Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы биполярного транзистора

Принцип работы биполярного транзистора

В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.

База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси.

Базу делают как можно более тонкой. Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.

В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном. Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.

Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции.

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Читайте так же:
Приспособление для изготовления ножей своими руками

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током.

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока.

Токи в транзисторе можно представить следующим образом

Основное соотношение для токов транзистора

Ток коллектора можно выразить как

Из вышесказанного можно сделать вывод, что изменяя ток в цепи база – эмиттер, мы можем управлять выходным током коллектора. Причем незначительное изменение тока базы, вызывает значительное изменение тока коллектора.

Полевые и биполярные транзисторы

Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.

Биполярные транзисторы

Биполярные транзисторы относятся к группе полупроводниковых приборов. Они имеют три вывода и два р-n-перехода. Принцип работы этих устройств позволяет использовать и положительные и отрицательные заряды, то есть, дырки и электроны. Управление током, протекающим через них, осуществляется специально выделенным управляющим током. Благодаря своим качествам, этот активный прибор получил широкое распространение.

Полевые и биполярные транзисторы

Основой биполярных транзисторов являются трехслойные полупроводники, типа «р-n-р» и «n-р-n», а также р-n-переходы, в количестве двух. Каждый полупроводниковый слой соединяется с внешним выводом через невыпрямляющий металло-полупроводниковый контакт.

В качестве базы используется средний слой, подключенный к соответствующему выводу. Два крайних слоя также соединяются с выводами и называются эмиттером и коллектором. На схемах эмиттер обозначается стрелкой, которая показывает направление тока, проходящего через транзистор.

В различных приборах, носители электричества дырки и электроны выполняют собственные индивидуальные функции. Тип n-р-n транзисторов получил наибольшее распространение, по сравнению с р-n-р-типом, благодаря лучшим характеристикам и параметрам. Это связано с тем, что в n-р-n устройствах основная роль отводится электронам, обеспечивающим все электрические процессы. Их подвижность в 2-3 раза выше, чем у дырок, таким образом, они проявляют более высокую активность. Кроме того, свойства любого прибора улучшаются за счет того, что площадь перехода коллектора существенно превышает площадь перехода эмиттера.

Читайте так же:
Сталь х13 для ножей

В состав каждого биполярного транзистора входят два р-n-перехода. Поэтому, работоспособность таких приборов проверяется путем контроля сопротивления этих переходов во время подключения к ним прямого и обратного напряжения.

Нормальная работа n-р-n-прибора обеспечивается путем подачи на коллектор положительного напряжения. За счет этого, осуществляется открытие базового перехода. При появлении базового тока, возникает коллекторный ток. Если в базе возникает отрицательное напряжение, то в этом случае происходит закрытие транзистора.

Оптимальная работа р-n-р-устройств зависит от наличия на коллекторе отрицательного напряжения. С его помощью, базовый переход становится открытым. Закрытие транзистора производится при наличии положительного напряжения. Путем плавных изменений значений тока и напряжения, можно получить все необходимые выходные коллекторные характеристики. В схемах усилителей могут присутствовать режимы общей базы или общего эмиттера.

Свойства полевых транзисторов

К полевым транзисторам относятся устройства, в которых управление всеми процессами осуществляется действующим электрическим полем, направленным перпендикулярно току. Они еще носят название униполярных транзисторов. В своей конструкции эти приборы имеют три контакта, называемые истоком, стоком и затвором. Кроме этого, существует проводящий слой, называемый каналом, по которому происходит течение тока.

Устройства данного типа могут быть «р» или «n» канальными. Расположение и конфигурация каналов бывает вертикальное или горизонтальное, объемное или приповерхностное.

Среди приповерхностных каналов также происходит разделение. Они существуют в качестве инверсионных слоев или могут быть обогащенными и обедненными носителями. Все виды каналов формируются под влиянием внешнего электрического поля. В обедненных каналах присутствуют участки с однородными полупроводниками, которые отделяются от поверхности с помощью обедненного слоя. Приборы, имеющие приповерхностные каналы, структурно состоят из металла-диэлектрика-полупроводника. Они получили наименование МДП-транзисторов.

Тема 2.1. Полупроводниковые приборы

Из курса физики вы знаете, что существуют проводники, диэлектрики и полупроводники . Для проводников характерна проводимость 10 2 -10 8 См/см 3 (См – сименс = 1/Ом), для диэлектриков – 10 -10 См/см 3 и меньше. Промежуток от 10 -10 до 10 2 См/см 3 занимают полупроводники. Характерной особенностью полупроводников, отличающей их от металлов, является возрастание электропроводности с ростом температуры.

Полупроводниковыми приборами называют электропреобразова-тельные приборы, принцип действия которых основан на явлениях, происходящих в самом полупроводнике или на границе контакта двух полупроводников с различными типами проводимости.

К полупроводниковым приборам можно отнести:

— стабилитроны или опорные диоды

— биполярные и полевые транзисторы и др.

Для изготовления реальных полупроводниковых приборов, как правило, используют германий, кремний и арсенид галлия.

Действие полупроводниковых приборов основано на электронных процессах, протекающих в кристаллах полупроводников. Основным полупроводниковым материалом в настоящее время является кристаллический кремний.

Кристаллы кремния в обычных условиях являются диэлектриками. Однако, если в них ввести небольшое количество пятивалентных элементов (сурьма, мышьяк), в их кристаллической решетке образуются свободные электроны и кристаллы становятся проводниками. Такая проводимость кристаллов называется электронной, или отрицательной, или негативной (negative), или проводимостью n-типа.

Читайте так же:
Что тверже олово или свинец

Введение в кристалл кремния трехвалентных примесей (индий, бор) приводит к тому, что в кристалле возникает дефицит электронов — так называемые дырки, которые также могут переносить электрические заряды. Такая проводимость называется дырочной, или положительной (positive), или проводимостью р-типа.

Полупроводниковые приборы подразделяются по своей структуре на дискретные и интегральные. К дискретным полупроводниковым приборам относятся диоды, транзисторы, фотоэлементы, а также полупроводниковые приборы, управляемые внешними факторами, — фоторезисторы, фотодиоды, фототранзисторы, терморезисторы, варисторы, варикапы, которые используются в качестве датчиков физических параметров. К интегральным приборам относятся интегральные микросхемы и микропроцессоры.

Диоды. Различают выпрямительные и излучающие диоды, фотодиоды.

Выпрямительные диоды представляют собой полупроводниковые приборы, состоящие из двух слоев полупроводникового материала с электропроводностью типа n и p. Граница между этими слоями обладает способностью пропускать электрический ток только в одном направлении. Такие диоды предназначены для преобразования переменного тока в постоянный.

Излучающие диоды представляют собой диоды, способные излучать свет определенного спектрального состава при прохождении через них тока. Излучающие диоды применяют в качестве индикаторов режимов работы аппаратуры, часов, микрокалькуляторов.

Фотодиоды обладают свойством пропускать или не пропускать электрический ток в зависимости от уровня освещения. Используются для автоматического отключения уличного освещения, для подсчета деталей на конвейере, а также в турникетах.

Транзисторы — это полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Транзисторы в отличие от диодов состоят из трех кристаллов типа р-n-р или n-р-n и имеют три вывода.

Транзистор: виды, применение и принципы работы

Полупроводниковые приборы - транзисторы различной структуры

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Принцип работы полупроводникового транзистора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

  1. Электронные.
  2. Дырочные.

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Основные принципы работы

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Читайте так же:
Оборудование для тепловизионного обследования

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

  • Полевые.
  • Биполярные.

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Принцип работы полевого транзистора

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Устройство полевого транзистора

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Биполярный транзистор

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.
Читайте так же:
Металл который плавится при комнатной температуре

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

  • pnp;
  • npn.

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Применение транзисторов

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector