Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные понятия о процессах обработки отверстий и режущем инструменте, используемом на сверлильных станках

2.17. Основные понятия о процессах обработки отверстий и режущем инструменте, используемом на сверлильных станках

Сверление, зенкерование и развертывание являются основными технологическими способами обработки резанием круглых отверстий различной степени точности и с различной шероховатостью обработанной поверхности. Все перечисленные способы относятся к осевой обработке, т. е. к лезвийной обработке с вращательным главным движением резания при постоянном радиусе его траектории и движении подачи только вдоль оси главного движения резания.

Сверление — основной способ обработки отверстий в сплошном материале заготовок. Просверленные отверстия, как правило, не имеют абсолютно правильной цилиндрической формы. Их поперечное сечение имеет форму овала, а продольное — небольшую конусность.

Диаметры просверленных отверстий всегда больше диаметра сверла, которым они обработаны. Разность диаметров сверла и просверленного им отверстия называют разбивкой отверстия. Для стандартных сверл диаметром 10. 20 мм разбивка составляет 0,15. 0,25 мм. Причиной разбивки отверстий являются недостаточная точность заточки сверл и несоосность сверла и шпинделя сверлильного станка.

Сверление отверстий без дальнейшей их обработки проводят тогда, когда необходимая точность размеров лежит в пределах 12. 14-го квалитетов. Наиболее часто сверлением обрабатывают отверстия для болтовых соединений, а также отверстия для нарезания в них внутренней крепежной резьбы (например, метчиком).

Зенкерование — это обработка предварительно просверленных отверстий или отверстий, изготовленных литьем и штамповкой, с целью получения более точных по форме и диаметру, чем при сверлении. Точность обработки цилиндрического отверстия после зенкерования — 10. 11-й квалитеты.

Развертывание — это завершающая обработка просверленных и зенкерованных отверстий для получения точных по форме и диаметру цилиндрических отверстий (6. 9-й квалитеты) с малой шероховатостью Ra 0,32. 1,25 мкм.

  • спиральные с цилиндрическим и коническим хвостовиками, предназначенные для сверления стали, чугуна и других конструкционных материалов;
  • оснащенные пластинками из твердых сплавов, предназначенные для обработки деталей из чугуна (особенно с литейной коркой) и очень твердой и закаленной стали;
  • глубокого сверления (одно- и двустороннего резания), используемые при сверлении отверстий, длина которых превышает диаметр в пять раз и более;
  • центровочный инструмент (центровочные сверла и зенковки), предназначенный для обработки центровых отверстий обрабатываемых деталей.

Спиральное сверло и элементы его рабочей части приведены на рис. 2.22.

Рис. 2.22. Спиральные сверла:
а и б — элементы спирального сверла соответственно с коническим и цилиндрическим хвостовиками; в — кромки и поверхности спирального сверла; 1 — рабочая часть; 2 — шейка; 3 — хвостовик; 4 — лапка; 5 — режущая часть; 6 — поводок; 7 — зуб; 8 — винтовая канавка; 9 — поперечная кромка; 10 — кромка ленточки; 11 — спинка зуба

Углы и формы заточки спирального сверла показаны на рис. 2.23 и 2.24. Формы заточек сверл выбирают в зависимости от свойств обрабатываемых материалов и диаметра сверла.

Рис. 2.23. Углы спирального сверла:
α — задний угол; γ — передний угол; ψ — угол наклона поперечной режущей кромки; ω — угол наклона винтовой канавки; 2φ — угол при вершине; 1 — задняя поверхность; 2 — передняя поверхность; 3 — режущая кромка

Для повышения стойкости сверла и производительности обработки производят двойную заточку сверла под углами 2φ = 116. 118° и 2φ = 70. 90° (рис. 2.24, б).

Подточка поперечной кромки (рис. 2.24, в) и ленточки сверла (рис. 2.24, г) облегчает процесс сверления отверстий. Подточка поперечной кромки снижает осевую силу, а подточка ленточки уменьшает трение ленточек о стенки отверстия и повышает стойкость сверл.

Рис. 2.24. Формы заточки спиральных сверл:
а — обыкновенная; б — двойная: 1 — главная режущая кромка; 2 — поперечная режущая кромка; 3 — вспомогательная режущая кромка; 2φ — главный угол при вершине сверла; 2φ — вспомогательный угол при вершине сверла; Z — ширина зоны второй заточки; в — подточка поперечного лезвия и ленточки; г — подточка ленточки: f — ширина ленточки

При подточке длина поперечной кромки уменьшается до 50 %. Обычно производится подточка сверл диаметром более 12 мм, а также после каждой переточки сверла.

В зависимости от обрабатываемого материала углы при вершине сверл выбирают по табл. 2.10, а задние и передние углы — по табл. 2.11.

Таблица 2.10 Углы при вершине сверла

Таблица 2.11 Задние и передние углы сверла

  1. Задние углы даны для точек режущей кромки, расположенных на наибольшем диаметре сверла dmax.
  2. При расчете угла у принимают dr = dmax.

Для сверления заготовок из чугуна и цветных металлов применяют твердосплавные сверла. Эти сверла из-за нестабильности работы редко применяют при сверлении заготовок из сталей.

Сверла диаметром от 5 до 30 мм оснащают пластинами или коронками из твердого сплава. Недостатками конструкции сверл с припаиваемой пластиной из твердого сплава являются ослабление корпуса инструмента и расположение места, где припаивается пластина, в зоне резания, т. е. в зоне высоких температур. Сверла с припаянными встык коронками из твердого сплава лишены этих недостатков.

Для успешной работы твердосплавных сверл необходимо обеспечить их повышенную прочность и жесткость по сравнению со сверлами из быстрорежущей стали, это достигается увеличением сердцевины до 0,25 диаметра сверла.

Читайте так же:
Сталь это сплав железа с углеродом где

Зенкеры предназначены для обработки литых, штампованных и предварительно просверленных цилиндрических отверстий с целью улучшения чистоты поверхности и повышения их точности или для подготовки их к дальнейшему развертыванию.

Зенкеры применяют для окончательной обработки отверстий с допуском по 11. 12-му квалитетам и обеспечивают параметр шероховатости Rz 20. 40 мкм.

Конструктивно зенкеры выполняют хвостовыми цельными, хвостовыми сборными с вставными ножами, насадными цельными и насадными сборными. Зенкеры изготовляют из быстрорежущей стали или с пластинами твердого сплава, напаиваемыми на корпус зенкера или корпус ножей у сборных конструкций. Хвостовые зенкеры (подобно сверлам) крепят с помощью цилиндрических или конических хвостовиков, насадные зенкеры имеют коническое посадочное отверстие (конусность 1:30) и торцовую шпонку для предохранения от провертывания при работе.

Зенкер (рис. 2.25, а) состоит из рабочей части l, шейки l3, хвостовика l4 и лапки е. Рабочая часть зенкера имеет режущую l1, и калибрующую l2 части.

Рис. 2.25. Зенкер:
а — элементы зенкера: l — рабочая часть; l1 — режущая часть; l2 — калибрующая часть; l3 — шейка; l4 — хвостовик; е — лапка; б — режущая часть зенкера: α — задний угол; γ — передний угол; φ — угол главной режущей кромки; ω — угол наклона канавки зенкера; t — глубина резания; b — режущая кромка: φ1 — угол вспомогательной режущей кромки

Зенкеры имеют три, четыре, а иногда шесть режущих зубьев, что способствует лучшему по сравнению со сверлами направлению их в обрабатываемом отверстии и повышает точность обработки.

Зенкеры из быстрорежущей стали изготовляют хвостовыми цельными диаметром 10. 40 мм, хвостовыми сборными с вставными ножами диаметром 32. 80 мм или насадными сборными диаметром 40. 120 мм.

Зенкеры, оснащенные твердосплавными пластинами, могут быть составными и сборными. Составные хвостовые зенкеры имеют диаметры 14. 50 мм, насадные — 32. 80 мм, насадные сборные — 40. 120 мм.

Угол наклона винтовой канавки (рис. 2.25, б) зенкеров общего назначения ω = 10. 30°. Для обработки твердых металлов берут меньшие, а для мягких — большие значения углов. Для чугуна угол ω = 0°. Для отверстий с прерывистыми стенками независимо от свойств обрабатываемого металла ω = 20. 30°. Передний угол зенкеров γ выбирают по табл. 2.12. Задний угол α зенкера на периферии равен 8. 10°. Угол при вершине φ выбирают по табл. 2.13.

Таблица 2.12 Передние углы зенкеров

Таблица 2.13 Угол режущей части (заборного конуса) зенкера

Угол наклона винтовой канавки со зенкера при обработке деталей из стали, чугуна и бронзы равен 0°. Для усиления режущей кромки на зенкерах с пластинками из твердых сплавов со выбирают положительным и равным 12. 15°.

Ленточки вдоль края винтовой канавки на калибрующей части служат для направления зенкера. Ширина ленточки f = 0,8. 2,0 мм. Для повышения стойкости зенкера длину ленточки подтачивают на 1,5. 2 мм (так же, как у сверла).

Развертка — осевой режущий инструмент — предназначена для предварительной и окончательной обработки отверстий с точностью, соответствующей 6. 11-му квалитетам, и шероховатостью поверхности Ra 2,5 . 0,32 мкм.

  • по типу обрабатываемых поверхностей — на цилиндрические и конические;
  • способу применения — на ручные и машинные;
  • методу крепления на станке — на хвостовые и насадные;
  • инструментальному материалу режущей части — на быстрорежущие и оснащенные твердым сплавом;
  • конструктивным признакам — на цельные, изготовленные из одного инструментального материала; составные неразъемные со сварными хвостовиками; составные неразъемные с припаянными пластинками из твердого сплава и составные разъемные с вставными ножами.

Конструкция регулируемых разверток позволяет восстанавливать их диаметр при переточках, что увеличивает срок работы инструмента.

Стандартные развертки имеют прямые канавки, т.е. угол наклона канавок ω = 0°. Для уменьшения шероховатости обработанной поверхности, а также для развертывания отверстий с пазами применяют развертки с винтовыми канавками, имеющими наклон, обратный направлению рабочего вращения. Для разверток с винтовыми канавками угол со приведен в табл 2.14.

Таблица 2.14 Угол наклона со для разверток с винтовыми канавками

Угол конуса заборной части φ развертки (рис. 2.26, б) выбирают по табл. 2.15.

Таблица 2.15 Угол конуса заборной части разверток

Задний угол α (рис. 2.26, в) берется равным 15°, большие величины а принимают для разверток малых размеров. Задний угол на калибрующей части равен 0°.

Рис. 2.26 Развертка:
а — элементы развертки: t1 — рабочая часть; t2 — режущая часть; t3 — калибрующая часть; t4 — шейка; t5 — хвостовик; е — квадрат; 1 — направляющий конус; 2 — цилиндрическая часть; 2φ — угол заборного конуса; б — элементы режущей части развертки: 1 — 2 — поверхность направляющего конуса; 2 — 3 — режущая часть; φ — угол главной режущей кромки; в — зубья развертки в поперечном сечении: 1 — режущая часть; 2 — калибрующая часть; 3 — ленточка; 4 — угол спинки; α — задний угол; γ — передний угол; г — элементы резания разверткой и обозначение поверхностей на обрабатываемой детали: t — глубина резания; а — толщина стружки; b — ширина стружки; So — подача на оборот; d — диаметр развернутой поверхности; 1 — развернутая поверхность; 2 — поверхность резания; 3 — развертываемая поверхность

Читайте так же:
Ручные гибочные станки для холодной ковки

Для чистовых разверток при резании хрупких металлов передний угол γ равен 0° (см. рис. 2.26, в), для черновых — γ = 8°, у котельных разверток γ = 12. 15°, у разверток с пластинами из твердых сплавов у берется от 0 до — 5°.

Метчики предназначены для образования резьбы в отверстиях. Рассмотрим метчики, образующие профиль резьбы путем снятия стружки и установленные на сверлильных, токарно-револьверных и других станках. Конструктивные элементы и профиль резьбы метчика показаны на рис. 2.27.

Рис. 2.27. Конструктивные элементы и профиль резьбы метчика:
а — основные части: l1 — режущая часть; l2 — направляющая часть; l — рабочая часть; 1 — центровые отверстия; 2 — канавки; 3 — сердцевина; 4 — зуб; 2φ — угол конуса режущей части; φ — угол конуса; б — профиль резьбы: 1 — вершина резьбы; 2 — профиль резьбы; 3 — основание резьбы; Р — шаг резьбы; ψ — угол резьбы; t — глубина резьбы; d1 — внутренний диаметр; dcp — средний диаметр; d — наружный диаметр; d2 — диаметр сердцевины; φ — угол конуса

Стружечные канавки, пересекая резьбовые витки, образуют зубья метчика; каждый зуб представляет собой многониточный резьбовой резец. Резцы режущей части имеют главные кромки, которые располагаются на конусе, и вспомогательные кромки, которые являются частью резьбового профиля.

Число резцов z1 режущей части определяется по формуле

где l1 — длина режущей части, мм; z — число зубьев метчика; Р — шаг резьбы, мм.

Направляющая часть l2 в резании не участвует, а служит для самоподачи (ввинчивания) метчика и является резервом при переточках.

Для уменьшения трения и устранения защемления резьбовых витков на направляющей части метчика резьбу выполняют с обратной конусностью, т.е. диаметры d, dcp и d1 измеренные у хвостовика, на 0,02. 0,005 мм меньше одноименных диаметров на режущей части (рис. 2.27, б). Для облегчения входа метчика в отверстие под резьбу диаметр d2 переднего торца метчика на 0,1. 0,3 мм меньше внутреннего диаметра резьбы d1.

Величину угла в плане φ рассчитывают по формуле

Углы зубьев режущей l1 и направляющей l2 частей метчика (см. рис. 2.27, а) показаны на рис. 2.28. По способу получения задних поверхностей метчики относятся к затылованному инструменту.

Рис. 2.28. Углы зубьев режущей и направляющей частей метчика:
1 — направляющая часть; 2 — режущая часть; γ — передний угол; η — задний угол; α — задний угол; К — величина падения затылка

Задний угол α режущей части измеряют в плоскости, перпендикулярной оси вращения метчика, между касательными к окружности и задней поверхности.

Метчики из быстрорежущей стали изготовляют со шлифованным профилем резьбы, метчики из углеродистой стали делают без шлифования профиля резьбы.

Передние углы режущей и направляющей частей измеряют в плоскости, перпендикулярной оси вращения метчика между касательной к передней поверхности и прямой, проходящей через ось вращения и рассматриваемую точку кромки метчика.

Крепление инструментов для обработки точных отверстий, метчики и развертки

Для получения точных отверстий путем развертывания или точной внутренней резьбы, нарезаемой метчиком, необходимо, чтобы ось вращения инструмента совпадала с осью отверстия, предварительно просверленного в детали. В этом отношении чрезвычайно большую роль играет правильное крепление инструмента.

Жесткое крепление, когда инструмент неподвижно соединен со шпинделем станка, является неудачным, так как все погрешности станка, например биение шпинделя, разработка его гнезда, а также перекосы инструмента, переносятся на отверстие и оно получает увеличенные размеры или неточное направление.

Развертка или метчик должны быть закреплены в шпинделе станка таким образом, чтобы была обеспечена некоторая подвижность инструмента и он при работе мог бы сам устанавливаться по оси предварительно просверленного отверстия. Это требование удовлетворяется при использовании специальных самоустанавливающихся патронов для крепления инструментов.

Простейшей конструкцией самоустанавливающегося патрона является качающийся с шарнирным соединением посредством штифта. Шарнирное соединение позволяет устранить несовпадение оси вращения инструмента и оси отверстия в детали. Качающиеся патроны недостаточно совершенны, так как в различных положениях инструмент по-разному располагается относительно оси отверстия, что приводит к разным размерам последнего. От этих недостатков свободны плавающие патроны, которые дают возможность инструменту легко перемещаться во все стороны, причем направление его оси сохраняется неизменным.

Метчик может перемещаться благодаря тому, что корпус патрона соединен с хвостовиком посредством шариковой обоймы. Это соединение осуществляется муфтой, имеющей внутреннюю резьбу. В зависимости от того, насколько туго затянута муфта, регулируется легкость плавания корпуса.

Корпус, хвостовик и крестовина имеют полукруглые вырезы под шарики. Четыре шарика, попарно расположенные по двум взаимно-перпендикулярным направлениям, обеспечивают плавание корпуса с разверткой. Корпус, крестовина и хвостовик стягиваются муфтой с внутренней резьбой. Между внутренним торцем муфты и хвостовиком находятся прокладка из закаленной стали и латунная обойма с зачеканенными в нее шариками. Регулирование плавания производится путем завертывания муфты; в нужном положении она стопорится винтом. Этот патрон очень прост и удобен.

Плавание (линейные перемещения) осуществляется благодаря двум взаимно-перпендикулярным рядам шариков 6, размещенных между корпусом в котором закрепляется инструмент 8, крестовиной 5 и хвостовиком 1, имеющими соответствующие желобки. Плавающий патрон даже наилучшей конструкциине только не всегда устраняет брак по размерам, но и сам может служить причиной этого брака, если «плавание» инструмента отрегулировано неправильно. На это обстоятельство часто не обращают нужного внимания. Особенно важно тщательное регулирование патрона при нарезании точных резьб метчиками. Патрон нужно отрегулировать так, чтобы инструмент совершенно легко и плавно перемещался в плоскости, перпендикулярной к оси, но не имел большой свободы в осевом направлении; иначе возможно прославление размеров резьбы или неточное ее направление.

Читайте так же:
Реверсивный рубильник обозначение на схеме

К конструкции патронов для закрепления машинныхметчиков иногда предъявляются некоторые дополнительные требования.

1. Если резьба нарезается в глухих отверстиях, то для предотвращения поломок метчика в случае упора в дно отверстия патрон должен иметь устройство, обеспечивающее прекращение вращения метчика (провертывание) при перегрузке.

2. Если метчик подается в деталь не путем самозатягивания, а принудительно — от копира или посредством гидравлики, то величина подачи может несколько отличаться от шага резьбы метчика. Для компенсации этого несоответствия метчик должен иметь возможность небольшого осевого перемещения, что достигается посредством пружин, помещаемых в патроне. Такая компенсация необходима также при одновременном нарезании резьбы с различным шагом на многошпиндельных станках.

В случае, если обрабатываемая деталь сама может перемещаться, режущий инструмент должен закрепляться жестко. Примерами могут служить развертывание деталей, которые без зажима кладут на стол станка с упором и поддерживают рукой, или нарезание резьбы в гайках, которые устанавливают в шестигранных вырезах приспособления с зазором.

Всегда следует исходить из того, что свободу перемещения (возможность самоустановки) должен иметь либо инструмент, либо деталь, но не оба одновременно.

При развертывании точных отверстий развертки получают нужное направление с помощью кондукторных втулок, имеющихся в приспособлениях для закрепления деталей. В некоторых специальных конструкциях разверток направление осуществляется утолщенной направляющей частью, находящейся непосредственно за рабочей частью инструмента. В таких случаях обязательным условием является наличие на направляющей части продольных винтовых канавок, которые служат для удержания смазки и обеспечения доступа смазывающеохлаждающей жидкости к режущей части развертки. Отсутствие смазочных канавок и недостаточная твердость поверхности направляющей части развертки нередко приводят к тому, что развертка «заваривается» в кондукторной втулке. Для предотвращения этого очень полезно хромировать направляющую часть инструмента.

Кондукторы для сверления отверстий под шканты или под углом

Для чего нужен кондуктор

Выполнить максимально и точно отверстия в изделиях на основе натурального дерева, метала, МДФ или ДСП можно с помощью специального кондуктора. Это незаменимая вещь для тех, кто занимается производством мебели, также такое приспособление нужно и в других сфера.

Такой кондуктор можно приобрести готовый, а можно и сделать самостоятельно.

Особенности применения в мебельной промышленности

Кондукторы и шаблоны нужны при сборке мебели. Благодаря таким вещам вы не допустите распространенной проблемы, возникающей во время сверления — попадания сверла в деталь под неправильным углом. Исправлять такую ошибку придется крайне долго, в некоторых случаях это будет даже невозможно.

А кондуктор для проделывания отверстий позволит не только правильно сориентировать рабочий инструмент, но еще не даст ему сбиться с нужной траектории.

В мебельной промышленности кондукторы и шаблоны используются в следующих случаях:

Как пользоваться кондуктором

  • на серийном производстве;
  • при сборке конструкций, когда в соединяемых частях нужно сделать отверстия под крепежные элементы. В этом случае подойдет кондуктор для сверления отверстий под шканты или конфирмат;
  • кондуктор для сверления отверстий под углом используется как в таких случаях, так и во время работы с тонкими плитами, например, с МДФ или ДСП.

Особенности кондукторов

Во время применения такого приспособления процесс сборки будет происходить намного проще и быстрее, нужные отверстия вы сможете проделать независимо от того, как далеко они должны располагаться от края детали и того, какую она имеет ширину.

При самостоятельной сборке мебели часто приходится соединять детали встык посредством шкантов. Отверстия под шканты лучше всего проделывать посредством специального кондуктора. Особенность шкантов состоит в том, что несмотря на то, что такие крепежные элементы хоть и устаревшие, но все равно актуальны при производстве мебели.

Сложность в их применении заключается в том, что оси отверстий, которые проделываются в деталях при соединении, должны иметь друг с другом прямой угол. Соответственно, они должны размещаться строго перпендикулярно по отношению друг к другу. Выполнять это без специального устройства сложно. Поэтому если хотите достичь высокого качества исполнения, рекомендуется купить кондуктор для шкантов.

Другие сферы использования

Кондукторы для отверстий используются не только при производстве мебели. Достаточно часто их применяют тогда, когда нужно проделать отверстие в трубе или другой детали цилиндрической формы. Благодаря им можно выполнить качественное отверстие даже в трубе с малым диаметром.

Такие устройства универсальны и просты в применении, поэтому их также используют в следующих отраслях:

  • машиностроение — сверление отверстий в разнокалиберных заготовках на основе разных материалов;
  • строительство — бурение отверстий в строительных конструкциях;
  • домашние коммуникации — как уже говорилось, сверление труб и не только.

Современные сверлильные кондукторы могут быть разных размеров и иметь разный принцип работы. Некоторые их них устроены сложно, поэтому их проще купить. А некоторые модификации можно изготовить самостоятельно, тем более что некоторые серийные мебельные модели, особенно имеющие универсальное назначение, стоят дорого.

Читайте так же:
Устройство для заточки сверел draper

Преимущества использования

Как пользоваться кондуктором

По сути, такой кондуктор выступает в роли шаблона для проделывания отверстий, чтобы они были сделаны максимально точно. Их можно применять для тех отверстий, ось которых находится перпендикулярно поверхности рабочей заготовки, а также для работы под углом.

Данный инструмент — отличная альтернатива зарисовкам и ручным замерам. Сверло вы сможете разместить строго под нужным углом по отношению к заготовке и не допустите никакого отклонения. Результат будет особо заметным, если речь идет о проделывании глубоких отверстий.

Если вы применяете такое приспособление высокого качества для работы с ДСП, то оно должно иметь следующие характеристики:

  • способствовать быстрой сборке мебели без необходимости применять сложные инструменты;
  • давать возможность проделывать несколько отверстий одновременно без ручной разметки;
  • заметно повышать качество работы со сверлом.

Кондукторы изготавливают на основе разных материалов, есть модели на основе пластика или органического стекла. Однако самым лучшим считается вариант из стали, имеющий такие преимущества, как:

  • минимальная вероятность деформации;
  • сверло направлено максимально четко;
  • отсутствие нагрева при работе.

Как использовать кондуктор

Очень часто в роли мебельных кондукторов применяют накладные модели на основе легких материалов, которыми легко манипулировать. Многие применяют заводские или самодельные инструменты.

А наиболее квалифицированные и опытные мастера уже не пользуются кондуктором, поскольку могут самостоятельно без труда проделать отверстие в конструкциях максимально точно. Но это под силу далеко не каждому.

Ключевое преимущество такого приспособления — это то, что работу может выполнить максимально точно и качественно даже тот человек, у которого нет должного опыта. Вам не придется выполнять разметки и сложные предварительные расчеты. Вы значительно сэкономите время и изготовите мебель намного быстрее.

Классификация инструментов

Перед тем как купить готовый кондуктор или же сделать его своими руками, нужно определиться, какие задачи вы будете решать с его помощью и только потом нужно подбирать подходящий вариант по конструкции и функциям.

Есть ряд категорий приспособлений, которые различаются по своему исполнению и функциональным особенностям. Вот некоторые из них:

Кондукторы для отверстий

  • накладные — такие устройства накладываются на деталь, которая поддается обработке, затем ее на ней крепят или же просто фиксируют вручную. С их помощью проделываются отверстия в разных плоских деталях, плитах МДФ или в ДСП;
  • поворотные — данные шаблоны применяются при обработке деталей цилиндрической формы. Они оснащены горизонтальной и вертикальной осями поворота, благодаря чему отверстия можно выполнять под разными углами;
  • универсальные — такие устройства подойдут для малых серийных производителей мебели, где иногда требуется быстрая переналадка применяемого оборудования, они имеют все необходимые для этого функции;
  • опрокидываемые — используются тогда, когда технологическая процедура проводится сразу в нескольких плоскостях;
  • скользящие — такие кондукторы крепить не нужно. Просто приложите их к участку поверхности заготовки, где нужно сделать отверстие;
  • закрепляемые — они более удобны в применении, но ограничивают свободу действий, что очень критично при работе со станками, где есть только один шпиндель.

Кондуктор для сверления отверстий своими руками

Как уже говорилось, в зависимости от сферы использования и конструкции, некоторые варианты можно сделать и самому, благодаря чему вы сэкономите существенную сумму.

Перед работой отыщите требуемый чертеж устройства и все изготавливайте строго по нему.

Необходимые для работы инструменты:

  • сварочный аппарат;
  • болгарка;
  • дрель;
  • слесарные принадлежности.

Чтобы своими руками сделать самый простой вариант кондуктора, выполняем такие действия:

Кондукторы для сверления отверстий

  • возьмите арматуру размером 10 на 10 мм с квадратным сечением;
  • отрежьте кусок требуемой длины и зачистите его с помощью наждачной бумаги;
  • сделайте разметку под шаблонные отверстия. При этом не допускается, чтобы центр приближался к краю более, чем на 8 мм, это почти половина толщины листа ДСП. Также согласно стандартам, между центрами должно соблюдаться расстояние в 32 мм;
  • после выполнения разметки центров проделайте в них отверстия по 5 мм в диаметре;
  • чтобы сделать упор, возьмите пластину из металла шириной в 2,5 мм и толщиной в 1 мм. Согните ее под углом в 90 градусов, а потом, вместе с куском подготовленной арматуре и крепления в струбцине, сделайте место под резьбу;
  • нарежьте резьбу и две детали соедините в одну конструкцию. Приспособление готово.

В чем особенность кондукторов

Как видим, подобное устройство очень простое в плане самостоятельного изготовления, но оно значительно упростит работу, если вы занимаетесь изготовлением мебели. Если вы занимаетесь этим исключительно как любитель, то этого варианта будет достаточно. Если сделать самому у вас не получится, купите готовый вариант, возможно, самый простой и недорогой.

А вот профессиональное оборудование будет стоить намного дороже, целесообразность его приобретения имеется уже тогда, когда речь идет как минимум о малом серийном производстве. Зато с его помощью вы сможете просто и быстро соединять предметы мебели или ремонтировать ее.

Итак, вы узнали, что такое кондуктор для проделывания отверстий и как он помогает при производстве мебели. Данное устройство можно как приобрести в готовом виде, так и сделать самому.

Читайте так же:
Переплетный станок своими руками

Разработка приспособления для сверления

Разработка приспособления для сверления

Интенсификация производства в машиностроении неразрывно связана с техническим перевооружением и модернизацией производства на базе применения новейших достижений науки и техники. Техническое перевооружение, подготовка производства новых видов продукции машиностроения и модернизация средств производства неизбежно включают процессы проектирования средств технологического оснащения и их изготовления.

В общем объёме средств технологического оснащения примерно 50 % составляют станочные приспособления. Применение станочных приспособлений позволяет:

1) надежно базировать и закреплять обрабатываемую деталь с сохранением её жесткости в процессе обработки;

2) стабильно обеспечивать высокое качество обрабатываемых деталей при минимальной зависимости качества от квалификации рабочего;

3) повысить производительность и облегчить условия труда рабочего в результате механизации приспособлений;

4) расширить технологические возможности используемого оборудования.

Для эффективного использования станков и станочных приспособлений предъявляется ряд требований.

Для обеспечения высокой точности обработки заготовок приспособления должны быть выполнены с высокой точностью. Погрешности базирования и закрепления должны быть сведены к минимуму. Конструкция приспособления не должна быть наиболее податливым звеном системы станок-приспособление-инструмент — деталь, чтобы использовать полную мощность станка на черновых операциях и обеспечивать высокую точность на чистовых операциях. Приспособление должно обеспечивать хорошую инструментальную доступность, т.е. возможность подхода инструмента к как можно большему количеству поверхностей заготовки. Приспособления должны обеспечивать сокращение времени зажимаразжима заготовки. Для сокращения времени переналадки станков приспособления должны обеспечивать возможность их быстрой смены или переналадки.

Задачей данной работы является разработка станочного приспособления для обработки отверстий детали «Стакан» на сверлильной операции.

1. Техническая характеристика

Требуется спроектировать приспособление для обработки восьми отверстий диаметром 15 +0,27 мм и трех отверстий под резьбу М12 диаметром 10 +0,22 мм (операция 040).

Заготовка обрабатывается на радиально-сверлильном станке модели 2Л53У с использованием кондуктора. Применение специализированного приспособления (ПР) позволит снизить трудоемкость обработки на данной операции, уменьшить штучное время, повысить стабильность точностных параметров операции.

Габаритные размеры кондуктора 260х173 мм.

Материал втулок: Сталь У10 ГОСТ 143599, плит: Сталь 20Х ГОСТ 454371.

В данном случае применяется крышечный кондуктор (кондуктор со съемной крышкой). Приспособление состоит из двух частей: верхняя – оформлена как накладной кондуктор, нижняя – подставка.

Деталь помещается между кондукторной втулкой, расположенной над ней, и установочным местом, прилегающим к столу. Верхняя часть кондуктора (кондукторная плита) соединена с нижней шпилькой.

Для направления режущего инструмента в корпусе кондуктора имеются кондукторные втулки, которые обеспечивают точную обработку отверстий в соответствии с чертежом. Конструкция и размеры этих втулок стандартизованы. Они бывают:

— постоянные — применяются в кондукторах для мелкосерийного производства при обработке отверстия одним инструментом;

— быстросменные с замком — в кондукторах для массового и крупносерийного производства.

Втулки изготовляют из стали У10 или 20Х и подвергают термической обработке для придания им необходимой твердости.

Для уменьшения износа втулок и уменьшения смещения оси обрабатываемого отверстия из-за возможного перекоса инструмента во втулке между ее нижним торцом и поверхностью заготовки оставляют зазор. Тогда стружка не проходит через втулку, а сбрасывается в сторону. При сверлении чугуна зазор берут от 0,3 до 0,5 мм.

При сверлении стали и вязких материалов (меди, алюминиевых и других сплавов) зазор увеличивается до размера диаметра.

Правильное расположение обрабатываемых заготовок относительно инструмента в кондукторах обеспечивается установочными опорами. К ним относятся штыри и пластинки.

Штыри применяются с плоской (I), сферической (II) и насеченной (III) головками. Первые предназначены для установки заготовок обработанными поверхностями, вторые и третьи — для установки заготовок необработанными поверхностями.

Установочные пластинки закрепляются в корпусе кондуктора двумя или тремя винтами.

Если на поверхности обрабатываемой заготовки имеется припуск, который надо удалить при последующих операциях, применяются регулируемые опоры.

Кондукторные плиты служат для установки в их отверстиях кондукторных втулок.

В зависимости от способа соединения с корпусом кондуктора кондукторные плиты подразделяются на:

Постоянные плиты изготовляют заодно с корпусом кондуктора или жестко соединяют с ним сваркой или винтами.

Поворачиваемые плиты вращаются на оси относительно корпуса кондуктора при установке и снятии обрабатываемой детали.

Съемные плиты изготовляют отдельно от корпуса. Деталь закрепляют в кондукторе, устанавливают съемную плиту, а после обработки съемную плиту снимают.

Подвесные кондукторные плиты по краям имеют два отверстия, которыми их устанавливают на нижних концах двух направляющих скалок и закрепляют гайками. Верхние концы скалок свободно входят в отверстия втулок, запрессованных в отверстия корпуса многошпиндельной сверлильной головки, которая закреплена на гильзе шпинделя станка.

Подъемные кондукторные плиты по краям имеют два отверстия, которыми их устанавливают на верхних концах двух направляющих скалок и закрепляют гайками. Нижние концы направляющих скалок входят в отверстия корпуса кондуктора. Подъем и опускание направляющих скалок с кондукторной плитой производится от пневмопривода.

Применение кондукторов устраняет необходимость в разметке, нанесении центровых отверстий, выверке заготовок при креплении и других операциях, связанных со сверлением по разметке. Поэтому их широко используют в серийном и массовом производстве.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector