1. Cu(NO3)2 → CuO → CuSO4 → CuS →СuO → Cu(NO3)2
2Al(OH)3Al2O3 + 3H2O
H2SiO3H2O + SiO2

Это полезно

В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.

Алюминий и цинк как амфотерные элементы

Что такое металлы и неметаллы – понять нетрудно. Металлы обладают восстановительными свойствами и в химической реакции отдают электроны. При этом, гидроксиды металлов – это основания. Неметаллы, напротив, являются окислителями и забирают электроны. Гидроксиды неметаллов – это кислоты.

Амфотерные соединения могут проявлять как окислительные, так и восстановительные свойства в зависимости от реакционной среды. Гидроксиды таких атомов могут выступать в качестве кислот или оснований.

Расположение амфотерных элементов в таблице Менделеева

В таблице Менделеева положение того или иного атома сообщает значительную часть информации о строении атома этого элемента и его химических свойствах. Периодической эта система называется, потому что в разных периодах (горизонтальные строчки) и группах (вертикальные столбцы) повторяется определенное качество элементов. Так, вся первая группа является щелочными металлами, а седьмая – галогенами (неметаллами), восьмая – инертными газами. Но, это характерно только для главной подгруппы. В побочной группе располагаются амфотерные элементы.

Строение атома амфотерных элементов

Особенность химических свойств амфотерных элементов связана со строением их атомов. У них происходит предзаполнение s-подуровня, из-за этого, незаполненным оказывается всегда d-подуровень. Все представители побочных подгрупп являются p- или d-элементами. В различных условиях может происходить перескок электронов с подуровней и увеличение неспаренных электронов.

Таблица. Строение атомов некоторых амфотерных элементов

Для некоторых из них характерен проскок электрона. Это состояние, при котором электрон с последнего уровня перескакивает на следующий. По этой причине оказывается неспаренным s-электрон.

Представители амфотерных элементов

Все элементы побочных групп являются амфотерными и проявляют сходные химические свойства. Наиболее распространены в природе три элемента: Al, Zn и Cr.

Цинк как амфотерный элемент

Цинк — это относительно мягкий светло-серый металл. Является одним из самых распространенных амфотерных элементов. В природе цинк встречается в составе 66 минералов, наиболее распространенные представлены в таблице.

Таблица. Минералы, в состав которых входит Zn

Цинк является d-элементом.

Химические свойства цинка обусловлены наличием незаполненной p-обитали. С s-подуровня происходит перескок электрона, за счет чего появляется два неспаренных электрона: Zn* 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 4p 1 .

Алюминий как амфотерный элемент

Al является самым распространенных элементом не только среди металлов, но и во всей таблице Менделеева. Он занимает 3 место после кислорода (O2) и кремния (Si).

Это мягкое вещество серебристо-серого цвета с низкой температурой плавления. В природе встречается как в виде минералов, так и в виде самородков. Является примесью многих минералов.

Наиболее распространенные минералы, содержащие Al:

  • Авгит ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6)
  • Боксит (Al2O3xH2O)
  • Нефелин (Элиолит) ((NaK)AlSiO4)
  • Алунит (K2SO4Al2(SO4)3·4Al(OH)3)
  • Силлиманит ((Al2O3)(SiO2))
  • Корунд (Al2O3)

Последний минерал в зависимости от примесей имеет разный окрас. Применяется в ювелирном деле и считается полудрагоценным камнем.

Его атом содержит 13 электронов, распределенных по 3 электронным уровням: 1s 2 2s 2 2p 6 3s 2 3p 1 . Это р-элемент, у которого может происходить переход электрона с s-подуровня на свободную р-орбиталь. За счет этого, металл приобретает 3 неспаренных электрона: Al* 1s 2 2s 2 2p 6 3s 1 3p 2

Свойства металлов Al и Zn как простых веществ

Цинк – довольно плотный металл. Сохраняет свои качества в небольшом диапазоне температур: при низких значениях (до -30) становится хрупким, при температурах выше 100 0 С очень пластичен. Это используется в металлургии, прокатывая цинковые листы толщиной несколько миллиметров (цинковая фольга). Некоторые примеси резко повышают хрупкость металла, поэтому используется очищенный материал.

Al – сильно пластичный легкий металл с низкой температурой плавления. Обладает высокой ковкостью и электропроводностью.

На воздухе он покрывается оксидной пленкой поэтому практически не подвергается коррозии. Благодаря этому он используется при изготовлении проводов и корпусов машинной техники.

Получение алюминия и цинка

Основной способ получения металлов – выделение их из состава руды. Для этого используется наиболее богатая металлом горная порода. Алюминий получают из боксита. Этот процесс состоит из трех этапов:

  • Добыча горной породы;
  • Обогащение (увеличение концентрации метала за счет очистки от примесей);
  • Выделение чистого вещества путем электролиза.

Получение цинка производится несколькими методами – электролитическим (так же как и Al) и пирометаллургический. Второй способ основан на восстановлении цинка из его оксида углеродом или оксидом углерода II (угарным газом):

ZnO + CO ⇄ Zn + CO2

Достоинство этого метода в том, что продукты первой реакции могут использоваться во второй, что снижает количество выбросов в атмосферу.

Химические свойства алюминия и цинка

Оба вещества способны реагировать как обычные металлы. Так же, есть ряд специфических реакций.

Взаимодействие с неметаллами

С неметаллами и оба вещества взаимодействуют с образованием бинарных соединений – солей. Как правило, скорость течения реакции и условия зависят от активности неметалла. Так, с кислородом реакция идет реакция образования оксида при нагревании с цинком:

с алюминием в обычных условиях:

Оксид алюминия покрывает изделие плотной пленкой (оксидная пленка) и доступ кислорода прекращается, поэтому, для полной реакции его нужно брать в порошке.

Zn не реагирует с Br, N2, Si, C, H2.

Al не вступает в реакцию только с H2.

Взаимодействие с металлами

С восстановителями оба металла образуют сплавы:

  • Алюминиды CuAl2, CrAl7, FeAl3
  • Латунь ZnCu

Это не является химической реакцией, так как не происходит передачи электронов или изменения химических свойств веществ.

Взаимодействие с кислотами и щелочами

С кислотами и алюминий, и цинк взаимодействуют при обычных условиях с образованием солей:

Результат реакции со щелочами зависит от условий реакции: если реакция идет в растворе (в присутствии воды), то образуются комплексные соли:

В безводной среде (сплавление) образуются соли металлических кислот:

2Al + 6KOH = 2KAlO2 + 2K2O + 3H2 (KAlO2 – алюминат калия).

Взаимодействие с водой

Алюминий активно взаимодействует с водой, если очистить оксидную пленку. Реакцию нужно проводить быстро, так как пленка образуется практически мгновенно:

Zn реагирует с водой при очень высокой температуре (при накаливании до красного состояния):

Оксиды цинка и алюминия

ZnO – оксид, широко используемый в химической промышленности. Он применяется для получения солей. В реакции со щелочами образуются комплексные соли, легко разрушаемые кислотами.

Al2O3 –глинозем. Имеет очень плотную кристаллическую решетку, из-за чего практически не реагирует при обычных условиях. При экстремально высоких температурах вступает в реакцию со щелочами:

Может вступать в реакцию с кипящими кислотами с образованием комплексных солей.

Применение алюминия и цинка

Al как самый распространенный элемент широко используется в химической промышленности. Он способен вытеснять восстановители из соединений, поэтому применяется для получения металлов. Такой метод называется алюмотермия.

Благодаря оксидной пленке и низкой плотности используется в автомобиле-, самолето- и ракетостроении для снижения массы изделия. В строительстве алюминий применяется для изготовления каркасов высотных зданий.

Zn применяется для снижения коррозии металлических изделий –цинкование. Порошок этого металла используется для изготовления масляных красок с металлическим блеском. Также, оксид служит в качестве антисептика. Мази на основе цинкового порошка используются в лечении лишаев и других инфекционных поражений кожи.

Сплавы алюминия и цинка

В металлургии практически не применяются в чистом виде из-за высокой пластичности. Для того чтобы сохранить достоинства металлов, но убрать недостатки осуществляют сплавление с другими металлами.

Сплавы алюминия

Сплавы алюминия делятся на две группы:

  • Литейные (без сохранения пластичности);
  • Конструкционные (деформируемые).

Таблица. Характеристика основных сплавов алюминия

Сплавы цинка

Самый используемый сплав цинка – латунь (Cu — Zn). Он обладает хорошими сварными свойствами, поэтому применяется в изготовлении кухонной утвари и различных изделий интерьера.

Если к этому сплаву добавляют свинец, этот сплав называется мунц-металл. Оба сплава применяются при литье труб и каркасов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector