Wabashpress.ru

Техника Гидропрессы
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пароэжекторные насосы (пароструйные эжекторы)

Пароэжекторные насосы (пароструйные эжекторы)

Для многих домовладельцев становится проблемой организация автономного водоснабжения в силу большой глубины шурфа.

Уже с восьмиметровой отметки начинаются проблемы. Для насосных станций с эжекторами те же возможности, что и для помп большой производительности. Использование глубоких источников требует применение мощных насосов погружного типа, которые стоят дорого.

Для чего нужны эжекторы? Чтобы не тратить деньги на дорогие модели. Использование недорогих насосных станций с эжекторами позволяют решить проблему с такой же эффективностью. При этом затраты на модернизацию минимальны. Причем можно улучшить систему локальным методом или приобрести комплекс, который изначально рассчитан для этого.

Принцип работы

Все эжекторы для насосных станций работают по одной и то же схеме. За основу взят принцип Бернулли. В соответствии с ним если ускорить поток, то в зоне перед точкой придания ускорения образуется зона разряженности. Давление в ней ниже, что служит причиной появления втягивающего эффекта. Если добавить его к потоку, формируемому насосной станцией, то результат такой модернизации – увеличения производительности.

Устройство

Какой бы тип устройства не рассматривался, эжекторный насос состоит из:

  • отсека для всасывания;
  • смесительной полости;
  • диффузора;
  • сужающегося патрубка.

Принцип действия в том, что из сопла (патрубка) жидкость выбрасывается с большой скоростью. Отток воды провоцирует появление внутри рабочей камеры пониженного давления, которое и затягивает жидкость. Цикл повторяется непрерывно, что позволяет поддерживать в трубопроводе постоянное давление.

Разновидности эжекторов

Эжекторные насосы бывают паровыми, пароструйными и газовыми. Общий принцип их действия идентичен. Но приводится в действие устройства по-разному. Насос с эжектором парового типа применяется для откачивания газовых сред из замкнутого объема. Можно поддерживать давление на отрицательной отметке, делая среду разряженной. Сфера применения – промышленность.

Пароструйная конструкция предназначенная для работы с газовыми средами и жидкостями. Различие работы эжекторного устройства такого типа в том, что пар, проходящий сопло, на большой скорости затягивает с собой перекачиваемую среду. Учитывая высокую производительность, сфера применения данных приборов – срочная откачка воды, например, на корабле.

Газовый тип – отдельная категория эжекторов. Приборы работают на сжатом газе, который смешиваясь с перекачиваемой средой, направляется в диффузор для замедления. После его прохождения смесь вырывается сквозь отверстие сопла. Предназначены такие устройства в основном для газовой промышленности.

Встроенные модели

Разбираясь, что такое эжектор, необходимо рассмотреть классификацию этих приборов в зависимости от места установки. Встроенные модели являются частью конструкции, а точнее, ее составляющей. Эжектор может быть прикреплен на самом насосе или рядом с ним на единой станине. Монтаж заключается в прикреплении блока к основе и подключении силов

Схема работает при подъеме воды с глубины 10 метров. Точные параметры указываются в технической документации. Монтаж рекомендуется производить вне дома. Это может быть колодец, в котором установлен оголовок, или отдельно стоящее здание. Всему причиной повышенный уровень шума и вибрация. Если такой возможности нет, рассматривают следующий тип монтажа.

Выносные модели

В таком случае схема должны быть дополнена дополнительным баком для закачки жидкости. Скважина должна быть достаточно широкой, чтобы в нее можно было проложить два шланга. Производительность в данном случае уменьшиться на треть за счет уменьшения диаметра заборной трубы. Также потребуется отдельный трубопровод для подачи воздуха.

Но при такой комплектации в зодозаборнике создается область разрежения, которая позволяет поднимать жидкость с отметки более 50 метров. При этом расстояние от скважины до потребителя может быть более 40 метров. В этом случая насосную станцию можно установить в помещении внутри дома. Это может быть подвал, котельная, кладовая и т.д.

Каталог вакуумного оборудования

Основным партнером нашей компании в поставке пароэжекторного оборудования является Croll Reynolds — инжиниринговая компания, специализирующаяся на исследовании, разработке и производстве вакуумного оборудования, а так же систем контроля загрязненности воздуха.

Исследования и тестирование

Исследовательский центр компании Croll Reynolds расположен вблизи г. Тетерборо, штат Нью-Джерси. Здание исследовательского центра имеет площадь более 10 тысяч м². Многие исследования, посвященные именно эжекторам, проводятся исключительно здесь. Все пароэжекторы, производимые Croll Reynolds тестируются перед отправкой заказчику.

Пароэжекторы

Пароэжектор — (фр. ejecteur, от ejecter — выбрасывать от лат. ejicio) — гидравлическое устройство, в котором происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой. Пароэжекторы используются в струйных насосах: водоструйных, жидкостно-ртутных, паро-ртутных, паромасляных. Конструкция пароэжектора состоит из сопла, всасывающей камеры и диффузора. Диффузоры — это каналы, где происходит превращение кинетической энергии в потенциальную. Таким образом, происходит повышение давления за счет снижения скорости. В сопле создается поток пара либо газа, который называется рабочей средой. Эта среда движется с достаточно большой скоростью и турбулентно, из-за чего в рабочей камере создается разряжение. Под действием разряженного воздуха, созданная смесь удаляется из рабочей камеры.

Типы пароэжекторов


Односопельные пароэжекторы используются для любых критичных и некритичных потоков.

Конструкция пароэжектора

Простота форм пароэжекторов Croll Reynolds позволяет при их производстве использовать широкий спектр материалов такие как: чугун, углеродистая сталь, нержавеющая сталь и иные виды сталей, включая титан и стеклопластик.

Пароструйный эжектор

Пароструйный эжектор является надежным и экономичным средством для создания вакуума. Основными преимуществами пароструйных эжекторов являются низкая первичная стоимость, отсутствие подвижных частей, а также их простота эксплуатации.

Диаграмма иллюстрирует основные принципы действия эжекторов: под высоким давлением рабочая жидкость входит в 1 и расширяется, проходя через расходящиеся сопло 2, жидкость всасывания поступает через 3 и смешивается с рабочей жидкостью в смесительной камере 4, поток повторно сжимается, проходя через диффузер 5. Эксклюзивная разработка пароэжекторов Croll Reynolds, представленна многолетними исследованиями.

Многоступенчатые пароэжекторы

Одноступенчатые пароэжекторы используются для создания вакуума от а рт.ст. до 3 микрон рт.ст. можно достигнуть, применяя многоступенчатые эжекторы. Многоступенчатые системы обычно содержат конденсирующую поверхность или конденсаторы прямого контактного типа. Многоступенчатые системы Croll Reynolds разработаны для достижения оптимальной производительности с минимальными расходами. Они разработаны для работы с различными видами рабочих газов: воздух, вода, HCl, бутан, SO2, этилен гликоль, и многие другие органические и неорганические пары.

Читайте так же:
Палладий в радиодеталях ссср

Эжекторные насосы

Процедура подключения эжектора в виде самостоятельного устройства заключается в двух этапах:

  1. Прокладывается дополнительная труба по всем правилам, которые брались за основу при монтаже трубопровода для подачи воды. Дополнительная труба нужна для подачи нагнетающей среды.
  2. Подсоединение патрубка к всасывающему узлу. Требуется смонтировать фильтр грубой очистки и обратный патрубок. Рекомендуется монтаж вентиля для регуляции работы системы.

Вентиль необходим в том случае, если уровень воды в шурфе больше того, на который рассчитан насос. В данном случае можно отрегулировать нагнетаемый поток.

Эжекторная насосная станция

Насосная станция со встроенным эжектором – это комплекс оборудования, изначально рассчитанный для выполнения работы в определенных условиях. Главными параметрами, которые берутся в учет при выборе, являются мощность и производительность. Первая характеристика означает способность поддерживать давление в системе, а также возможность удержания водяного столба и передачу жидкости на расстояние по горизонтальному трубопроводу.

Вторая характеристика – производительность. Это количество жидкости, перекачиваемое за единицу времени. Данный параметр не может быть большим, чем дебит скважины. Если речь идет о покупке насосной станции со встроенным эжектором, то в технической документации указаны общие выходные характеристики. Это значит, что никаких дополнительных расчетов производить не придется.

Подключается оборудование согласно прилагаемой инструкции. Шланги прикрепляются при помощи хомутов, идущих в комплекте. Трубопровод предполагает резьбовое соединение. Главное – предусмотреть место для установки, чтобы дождь и мороз не мог вывести систему из строя. Для этого делается кессон или строится отдельное здание. Навес подойдет только для дачи, не предусмотренной для круглогодичного проживания.

В качестве дополнительного оборудования для насосной станции с эжектором устанавливается манометр, если это не предусмотрено производителем. Благодаря этому прибору можно контролировать давление в трубопроводе. Естественно, он устанавливается на выходе из станции. Если глубина скважины находится в пределах 15-40 метров, специалисты рекомендуют устанавливать поверхностный насос с выносным эжектором.

Схема подключения

Наилучшая схема подключения предусматривает соединение станции с эжектором только вертикальной трубой. В противном случае возможно завоздушивание, что приводит к снижению работоспособности системы. Если такой возможности нет, нужно позаботиться об отсечных вентилях для стравливания воздуха по необходимости.

Описанное оборудование полностью решает потребность жильцов дома в питьевой воде. Полив участка, орошение приусадебных клумб, палисадников или сада также организовывается подобным образом. Главное условие – правильно подобрать компоненты системы, чтобы их рабочие характеристики находились в полном соответствии. Тогда система с эжектором будет достаточно эффективной, и при этом недорогой.

Cтраница 4 из 8

Пароводяные эжекторы (рис. 323) получили. наиболее широкое распространение и имеют скорости откачки сотни тысяч литров в секунду. Например, один пароводяной эжекторный насос НЭВ-100Х0.5 средней производительности со скоростью откачки 32 ООО л/с при давлении 0,5 мм рт. ст. заменяет 270 механических насосов ВН-6:

Малогабаритный двухступенчатый насос НЭВ-0.2Х20 работает по! схеме, показанной на рис. 324. Парогазовая смесь из ступени II насоса поступает в конденсатор смешения, куда подается вода из водоструйных насосов. Производительность насоса 0,5 кг/ч при давлении 20 мм рт. ст., предельное давление 10 мм рт. ст. Расход пара 12 кг/ч при давлении 2,6 атм расход воды 0,35 м3; ч при давлении 1 атм. Габаритные размеры: площадь в плане 500×445 мм, высота 1,025 м.

Насос НЭВ-2Х20 имеет производительность 3 кг/ч сухого воздуха при давлении 20 мм рт. ст.; работает по той же схеме, что и НЭВ-0,2Х20. Насосы НЭВ-0.2Х20 и НЭВ-2Х20 малогабаритные. Их можно применять в химических производствах, где требуется давление 10—20 мм рт. ст., а также для систем безмасляной откачки. Характеристики насосов приведены в табл. 58.

Насос НЭВ-100Х1 пятиступенчатый с первой ступенью без конденсатора создает предельное давление 0,5—1 мм рт. ст. Если устанавливать две, три и более ступеней без конденсации, можно получать предельные давления 10-1—10-2 мм рт. ст. Применение ступеней без промежуточных конденсаторов существенно увеличивает расход пара на единицу откачиваемого газа. Схема насоса НЭВ-100Х1 приведена на рис.325.

Рис. 323. Схема двухступенчатого пароводяного эжекторного насоса:

I — первая ступень; 2 — вторая ступень; 3 — конденсатор смешения; 4 — сливная тру6а; 5 — выпускная труба; 6 — барометрический колодец

Рис. 324. Схема насоса НЭВ-0.2Х20:

1, 10, 13 — паровые вентили; 2 — вторая эжекторная ступень; 3,4 — конденсаторы; 5 — сливной патрубок; 6 — выпускное отверстие; 7 — водоструйный насос; 5 — первая эжекторная ступень; 9 — вентиль Ду-25; // — водяной вентиль; 12, 15 — манометры; 14 — паровой коллектор

Как видно из рис. 324, в насосе НЭВ-0.2Х20 использован в качестве вспомогательного водоструйный насос. В насосе НЭВ-3 отсутствуют промежуточные конденсаторы, а последняя ступень выполнена также в виде водоструйного насоса.

Производительность насоса 1 кг/ч при давлении 0,5 мм рт. ст.; расход пара 140 кг/ч при давлении 4 атм и расход воды 14 м3/ч при давлении 4 атм. Габаритные размеры насоса: 1,05×1,15 м, высота 0,5 м. В случае откачки агрессивных паров и газов наиболее стойким является насос, изготовленный из фарфора, а в некоторых случаях — из графита.

Пароводяной насос WDS фирмы Лейбольд (ФРГ) со встроенным водоструйным насосом имеет скорость откачки при 4, мм рт. ст. 200 л/ч.

Пароэжекторные вакуумные насосы укомплектовывают либо конденсаторами смешения либо поверхностными конденсаторами в зависимости от условий технологического процесса и свойств среды. Эжекторы сварной конструкции выполняют из углеродистой или коррозионностойкой стали.

Возможность получения низких давлений без загрязнения откачиваемой системы углеродсодержащими продуктами позволяет применять эти насосы для безмасляных систем откачки термоядерных, ускорительных и других исследовательских установок. Пароводяные эжекторы можно использовать для создания безмасляного форвакуума совместно с бустерными парортутными насосами.

Рис. 325. Схема пятиступенчатого пароводяного эжекторного насоса НЭВ-ЮОХ Г: 1, 2, 3, 4, 5 — ступени основного насоса; б, 7, 5 — конденсаторы; 9, 10 — ступени пускового насоса; 11 — конденсатор пускового насоса; 12 барометрические сливные трубки; 13 барометрический ящик

Читайте так же:
Преобразователь от аккумулятора на 220 вольт

Могут они также работать совместно с сорбционными цеолитовыми насосами. На рис. 326 показан пароводяной эжектор, предназначенный для работы в вакуумных дистилляционных и сушильных установках, в установках дегазации и пропитки в вакуумной металлургии (фирма Ульвак, Япония).

Что такое эжекторная система охлаждения и как это работает

Что такое эжекторная система охлаждения и как это работает

Эжекторная система охлаждения (принцип струйного насоса) — это технология, где применяется термическое управление процессом. Технология эжекторной системы охлаждения используется на практике уже достаточно долгий период времени. Нынешнее состояние развития подобных систем отмечается их более низким КПД по сравнению, например, с установками сжатия пара. Однако эжекторные системы охлаждения примечательны преимуществами простоты устройства и отсутствия движущихся деталей конструкции.

Классическая конструкция эжектора

Схема ниже наглядно демонстрирует внутреннее устройство прибора. Корпус эжектора имеет квадратную форму. На корпусе справа прикреплено длинное сопло.

Конструкционное исполнение эжектора

Схема классического исполнения: 1 — область входа вторичного потока; 2 — область входа первичного потока; 3 — область ускорения потока до сверхзвуковой скорости; 4 — область смешения двух потоков; 5 — коническое отверстие сопла — диффузор

Часть сопла, что прикреплена непосредственно к эжектору, имеет форму прямого цилиндра. Наконечник же сопла имеет форму цилиндрического конуса.

В отличие от формы сопла, с левой стороны эжектора закреплён прямой цилиндр, через который выполняется вход первичного потока.

Первая половина цилиндра находится снаружи эжектора, а вторая его половина внутри. Указателем (2) отмечено отверстие цилиндра для входа первичного потока, исходящего из общей массы рабочего вещества.

Конечная часть цилиндра внутри эжектора выполнена как небольшое по размерам сходящееся/расходящееся сопло (3). Именно здесь движущийся поток вещества ускоряется и достигает сверхзвуковой скорости.

Эжектор натуральный вид

Эжектор — классическая конструкция в натуральном виде для применения в составе крупных промышленных установок систем кондиционирования

Вторая входная область цилиндрической формы расположена у основания эжектора. Через этот вход поступает вторичный поток рабочего веществ из испарителя.

Цилиндрическая часть сопла (4) представляет собой камеру смешивания, где объединяются первичный (2) и вторичный (1) потоки. Коническое отверстие сопла (5) называется диффузором.

Эжекторные системы охлаждения

Главным преимуществом эжекторных охлаждающих систем является их способность производить холод, используя отработанную тепловую энергию с температурой выше 80°C, получаемую от разных тепловых источников.

Чтобы ясно воспринимать принцип действия оборудования, где внедрён эжектор, разберём классическую схему производства холода. Такие схемы не широко, но распространены, применяются в самых разных областях народного хозяйства.

Схема эжекторной системы охлаждения

Схема действия структурная: Э — эжектор; В — бойлер (котёл); К — конденсатор; И — испаритель; Н — насос циркуляционный; Р — расширительное устройство

Эжекторная система охлаждения состоит из двух контуров:

  1. Контур питания
  2. Контур охлаждения.

В контуре питания низкотемпературное тепло (Qb) используется в котле или генераторе для испарения жидкого хладагента высокого давления (процесс 1-2).

Пары высокого давления, образующиеся в результате кипения жидкого хладагента, устремляются через эжектор, где скорость потока увеличивается за счёт прохождения сквозь сопло.

Ускоренное движение потока образует область пониженного давления в в первой секции эжектора. За счёт перепада давлений туда же из испарителя устремляется насыщенный газообразный хладагент (линия 3).

Две газообразных среды объединяются в смесительной камере. Смешанная среда поступает в секцию диффузора, где происходит замедление потока и восстановление давления.

Затем смешанный газообразный хладагент переправляется в конденсатор. Здесь пары хладагента конденсируются (переходят в жидкое состояние), образующееся тепло отводится в окружающую среду (Qc).

Одна часть жидкости, выходящей из конденсатора (точке 5), закачивается в котел для завершения цикла питания. Другая часть жидкости проходит через расширительное устройство и поступает в испаритель холодильного контура (точка 6) в виде парожидкостной смеси.

Парожидкостная смесь хладагента испаряется в испарителе, создавая дополнительно эффект охлаждения (Qe). Далее полученный парообразный хладагент направляется в эжектор (точка 3).

Хладагент (вторичная газообразная смесь) вновь смешивается с первичной газообразной смесью в эжекторе и сжимается в секции диффузора перед входом в конденсатор (точка 4). Смесь конденсируется в конденсаторе. Цикл повторяется (точка 5).

Как развивалась технология

Первую конструкцию системы охлаждения с эжектором разработал в 1910 году французский инженер индустриалист Морис Лебланк. Устройство быстро завоевало популярность в сфере производства оборудования для кондиционирования воздуха.

Эжектор промышленного назначения

Эжектор промышленного назначения — подобные конструкции редкость и обычно изготавливаются по специальному заказу предприятиями нефтехимической отрасли и подобными

До момента разработки хлорфторуглеродных хладагентов в 1930-х годах и дальнейшего их применения, именно эжекторным системам охлаждения отдавалось предпочтение.

Появление хлорфторуглеродных хладагентов отметилось большей эффективностью холодильного оборудования и, соответственно, изменением приоритетов в отношении эжекторов.

Однако исследования и разработки в области эжекторных систем продолжались. Технология нашла своё второе применение во многих областях индустрии, особенно в химической и перерабатывающей промышленности.

Современные разработки и перспективы

На современном этапе проектирования разрабатываются эжекторные системы с мощностью охлаждения от единиц до 60 000 кВт. Но, несмотря на активность исследований, направленных на увеличение КПД (отношение эффекта охлаждения и ввода тепла в котел), существенных результатов нет.

Даже если пренебречь работой насоса, КПД эжекторных систем охлаждения по-прежнему остаётся относительно низким. Эжекторные системы охлаждения в настоящее время трудно отыскать в прямой продаже, но ряд компаний специализируются на разработке и применении оборудования на заказ.

Промышленная установка с эжекторной системой

Промышленная установка, оснащённая вакуумными эжекторами . Характерной чертой энергосбережения отличаются подобные системы, несмотря на относительно низкие показатели КПД

Приоритет производства — эжекторные паровые установки, где используется вода в качестве хладагента для охлаждения при температуре выше 0 ° C. С целью повышения эффективности простого цикла эжекции, проводятся исследования более сложных циклов. Также изучается интеграция эжекторов в системы сжатия и поглощения паров.

Автомобильная эжекторная система кондиционирования фирмы Denso

Уникальный пример разработки фирмы Denso (схема В) — цикличный эжектор «EJECS» в составе конструкции кондиционирования воздуха салона легкового автомобиля.

Здесь создаваемое эжектором отрицательное давление всасывания действует как насос, обеспечивая циркуляцию хладагента в цикле кондиционирования воздуха.

Обычные автомобильные решения (схема А) нацелены на циркуляцию хладагента только компрессором. Но в этом случае имеют место существенные потери энергии в расширительном клапане.

Читайте так же:
Укладка сигнальной ленты над кабелем

Схема обычная и схема фирмы Denso

Сравнительные схемы: 1 — конденсатор; 2 — компрессор; 3 — расширительный клапан; 4 — эжектор; 5 — испаритель; 6 — мощность компрессора; 7 — повышение давления эжектором; А — обычное решение; В — решение Denso; С — потери энергии за счёт вихревых эффектов

Эжектор на примере уникального решения компании Denso играет роль насоса подкачки компрессора, что в значительной степени повышает эффективность системы кондиционирования воздуха.

Снижается нагрузка на двигатель автомобиля или на мотор компрессора (если используется электропривод). Эжектор, работая как насос, создаёт энергосберегающий режим работы.

Поэтому оправданными можно считать значительные усилия инженеров, разрабатывающих, к примеру, солнечные энергетические установки, дополненные эжекторными системами охлаждения.

Применение в пищевой промышленности

Производственные районы, где имеется избыток отработанного тепла, рассматриваются удачным местом для применения эжекторных систем в пищевой промышленности.

Установки могут найти успешное применение на заводах по переработке пищевых продуктов. Оборудование может использоваться для охлаждения продуктов в процессе их производства, а также в условиях транспортировки.

Промышленная установка тригенерации

Экспериментальная установка тригенерации (tri-generation) в Сиднее , установленная для обеспечения работы двух внутренних городских плавательных бассейнов

Другое возможное применение – так называемое технологичное tringle-поколение (tri-generation), где эжекторным системам охлаждения отводится место в сочетании с комбинированным тепловым и энергетическим оборудованием для обеспечения холодом.

Препятствия для использования эжекторной технологии

Основными препятствиями для использования технологии эжекторной регенерации видятся следующие моменты:

Основные факторы для стимуляции использования

Главными факторами, способствующими внедрению технологии эжекторного охлаждения в пищевой промышленности, являются:

  1. Успешная демонстрация преимуществ технологии в тех условиях, где имеется достаточное количество отработанного тепла или в системах tringle-поколения.
  2. Рост стоимости производства энергии, что может способствовать более эффективному использованию отработанного тепла.
  3. Более высокая термическая интеграция процессов в производстве продуктов питания.

Потребности на исследования и разработки

Для повышения привлекательности и применения эжекторных систем охлаждения остаются востребованными исследования и разработки, результатом которых стали бы следующие достижения:

  1. Повышение эффективности стационарных эжекторных систем, особенно при работе на удалении от проектных точек.
  2. Разработка альтернативных типов эжекторов (таких как ротодинамические эжекторы), которые обладали бы потенциалом повышения эффективности.
  3. Разработка эжекторов, способных работать с другими природными хладагентами, такими как углекислый газ (CO 2 ) и углеводороды, с температурным диапазоном ниже 0°C.
  4. Оптимизация циклов, а также интеграция эжекторов с обычными системами сжатия и поглощения паров.
Обучающий видео-курс по теме эжекторов

Видеоролик представляет обучающий курс, напрямую связанный с темой функционирования эжекторных систем. Рекомендуется к просмотру для лучшего понимания и восприятия технологии:

КРАТКИЙ БРИФИНГ

Z-Сила — публикации материалов интересных полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мульти-тематическая информация — СМИ .

Что такое эжектор — принцип действия и установка

Что такое эжектор

Трубопроводная арматура

Эжектор — это устройство, внутри которого происходит передача кинетической энергии от входа к выходу увеличивая скорость выхода. Эжектор устроен так, что работает по закону Бернулли и в большинстве случаев предназначен для струйных насосов. Данное устройство предназначено для модернизации системы водопровода при подачи воды с большой глубины.

Зачем нужны эжекторы и что это такое?

Для многих домовладельцев становится проблемой организация автономного водоснабжения в силу большой глубины шурфа.

Что такое эжектор

Уже с восьмиметровой отметки начинаются проблемы. Для насосных станций с эжекторами те же возможности, что и для помп большой производительности. Использование глубоких источников требует применение мощных насосов погружного типа, которые стоят дорого.

Для чего нужны эжекторы? Чтобы не тратить деньги на дорогие модели. Использование недорогих насосных станций с эжекторами позволяют решить проблему с такой же эффективностью. При этом затраты на модернизацию минимальны. Причем можно улучшить систему локальным методом или приобрести комплекс, который изначально рассчитан для этого.

Принцип работы

Все эжекторы для насосных станций работают по одной и то же схеме. За основу взят принцип Бернулли. В соответствии с ним если ускорить поток, то в зоне перед точкой придания ускорения образуется зона разряженности. Давление в ней ниже, что служит причиной появления втягивающего эффекта. Если добавить его к потоку, формируемому насосной станцией, то результат такой модернизации – увеличения производительности.

Устройство

Какой бы тип устройства не рассматривался, эжекторный насос состоит из:

  • отсека для всасывания;
  • смесительной полости;
  • диффузора;
  • сужающегося патрубка.

Принцип действия в том, что из сопла (патрубка) жидкость выбрасывается с большой скоростью. Отток воды провоцирует появление внутри рабочей камеры пониженного давления, которое и затягивает жидкость. Цикл повторяется непрерывно, что позволяет поддерживать в трубопроводе постоянное давление.

Разновидности эжекторов

Эжекторные насосы бывают паровыми, пароструйными и газовыми. Общий принцип их действия идентичен. Но приводится в действие устройства по-разному. Насос с эжектором парового типа применяется для откачивания газовых сред из замкнутого объема. Можно поддерживать давление на отрицательной отметке, делая среду разряженной. Сфера применения – промышленность.

Пароструйная конструкция предназначенная для работы с газовыми средами и жидкостями. Различие работы эжекторного устройства такого типа в том, что пар, проходящий сопло, на большой скорости затягивает с собой перекачиваемую среду. Учитывая высокую производительность, сфера применения данных приборов – срочная откачка воды, например, на корабле.

Газовый тип – отдельная категория эжекторов. Приборы работают на сжатом газе, который смешиваясь с перекачиваемой средой, направляется в диффузор для замедления. После его прохождения смесь вырывается сквозь отверстие сопла. Предназначены такие устройства в основном для газовой промышленности.

Встроенные модели

Разбираясь, что такое эжектор, необходимо рассмотреть классификацию этих приборов в зависимости от места установки. Встроенные модели являются частью конструкции, а точнее, ее составляющей. Эжектор может быть прикреплен на самом насосе или рядом с ним на единой станине. Монтаж заключается в прикреплении блока к основе и подключении силов

Схема работает при подъеме воды с глубины 10 метров. Точные параметры указываются в технической документации. Монтаж рекомендуется производить вне дома. Это может быть колодец, в котором установлен оголовок, или отдельно стоящее здание. Всему причиной повышенный уровень шума и вибрация. Если такой возможности нет, рассматривают следующий тип монтажа.

Читайте так же:
Метод холодной листовой штамповки

Выносные модели

В таком случае схема должны быть дополнена дополнительным баком для закачки жидкости. Скважина должна быть достаточно широкой, чтобы в нее можно было проложить два шланга. Производительность в данном случае уменьшиться на треть за счет уменьшения диаметра заборной трубы. Также потребуется отдельный трубопровод для подачи воздуха.

Но при такой комплектации в зодозаборнике создается область разрежения, которая позволяет поднимать жидкость с отметки более 50 метров. При этом расстояние от скважины до потребителя может быть более 40 метров. В этом случая насосную станцию можно установить в помещении внутри дома. Это может быть подвал, котельная, кладовая и т.д.

Эжекторные насосы

Процедура подключения эжектора в виде самостоятельного устройства заключается в двух этапах:

  1. Прокладывается дополнительная труба по всем правилам, которые брались за основу при монтаже трубопровода для подачи воды. Дополнительная труба нужна для подачи нагнетающей среды.
  2. Подсоединение патрубка к всасывающему узлу. Требуется смонтировать фильтр грубой очистки и обратный патрубок. Рекомендуется монтаж вентиля для регуляции работы системы.

Вентиль необходим в том случае, если уровень воды в шурфе больше того, на который рассчитан насос. В данном случае можно отрегулировать нагнетаемый поток.

Эжекторная насосная станция

Насосная станция со встроенным эжектором – это комплекс оборудования, изначально рассчитанный для выполнения работы в определенных условиях. Главными параметрами, которые берутся в учет при выборе, являются мощность и производительность. Первая характеристика означает способность поддерживать давление в системе, а также возможность удержания водяного столба и передачу жидкости на расстояние по горизонтальному трубопроводу.

Вторая характеристика – производительность. Это количество жидкости, перекачиваемое за единицу времени. Данный параметр не может быть большим, чем дебит скважины. Если речь идет о покупке насосной станции со встроенным эжектором, то в технической документации указаны общие выходные характеристики. Это значит, что никаких дополнительных расчетов производить не придется.

Подключается оборудование согласно прилагаемой инструкции. Шланги прикрепляются при помощи хомутов, идущих в комплекте. Трубопровод предполагает резьбовое соединение. Главное – предусмотреть место для установки, чтобы дождь и мороз не мог вывести систему из строя. Для этого делается кессон или строится отдельное здание. Навес подойдет только для дачи, не предусмотренной для круглогодичного проживания.

В качестве дополнительного оборудования для насосной станции с эжектором устанавливается манометр, если это не предусмотрено производителем. Благодаря этому прибору можно контролировать давление в трубопроводе. Естественно, он устанавливается на выходе из станции. Если глубина скважины находится в пределах 15-40 метров, специалисты рекомендуют устанавливать поверхностный насос с выносным эжектором.

Схема подключения

Наилучшая схема подключения предусматривает соединение станции с эжектором только вертикальной трубой. В противном случае возможно завоздушивание, что приводит к снижению работоспособности системы. Если такой возможности нет, нужно позаботиться об отсечных вентилях для стравливания воздуха по необходимости.

Описанное оборудование полностью решает потребность жильцов дома в питьевой воде. Полив участка, орошение приусадебных клумб, палисадников или сада также организовывается подобным образом. Главное условие – правильно подобрать компоненты системы, чтобы их рабочие характеристики находились в полном соответствии. Тогда система с эжектором будет достаточно эффективной, и при этом недорогой.

Принцип работы эжекционного насоса

8812-989-04-49
info@vactron.org

Конспект лекций «Вакуумная техника»

Преподаватель Конев С.А.

Лекция 3

Эжекторные вакуумные насосы

Данные насосы предназначены для откачки воздуха и других газов от атмосферного давления до 100 Па.

  Рабочее вещество, попадая через сопло 1 под давлением 2.5 10 5 Па в камеру смешения и расширяясь, а затем в диффузор 2 увлекает воздух. В результате этого создаётся вакуум в линии клапана 8. В диффузоре статическое давление смеси воды и газа за счёт уменьшения скорости повышается до атмосферного давления. Смесь воды с газом стекает в бачок 3, откуда стекает в дренажную линию, подсоединённую к патрубку 4.  

Для выхода газа из бачка во фланце 5 предусмотрено отверстие. Насос присоединяется к вакуумной системе через кран 8. Резервуар 7 предназначен для приёма воды, засасываемой через диффузор бочка в случае аварийного прекращения её подачи. Через кран 6 подаётся воздух в резервуар при остановке насоса, а также предотвращает всасывание воды.

Производительность насоса возрастает с повышением давления воды. Предельное остаточное давление насоса практически равно упругости пара воды и увеличивается с повышением её температуры.

Водоструйные насосы часто применяются в системах безмасляной откачки, последней ступени пароэжекторного насоса.

Пароэжекторные насосы предназначаются для безмасляной откачки больших сосудов до давлений 1-10 -1 Па. Пароэжекторные насосы могут быть с одной ступенью, двух и более ступенчатыми присоединёнными последовательно друг другу.

Тема: «Высоковакуумные пароструйные насосы»

  • Теории высоковакуумного диффузионного насоса (ДН)

1.1. Теория Геде (Gaede)

Первые модели высоковакуумных насосов появились в 1912-1915 г.г.. Теоретическое рассмотрение работы ДН дал Геде в работах:

  • Gaede W., Ann. d. Phys., Bd., 41, 289, 1913;
  • Gaede W., Ann. d. Phys., Bd., 46, 357, 1923;
  • Gaede W., Ann. d. Phys., Bd., 4, 337, 1923.

В своих работах Геде показал, что физической основой работы ДН лежит диффузия газа в паровую струю.

В модели не учитывалось:

  • наличие определённой структуры струи при истечении пара из сопла;
  • влияние структуры струи на работу насоса;
  • паровой поток принимался равномерно- распределённым по всему сечению рабочей камеры насоса и движущимися с одинаковыми по сечению скоростями, плотностями и давлениями.

По трубке от А к В движется ртутный пар. В сечении G происходит диффузия пара в паровую струю. Диффузия происходит в результате разницы парциальных давлений откачиваемого газа в ртутном паре и сечении G. Между сечениями G и С постоянно имеется градиент концентраций ( парциальных давлений). Для предотвращения попадания паров ртути в сечение С на трубке G-C установлены холодильники- конденсаторы Е-К и К ‘ — F ‘ .

Читайте так же:
Расчет количества бетона на ленточный фундамент калькулятор

1.2. Теория Яккеля (Jaeckel).

Теория изложена в работах:

  • Яккель Р. Получение и измерение вакуума. (пер. с нем.), Изд-во ин. лит., 1959 г.
  • Jaeckel R., Ztschr. techn. Phys., Bd. 23, 177, 1942.
  • Jaeckel R., Ztschr. Naturf., № 2а, 666, 1947.
  • молекулы пара выходя из сопла, движутся с постоянной, равномерно распределённой по сечению рабочей камеры насоса скоростью, параллельно оси сопла;
  • наличие молекул пара, движущихся в сторону, противоположную потоку и их влияние на работу насоса- не учитываются.
  • Режим предельного вакуума (S=0);
  • режим откачки (S ¹ 0).

Теория Яккеля позволяет определить:

  • зависимость быстроты действия насоса от скорости и плотности паровой струи;
  • быстрота действия насоса равна площади диффузионной диафрагмы;
  • быстроту действия насоса, зависящую от противо диффузии газа через струю, молекулярного веса откачиваемого газа;
  • зависимость предельного остаточного давления от молекулярного веса газа, плотности и скорости паровой струи;
  • определить Smax и вакуум-фактор Но= Sнас/Sтеор (Симплекс Хо);
  • изменение Рост. и степени сжатия при изменении молекулярного веса газа.

1.3. Теория Неллера

Открыл возможность исследования воздействия струи пара при помощи методов газовой динамики. Фотографировал и исследовал струю пара.

Подробное рассмотрение откачивающего действия на основе кинетической теории газов должно привести к созданию теории, не содержащей произвольных параметров и неточных предположений. В случае равновесия, распределение скорости мол. газа в откачиваемом объёме представляет собой Максвелловское распределение, средняя скорость равна 0 и никакого газового потока не существует. В процессе откачки, Максвелловское распределение скоростей заметно изменяется только на входе в насос, где происходит взаимное столкновение мол-л газа и пара. Но в смесительной камере насоса плотность струи пара достаточно низкая, благодаря чему в нее легко проникают мол. газа, но одновременно эта плотность препятствует обратной диффузии мол. газа с форвакуумной стороны. Распределение скоростей в смесительной камере насоса происходит не по закону Максвелла, т.к. имеет место непрерывное столкновение мол. газа и пара, поэтому ДН откачивает мол. газа.

Предположение по процессу откачки:

«взаимные столкновения мол. газа и пара влияют на распределение скоростей мол. газа, в результате чего возникает газовый поток, направленный в форвакуумную сторону. Этот процесс наблюдается как в смесительной камере, так и на входе в насос. Поэтому нет необходимости рассматривать откачивающее действие отдельно в различных местах смесительной камеры».

Расчёты, Неллер провёл только по координате Х ( направлена вдоль оси насоса), Предполагалось, что составляющая скорости пара Voy не влияет на газовый поток в направлении Y, а влияет только на распределение плотности газа.

2. Характеристики диффузионных насосов

    • Быстрота действия (S):

    С ростом впускного давления, возрастает и выпускное давление. Оно регламентируется величиной быстроты действия форвакуумного насоса. Увеличение выпускного давления приводит в возникновению скачка уплотнения в струе, перемещению его к соплу и отрыву струи от стенок насоса, сто приводит к возникновению перетока молекул из форвакуума в сторону высокого выкуума.

    Быстрота действия ДН зависит:

    • От рода откачиваемого газа и его температуры;
    • размеров ДН, площади диффузионной диафрагмы, формы корпуса;
    • рода рабочей жидкости и структуры паровой струи;
    • конструкции ДН;
    • величины выпускного давления.

    2.1.1. Зависимость быстроты действия ДН от площади диффузионной диафрагмы.

    О влиянии площади диффузионной диафрагмы на быстроту действия вакуумного насоса:

    • Holstmark F., Ramm W., Westin S., Rev. Sci. Justrum., №8, 90, 1937.
    • Грошковский Я. Технология высокого вакуума (пер. С польск.) Изд-во ин. Лит., 1957.

    2.1.2. Зависимость быстроты действия от структуры струи.

    Под структурой струи понимается характер распределения и величины параметров:

    • плотности;
    • скорости;
    • давления;
    • температуры в струе.

    2.1.3. Зависимость быстроты действия ДН от рода откачиваемого газа

    Часто на практике полагают, что , что никогда не выполняется и в лучшем случае .

    При откачке лёгких газов, быстрота действия ДН не подчиняется этому уравнению. S зависит от обратной диффузии молекул газа из форвакуумной области в область высокого вакуума. Для выбора оптимальной мощности при откачке газов различного молекулярного веса можно пользоваться с допустимой для практики точностью уравнением:

    2.1.4. Зависимость быстроты действия от величины выпускного давления.

    2. Наибольшее выпускное давление

    Для парортутных ДН: 0.5-3 мм рт.ст..

    Для паромасляных : 0.1-0.3 мм рт.ст..

    Удельные характеристики диффузионного насоса

    (характеризуют степень совершенства насоса)

      • Удельная быстрота действия площадь диффузионной диафрагмы. Для большинства пароструйных диффузионных вакуумных насосов S`= 3.5 — 5.5 л/(с см 2 ).
      • Вакуум-фактор (симплекс Хо): .
      • Термодинамический КПД . . = 10 -4 -10 -3 , т.е. от всей подводимой мощности только 10 -4 -10 -3 часть используется на совершение работы сжатия в насосе.
      • Удельный расход мощности. ,
      • но эта величина не учитывает наибольшее выпускное давление
      • и соответственно степень сжатия в насосе. Термодинамический КПД учитывает этот недостаток.

      Курс обучения «Основы течеискания и вакуумной техники» 12–14 октября 2021 года

      Школа течеискания

      Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова и ООО «ВАКТРОН» приглашают сотрудников предприятий принять участие в курсе повышения квалификации «Основы течеискания и вакуумной техники».

      Программа является подготовительным курсом к аттестации персонала в области контроля герметичности по требованиям РОСТЕХНАДЗОР (СДАНК-01-2020, СДАНК-02-2020) и РОСАТОМ ГОСТ Р 50.05.01-2018, ГОСТ Р 50.05.11-2018.

      По результатам обучения сотрудник получает удостоверение о повышении квалификации государственного образца по университетской программе дополнительного профессионального образования. Курс проводится согласно лицензии на образовательную деятельность №1103.

      Проводимый экзаменационный контроль может быть учтен аттестационным центром для выдачи удостоверения на право подготовки заключений о контроле герметичности. Курс на практике подготовит к квалифицированной эксплуатации и обслуживанию современного вакуумного оборудования.

      Занятия будут проходить в очной форме в отеле «Новый Петергоф», Санкт-Петербург, Петергоф, Санкт-Петербургский проспект, 34. Для слушателей семинара действуют специальные цены на бронирование номеров. Мест в группе – 15. Необходима предварительная регистрация. Регистрация участников: 8 (812) 989-04-49 доб.2, Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

      голоса
      Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector