Wabashpress.ru

Техника Гидропрессы
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль упругости стали

Модуль упругости стали

Одной из главных задач инженерного проектирования является выбор материала конструкции и оптимального сечения профиля. Необходимо найти тот размер, который при минимально возможной массе будет обеспечивать сохранение формы системы под воздействием нагрузки.

Например, какой номер стального двутавра использовать в качестве пролетной балки сооружения? Если взять профиль размерами ниже требуемого, то гарантировано получим разрушение строения. Если больше, то это ведет к нерациональному использованию металла, а, следовательно, утяжелению конструкции, усложнению монтажа, увеличению финансовых затрат. Знание такого понятия как модуль упругости стали даст ответ на вышепоставленный вопрос, и позволит избежать появления данных проблем на самом раннем этапе производства.

стальная балка

Общее понятие

Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.

Дополнительные характеристики механических свойств

Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

  • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
  • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
  • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
  • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
  • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
  • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

Значение модуля упругости

Необходимо заметить, что модуль Юнга не является постоянной величиной. Даже для одного и того же материала он может колебаться в зависимости от точек приложения силы.

Некоторые упруго — пластичные материалы обладают более или менее постоянным модулем упругости при работе как на сжатие, так и на растяжение: медь, алюминий, сталь. В других случаях упругость может изменяться исходя из формы профиля.

Читайте так же:
Таймер 555 принцип работы

Вот примеры значений модуля Юнга (в миллионах кгссм2) некоторых материалов:

    – 1,15. -1,16.
  • Латунь – 1,01.
  • Бронза — 1,00.
  • Кирпичная каменная кладка – 0,03.
  • Гранитная каменная кладка – 0,09.
  • Бетон – 0,02.
  • Древесина вдоль волокон – 0,1.
  • Древесина поперек волокон – 0,005.
  • Алюминий – 0,7.

Рассмотрим разницу в показаниях между модулями упругости для сталей в зависимости от марки:

  • Стали конструкционные высокого качества (20, 45) – 2,01.
  • Стали обычного качества (Ст.3, Ст.6) — 2,00.
  • Стали низколегированные (30ХГСА, 40Х) – 2,05.
  • Стали нержавеющие (12Х18Н10Т) – 2,1.
  • Стали штамповые (9ХМФ) – 2,03. (60С2) – 2,03.
  • Стали подшипниковые (ШХ15) – 2,1.

Также значение модуля упругости для сталей изменяется исходя из вида проката:

  • Проволока высокой прочности – 2,1.
  • Плетенный канат – 1,9.
  • Трос с металлическим сердечником – 1,95.

значения модуля упругости

Как видим, отклонения между сталями в значениях модулей упругой деформации имеют небольшую величину. Поэтому в большинстве инженерных расчетов можно пренебречь погрешностями и брать значение Е=2,0.

Определение прочности на сжатие

Прочность ─ свойство материала сопротивляться разруше­нию под действием внутренних напряжений, вызванных внешни­ми силами или другими факторами (стесненной усадкой, не­равномерным нагреванием и т.д.). Прочность материала оценивают пределом прочности (временным сопротивлением), оп­ределенным при данном виде деформации. Для хрупких матери­алов (природных каменных материалов, бетонов, строитель­ных растворов, кирпича и др.) основной прочностной характе­ристикой является предел прочности на сжатие.

Предел прочности на осевое сжатие Rсж[МПа(кгс/см 2 )] равен частному от деления разрушающей силы Рразр [H(кгс)] на первоначальную площадь поперечного сечения F [мм 2 (см 2 )] образца (куба, цилиндра, призмы):

Для определения прочности на сжатие образцы материала подвергают действию сжимающих усилий и доводят до разруше­ния. Испытуемые образцы должны иметь правильную геометри­ческую форму (куб, параллелепипед, цилиндр). Образцы из бетона в форме кубов могут быть следующих размеров: 70х70х 70, 100х100х100, 150х150х150, 200х200х200, 300х300х300 мм.

Для испытания образцов материала на сжатие применяют гидравлические прессы и универсальные испытательные машины. Перед испытанием образец взвешивают и обмеряют. Затем его устанавливают на нижнюю опорную плиту пресса точно по ее центру, а верхнюю опорную плиту с помощью винта опускают на образец. Убедившись в правильности установки образца, включают насос пресса и прикладывают к образцу нагрузку, регулируя скорость ее нарастания (обычно в секунду 0,5-1 МПа (5-10 кгс/см 2 ). В момент разрушения образца, т.е. в момент наибольшей нагрузки, стрелка, связанная с силоизмерительным устройством пресса, остановится и начнет двигаться обратно. Разрушающую нагрузку фиксируют с по­мощью второй регистрирующей стрелки, которая, будучи откло­нена по шкале вместе с первой стрелкой, после ее возвраще­ния в исходное положение остается на месте и показывает значение максимальной нагрузки на образец.

Предел прочности на сжатие образца вычисляют по фор­муле (21), причем в эту формулу, как указано в соответст­вующих ГОСТах на испытание различных строительных матери­алов, обычно вводят различные коэффициенты, в т.ч. масш­табный коэффициент перехода к прочности образцов базового размера, коэффициент, учитывающий влажность образца, и другие. Например, при испытании тяжелого бетона базовым образцом является куб размерами 150х150х150 мм, для которого масштабный коэффициент равен 1. При длине ребра куба 70, 100, 200 и 300 мм предел прочности рассчитывают, пользуясь со­ответственно масштабными коэффициентами 0,85; 0,95; 1,05 и 1,10.

Иногда для определения усилий, действующих на ис­пытываемый образец, на прессе устанавливают манометр, пока­зывающий давление в цилиндре (кгс/см 2 ). Тогда, зная пло­щадь поршня и давление на 1 см 2 его поверхности и умножив величину давления на величину площади поршня, можно опреде­лить усилие Рразр, действующее на образец и разрушающее его.

Зная площадь F образца, на которую действует разрушаю­щая нагрузка, по формуле (21) можно вычислить предел проч­ности на сжатие (кгс/см 2 или МПа).

Соотношение марки бетона и класса

Области проектирования и строительства строго регламентированы специальными положениями о бетоне и железобетоне, стандартами ГОСТ, в которых важное значение имеют класс и марка бетона. Соотношение класса и марки бетона определяет инженерные расчеты при возведении фундаментов, стен, архитектурных конструкций и сооружений, где за основу параметров взяты данные лабораторной проверки прочности с использованием бетонного кубика определенных размеров. В Великобритании и некоторых европейских странах прочность бетонных монолитов на сжатие проводят с помощью цилиндра.

Читайте так же:
Станок для дрели своими руками чертежи

Класс и марка характеризуют прочность бетона, но при разработке состава бетонной смеси следует учитывать морозостойкость (F), водонепроницаемость (W), другие показатели с учетом индивидуальных особенностей строительных проектов.

Прочность бетона — характеристика непостоянная, в течение определенного времени (при правильно подобранных пропорциях) растворная смесь затвердевает, набирает проектную силу. Минимальный срок отвердевания бетона — 28 дней, но процесс становления прочности по истечении этого срока не завершается: качество бетона со временем повышается, основание твердеет. Прочность бетона зависит от соотношения воды и цемента, идеальным составом считаются пропорции В/Ц = 0,3:0,5, если соотношение ниже, бетон теряет пластичность, при повышении пропорций воды уменьшается прочность, но становится выше подвижность раствора.

Классификация и марка бетона

Класс бетона показывает прочность бетонного раствора на сжатие с доверительной вероятностью в 95%, обозначается «В», измеряется в МПа, определяется цифровыми значениями прочности на сжатие от 0,5 до 120 МПа (давление, которое способен выдержать бетон). Например, класс бетона В20 означает, что бетонное основание, изготовленное из бетона этой марки, способно выдержать несущие нагрузки в 20 МПа.

Прочность бетона на сжатие

Бетон по прочности на сжатие бывает:

  • теплоизоляционный (класс В0,35-В2);
  • конструкционно-теплоизоляционный (класса В2,5-В10);
  • конструкционный (класса В12,5-В40);
  • для усиленных сооружений (класса В45 и выше).

Класс бетонного раствора на осевое растяжение обозначен буквенной аббревиатурой «Bf», определяется в пределах 0,4-6,0 Bf и означает гарантированную прочность бетона.

Класс прочности бетона по СНБ обозначен буквой «C», определяет качество: соотношение показателей нормативного сопротивления и гарантированной прочности, измеряется в H/мм 2 . Например, расшифровка маркировки класса бетона С20/25: 20 — цифровое значение заданной прочности (МПа) и 25 — гарантированная прочность (H/мм 2 ).

Марка бетона означает среднюю прочность бетона на сжатие, измеряется в кгс/см 2 . Маркировка применяется в монолитном строительстве, устройстве бетонных полов и означает количество цемента в составе растворной смеси, обозначается буквой «М» с последующим цифровым значением.

Существует определение условной марки бетона — усредненного значения серии образцов в соответствии с ГОСТ 10180-78 при номинальном коэффициенте прочности бетона, обозначается буквой «Y». Условную марку бетона можно вычислить по формуле:

Y = B/[0,0980665 (1-1,64 V)]

где В — класс бетона;

0,0980665 — переходный коэффициент;

V — постоянная величина номинального значения коэффициента вариации прочности; для конструкционного бетона равна 0,135 (13,5%), для ячеистого (теплоизоляционного) бетона — 0,18 (18%).

Различие марки и класса бетона

Различие класса и марки бетона заключается в единицах измерения (МПа и кгс/см 2 ), в гарантии подтверждения прочности. Если в классификации бетона обеспеченность прочности составляет 95%, то в марке используется усредненное значение.

Для удобства апеллирования данными была составлена таблица марки бетона (сопротивления по осевому сжатию) эталонных образцов-кубиков с размерами граней 15х15 см с указанием морозостойкости, водонепроницаемости растворов в условиях клинических (лабораторных) испытаний. Табличные значения определяют и класс бетона, соотношение показателей, что упрощает проведение расчетов при разработке строительных и архитектурных проектов.

Применение бетона с учетом показателей прочности

Область применения бетона регламентирована таблицей соответствия класса и марки, показывает, какие бывают разновидности бетона по плотности, водонепроницаемости, в какой области строительства могут применяться. Сложно определить, какой растворный состав лучше, так как качество бетона целиком зависит от основных показателей и области применения (назначения).

Несколько примеров применения бетона с учетом марки и класса:

  • М5-М35 / В0-В2,5: производство ненесущих конструкций, подготовительные мероприятия;
  • М50-75 / В3,5-5,0: заливка монолитов, ленточных оснований, бетонных подушек, изготовление бордюров, отмосток, область малоэтажного строительства домов (1-2 этажа), можно использовать для заливки пола, допускаются фракционные включения — известняковый, гранитный, гравийный щебень;
  • М100/В7,5 можно использовать для заливки монолитов, фундаментов, стяжки, в дорожном строительстве, при закладке бордюрных блоков или бетонной подушки; фракционные наполнители — гравий, щебень;
  • М150 / В10,0-12,5 (С8-10): производство конструкционных элементов, малоэтажное возведение зданий (1-3 этажа), в качестве подготовительного основания для контроля величины защитного слоя или для фундамента;
  • М200-М300 / В15,0-В22,5 (С12/15): производство лестничных, площадочных пролетов, монолитных плит, балок, перекрытий, гражданское строительство домов до 10 этажей;
  • М350-400 / В25-В30: производство свайно-ростверковых бетонных и железобетонных конструкций, колонн, чаш накопительных резервуаров, аэродромных плит ПАГ, область монолитного строительства зданий высотой до 30-ти этажей, других инженерных сооружений, предназначенных к эксплуатации в условиях сложных или экстремальных нагрузок;
  • М450 / В35: производство мостовых и гидротехнических сооружений, ригелей, банковских хранилищ, стен метро;
  • М500 / В40: производство сооружений и архитектурных конструкций со специальными требованиями по плотности и прочности элементов.
Читайте так же:
Резак для резки пенопласта

Чем выше цифровой показатель буквенного значения бетона, тем выше значение по плотности, водонепроницаемости и другим параметрам. Таблица соотношений класса и марки бетона точно определяет область применения бетонной смеси с учетом несущих характеристик сооружения, конструкции, здания, других особенностей инженерных проектов и может быть использована в любой сфере гражданского, промышленного или дорожного строительства.

Соответствие твердости и прочности Таблица / Hardness equivalent table

Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия _ 240 71 75 255 76 80 270 81 85 285 86 90 305 90 95 320 95 100 335 100 105 350 105 110 370 109 115 385 114 120 400 119 125 415 124 130 430 128 135 450 133 140 465 138 145 480 143 150 495 147 155 510 152 160 530 157 165 545 162 170 560 166 175 575 171 180 595 176 185 610 181 190 625 185 195 640 190 200 660 195 205 675 199 210 690 204 215 705 209 220 720 214 225 740 219 230 755 223 235 770 228 240 785 233 245 800 22 238 250 820 23 242 255 835 24 247 260 860 25 255 268 870 26 258 272 900 27 266 280 920 28 273 287 940 29 278 293 970 30 287 302 995 31 295 310 1020 32 301 317 1050 33 311 327 1080 34 319 336 1110 35 328 345 1140 36 337 355 1170 37 346 364 Rm (Н/мм2) HRC НВЗО HV10 1200 38 354 373 1230 39 363 382 1260 40 372 392 1300 41 383 403 1330 42 393 413 1360 43 402 423 1400 44 413 434 1440 45 424 446 1480 46 435 458 1530 47 449 473 1570 48 460 484 1620 49 472 497 1680 50 488 514 1730 51 501 527 1790 52 517 544 1845 53 532 560 1910 54 549 578 1980 55 567 596 2050 56 584 615 2140 57 607 639 2180 58 622 655 59 675 60 698 61 720 62 745 63 773 64 800 65 829 66 864 67 900 68 940 1670 GUHRING Фрезерный инструмент

490 Каталог KORLOY 2008 Инструмент металлорежущий и инструментальная оснастка Стр.K08

Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твер

Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердосплавный шарик D10 (мм) HRA HRB HRC HRD 940 85.6 — 68.0 76.9 97 920 85.3 — 67.5 76.5 96 900 85.0 — 67.0 76.1 95 880 — (767) 84.7 — 66.4 75.7 93 860 — (757) 84.4 — 65.9 75.3 92 840 — (745) 84.1 — 65.3 74.8 91 820 — (733) 83.8 — 64.7 74.3 90 800 — (722) 83.4 — 64.0 74.8 88 780 — (710) 83.0 — 63.3 73.3 87 760 — (698) 82.6 — 62.5 72.6 86 740 — (684) 82.2 — 61.8 72.1 84 720 — (670) 81.8 — 61.0 71.5 83 700 — (656) 81.3 — 60.1 70.8 81 690 — (647) 81.1 — 59.7 70.5 — 680 — (638) 80.8 — 59.2 70.1 80 670 — 630 80.6 — 58.8 69.8 — 660 — 620 80.3 — 58.3 69.4 79 650 — 611 80.0 — 57.8 69.0 — 640 — 601 79.8 — 57.3 68.7 77 630 — 591 79.5 — 56.8 68.3 — 620 — 582 79.2 — 56.3 67.9 75 610 — 573 78.9 — 55.7 67.5 — 600 — 564 78.6 — 55.2 67.0 74 590 — 554 78.4 — 54.7 66.7 — 2055 580 — 545 78.0 — 54.1 66.2 72 2020 570 — 535 77.8 — 53.6 65.8 — 1985 560 — 525 77.4 — 53.0 65.4 71 1950 550 (505) 517 77.0 — 52.3 64.8 — 1905 540 (496) 507 76.7 — 51.7 64.4 69 1860 530 (488) 497 76.4 — 51.1 63.9 — 1825 520 (480) 488 76.1 — 50.5 63.5 67 1795 510 (473) 479 75.7 — 49.8 62.9 — 1750 500 (465) 471 75.3 — 49.1 62.2 66 1705 490 (456) 460 74.9 — 48.4 61.6 — 1660 480 488 452 74.5 — 47.7 61.3 64 1620 470 441 442 74.1 — 46.9 60.7 — 1570 460 433 433 73.6 — 46.1 60.1 62 1530 450 425 425 73.3 — 45.3 59.4 — 1495 440 415 415 72.8 — 44.5 58.8 59 1460 430 405 405 72.3 — 43.6 58.2 — 1410 420 397 397 71.8 — 42.7 57.5 57 1370 410 388 388 71.4 — 41.8 56.8 — 1330 100 379 379 70.8 — 40.8 56.0 55 1290 390 369 369 70.3 — 39.8 55.2 — 1240 380 360 360 69.8 (100.0) 38.8 54.4 52 1205 370 350 350 69.2 — 39.9 53.6 — 1170 360 341 341 68.7 (109.0) 36.6 52.8 50 1130 350 331 331 68.1 — 35.5 51.9 — 1095 340 322 322 67.6 (108.0) 34.4 51.1 47 1070 330 313 313 67.0 — 33.3 50.2 — 1035 Виккерс Бринелль НВ Роквелл Шор HS S 5 Э МРа(1) iff га О 5 Твердосплавный шарик D10(mm) HRA HRB HRC HRD 320 303 303 66.4 (107.0) 32.2 49.4 45 1005 310 294 294 65.8 — 31.0 48.4 — 980 300 284 284 65.2 (105.5) 29.8 47.5 42 950 295 280 280 64.8 — 29.2 47.1 — 935 290 275 275 64.5 (104.5) 28.5 46.5 41 915 285 270 270 64.2 — 27.8 46.0 — 905 280 265 265 63.8 (103.5) 27.1 45.3 40 890 275 261 261 63.5 — 26.4 44.9 — 875 270 256 256 63.1 (102.0) 25.6 44.3 38 855 265 252 252 62.7 — 24.8 43.7 — 840 260 247 247 62.4 (101.0) 24.0 43.1 37 825 255 243 243 62.0 — 23.1 42.2 — 805 250 238 238 61.6 99.5 22.2 41.7 36 795 245 233 233 61.2 — 21.3 41.1 — 780 240 228 228 60.7 98.1 20.3 40.3 34 765 230 219 219 — 96.7 (18.0) — 33 730 220 209 209 — 95.0 (15.7) — 32 695 210 200 200 — 93.4 (13.4) — 30 670 200 190 190 — 91.5 (11.0) — 29 635 190 181 181 — 89.5 (8.5) — 28 605 180 171 171 — 87.1 (6.0) — 26 580 170 162 162 — 85.0 (3.0) — 25 545 160 152 152 — 81.7 (0.0) — 24 515 150 143 143 — 78.7 22 490 140 133 133 — 75.0 21 455 130 124 124 — 71.2 20 425 120 114 114 — 66.7 — 390 110 105 105 — 62.3 100 95 95 — 56.2 95 90 90 — 52.0 90 86 86 — 48.0 85 81 81 — 41.0 Примечание параметры указанные в скобках применять только для сравнения. Index Таблица соответствия твердости Таблица соответствия твердости обрабатываемых материалов

Читайте так же:
Назначение коробки скоростей токарного станка

303 Каталог СКИФ-М 2011 Металлорежущий инструмент и инструментальная оснастка Стр.

Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table

Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table _ Данные из немецкого национального стандарта DIN 50150 Tensile srtength Предел прочности N/mm2 Н/мм2 Vickers hardness Виккерс HV Brinell hardness Бринель HB Rockwell hardness Роквелл HRC э Shore Шор C 255 80 76 270 85 80,7 285 90 85,5 305 95 90,2 320 100 95 335 105 99,8 350 110 105 370 115 109 385 120 114 15 400 125 119 18 415 130 124 19 430 135 128 20 450 140 133 21 465 145 138 21 480 150 143 22 495 155 147 22 510 160 152 23 530 165 156 24 545 170 162 25 560 175 166 25 575 180 171 26 595 185 176 27 610 190 181 28 625 190 185 28 640 200 190 29 660 205 195 30 675 210 199 31 690 215 204 32 705 220 209 32 720 225 214 33 740 230 219 33 755 235 223 33 770 240 228 20,3 34 785 245 233 21,3 35 800 250 238 22,2 36 820 255 242 23,1 36 835 260 247 24,0 37 850 265 252 24,8 37 865 270 257 25,6 38 880 275 261 26,4 39 900 280 266 27,1 39 915 285 271 27,8 40 930 290 276 28,5 41 950 295 280 29,2 42 965 300 285 29,8 43 995 310 295 31,0 44 1030 320 304 32,2 46 1060 330 314 33,3 47 1095 340 323 34,4 48 Tensile srtength Предел прочности N/mm2 Н/мм2 Vickers hardness Виккерс HV Brinell hardness Бринель HB Rockwell hardness Роквелл HRC э Shore Шор C 1125 350 333 35,5 50 1155 360 342 36,6 50 1190 370 352 37,7 51 1220 380 361 38,8 52 1255 390 371 39,8 53 1290 400 380 40,8 54 1320 410 390 41,8 56 1350 420 399 42,7 57 1385 430 409 43,6 58 1420 440 418 44,5 58 1455 450 428 45,3 59 1485 460 437 46,1 60 1520 470 447 46,9 61 1555 480 456 47,7 62 1595 490 466 48,4 63 1630 500 475 49,1 64 1665 510 485 49,8 65 1700 520 494 50,5 65 1740 530 504 51,1 66 1775 540 513 51,7 67 1810 550 523 52,3 68 1845 560 532 53,0 69 1880 570 542 53,6 70 1920 580 551 54,1 70 1955 590 561 54,7 71 1995 600 570 55,2 72 2030 610 580 55,7 73 2070 620 589 56,3 75 2105 630 599 56,8 76 2145 640 608 57,3 77 2180 650 618 57,8 78 2310 660 58,3 78 2350 670 58,8 79 2380 680 59,2 80 2410 690 59,7 80 2450 700 60,1 81 2520 720 61,0 83 2590 740 61,8 84 2660 760 62,5 86 2730 780 63,3 87 2800 800 64,0 88 2870 820 64,7 90 2940 840 65,3 91 3010 860 65,9 92 3080 880 66,4 93 3150 900 67,0 95 3220 920 67,5 96 3290 940 68,0 97 СКИФ-М SKIF-M Техническое приложение Сравнительная

Читайте так же:
Таблица перевода шероховатости rz в ra

Измерение твердости материалов / Material hardness measurement

854 Каталог KENNAMETAL 2018 Инструмент для обработки отверстий Метчики Фрезы Стр.

Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США

Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США _

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector