Конвертерное производство
Конвертерное производство
Конвертерное производство — получение стали в сталеплавильных агрегатах-конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава. Выделяющееся в процессе окисления тепло повышает температуру расплава до необходимой для расплавления стали, то есть конвертер не требует топлива для работы. На начало XXI века более 60 % стали в мире производится конвертерным способом [1] .
Содержание
Процессы [ править | править код ]
Классификация конвертерных процессов [ править | править код ]
Основными способами классификации являются способ подвода, состав дутья и других реагентов, состав футеровки, способ ввода дополнительного тепла в конвертер. По способу подвода дутья процессы делятся на три группы:
- с продувкой снизу;
- с продувкой сверху;
- с комбинированной продувкой.
Бессемеровский и томасовский процессы относятся к группе процессов с продувкой снизу. В качестве дутья в этих процессах применяется воздух, обогащённый кислородом воздух и парокислородная смесь. Кислородно-конвертерный процесс и процесс Кальдо относятся к группе процессов с продувкой сверху. Бессемеровский и томасовский процессы уступают место процессам с продувкой сверху.
По способу ввода дополнительного тепла в конвертер выделяют процессы:
- со сжиганием дополнительного топлива в ходе продувки;
- с дополнительным дожиганием монооксида углерода до оксидом углерода в полости конвертера;
- с предварительным подогревом металлолома в конвертере;
- со сжиганием дополнительного топлива и дожиганием монооксида углерода до оксидом углерода в ходе продувки;
- с предварительным подогревом металлолома перед продувкой и сжиганием дополнительного топлива в процессе продувки;
- с предварительным подогревом металлолома перед продувкой и дожиганием газов в ходе продувки;
- с предварительным подогревом металлолома до продувки, сжиганием дополнительного топлива и дожиганием угарного газа до углекислого в ходе продувки [2] .
Бессемеровский процесс [ править | править код ]
Первый массовый способ получения жидкой стали открыл английский изобретатель Генри Бессемер в 1856. До Бессемера плавленой стали не существовало: невозможно было получить температуру свыше 1500°, необходимую для расплавления металла с пониженным относительно чугуна содержанием углерода. Сталь получали пудлингованием и ковкой криц.
Продувка расплава в бессемеровском конвертере осуществляется атмосферным воздухом. Содержащийся в нём азот уносит заметную часть полезного тепла реакции, не позволяя вносить в плавку большие количества лома, и частично переходит примесью в получаемую сталь. Основной недостаток процесса — невысокое качество металла за счёт неудалённых при продувке вредных примесей (фосфора и серы). Для выплавки бессемеровских чугунов нужны очень чистые по содержанию серы и фосфора железные руды, природные запасы которых ограничены.
Томасовский процесс [ править | править код ]
Англичанин Сидни Гилкрист Томас в 1878 вместо кислой динасовой футеровки бессемеровского конвертера применил основную футеровку, а для связывания фосфора предложил использовать известь. Томасовский процесс позволил перерабатывать высокофосфористые чугуны и получил распространение в странах, где железные руды большинства месторождений содержат много фосфора (Бельгия, Люксембург, др.). Однако и томасовская сталь была низкого качества.
В 1864 французский металлург П. Мартен разработал процесс получения стали в мартеновской печи. В отличие от конвертерных способов получения стали, мартеновский процесс отличался малой требовательностью к химическому составу исходного материала, позволял переплавлять большое количество стального лома; качество мартеновской стали было выше конвертерной. Однако следует заметить, что время плавки в мартеновской печи гораздо больше, чем в конвертере. Мартеновская печь требует внешнего обогрева в течение всей плавки, в то время как конвертер разогревается сам. Вследствие этого мартеновский способ вытесняется окончательно конвертерным. Единственным достоинством стали, выплавленной в мартеновской печи, по сравнению с конвертерной, остается её большой ассортимент, в то время как для повышения количества марок стали конвертерной используют установку доводки стали.
К середине XX века мартеновским способом изготовлялось около 80 % всей стали, производимой в мире. Но именно в этот период началось бурное возрождение конвертерного производства, связанное с применением продувки чистым кислородом.
Кислородно-конвертерный процесс [ править | править код ]
Первый патент на кислородное дутьё получил ещё сам изобретатель процесса Генри Бессемер. Однако опробование идеи долгое время сдерживалось отсутствием тоннажного производства кислорода. Только к началу 1930-х годов кислород промышленной чистоты стал доступен в больших количествах благодаря созданию криогенных установок для сжижения воздуха и разгонки его на фракции. Первые довоенные опыты по продувке чугуна кислородом производились в небольших ковшах вместимостью единицы тонн. В 1933—1936 годах с подачи и под руководством инженера Н. И. Мозгового на киевском заводе «Большевик» были проведены, по-видимому, первые в мировой практике плавки с применением кислородной продувки [3] . Параллельно шли опыты в Германии и Австрии.
Всеобщее вытеснение кислородно-конвертерным производством мартеновского началось только по окончании Второй мировой войны, с воплощением предвоенных наработок по криогенной технике, проектированием и постройкой очень крупных кислородных установок при металлургических заводах, обеспечивавших не только продувку конвертеров, но и обогащение кислородом доменного дутья. Одновременно развивались методы экспресс-контроля параметров плавки: по сравнению с мартеновской конвертерная плавка очень скоротечна (десятки минут) и требует тщательного отслеживания содержания углерода, температуры расплава и отходящих газов и др. с целью своевременного прекращения продувки. Совершенствование автоматики, лабораторной техники и измерительных приборов было таким же необходимым условием выплавки качественной конвертерной стали, как и получение нужных количеств кислорода. Металл, получаемый кислородно-конвертерным процессом, по качеству стал равноценным мартеновской стали, себестоимость стали снизилась на 20—25 %, производительность увеличилась на 25—30 %.
На сегодняшний день существует три основных режима работы кислородного конвертера: с полным дожиганием окиси углерода, с частичным и без дожигания СО.
Существует много разновидностей кислородно-конвертерного процесса, предназначенного для производства стали требуемого качества из чугунов различных составов: низко- и высокофосфористых, кремнистых и низкокремнистых, марганцовистых и высокомарганцовистых и т. п. Наибольшее распространение получил кислородно-конвертерный способ с верхней продувкой чугуна технически чистым кислородом (чистотой не менее 99,5 %, остальные 0,5 % — азот, аргон, криптон).
В начале развития кислородно-конвертерного производства стойкость футеровки была низкой (200—250 плавок), а продолжительность смены футеровки — достаточно высокой. При таком положении дел один из установленных в цехе конвертеров постоянно находился на ремонте. В дальнейшем время эксплуатации конвертера до замены футеровки увеличилась (Так, на ЗСМК в экспериментальном порядке достигли 2500 плавок), время на замену футеровки сократилось и загрузка цехов стала полной [4] .
Устройство конвертера [ править | править код ]
Бессемеровский и томасовский конвертеры представляют собой сосуд грушевидной формы, выполненный из стального листа с футеровкой изнутри. Футеровка бессемеровского конвертера кислая (динасовый кирпич), томасовского — основная (смолодоломит).
Сверху в суживающейся части конвертера — горловине — имеется отверстие, служащее для заливки чугуна и выпуска стали. В классическом конвертере с нижней продувкой дутье, подаваемое в воздушную коробку, поступает в полость конвертера через фурмы (сквозные отверстия), имеющиеся в футеровке днища. Дутьем служит воздух, подаваемый под давлением 0,30—0,35 МПа. Цилиндрическая часть конвертера охвачена опорным кольцом; к нему крепятся цапфы, на которых конвертер поворачивается вокруг горизонтальной оси.
Стойкость днища бессемеровского конвертера составляет 15—25 плавок, после чего их заменяют. Стойкость остальной футеровки выше: у томасовского конвертера 250—400 плавок, у бессемеровского 1300—2000 плавок. Таким образом, футеровка конвертера — химически активный расходный материал, требующий периодического обновления.
В современном кислородном конвертере дутьё подаётся через опускаемую сверху фурму с несколькими сверхзвуковыми соплами Лаваля на конце, направленными почти под прямым углом к поверхности расплава. Сама фурма, как правило, не заглубляется в расплав. Для предохранения от брызг и отвода газов горловина конвертера прикрывается опускающимся колоколом, также сверху смонтированы и контрольные приборы типа пирометров и газоанализаторов. Режим плавки и состав шихты (процент чугуна, лома, руды, состав и количество добавляемых ферросплавов) рассчитываются компьютером по результатам лабораторных экспресс-анализов и текущих измерений.
Автоматизация конвертерного процесса [ править | править код ]
Основные понятия [ править | править код ]
Конверторный процесс отличается высокой скоростью протекания, что усложняет процесс управления плавкой. Контролируемые параметры процесса разделяют на четыре группы:
- заданные параметры;
- начальные параметры;
- параметры, изменяющиеся по ходу продувки;
- конечные.
Заданные параметры в системах контроля обычно определены маркой стали и развесом отливаемых слитков. К таким параметрам относятся: масса жидкой стали, состав и температура металла, заданную основность конечного шлака. Начальными параметрами считаются состав, температура и масса жидкого чугуна, также вид и масса металлолома и сыпучих материалов. Относятся к начальным параметрам также и общая масса угля на плавку и общее количество кислорода, необходимое для процесса плавки.
Параметры, изменяющиеся по ходу продувки, называют динамическими. К ним относятся:
- положение фурмы;
- минутный и общий расход и давление кислорода;
- состав и температура металла;
- состав шлака;
- расход, состав, температура отходящих газов;
- светимость факела;
- уровень шума;
- вибрации конвертера и фурмы;
- расход, давление и температура воды на охлаждение фурмы;
- время присадки сыпучих материалов;
- время продувки.
Конечные параметры передают информацию о массе получившейся стали, состав и температуру металла, состав шлака. Успешными результатами управления плавкой считается совпадение конечных и заданных параметров. Дополнительными факторами являются минимальные затраты материалов и время процесса плавки.
Системы контроля конвертерного процесса [ править | править код ]
Конвертерная плавка характеризуется следующими системами контроля:
- Контроль параметров чугуна;
- Определение массы шихтовых материалов и продуктов плавки;
- Контроль качества извести;
- Контроль параметров дутья;
- Контроль положения кислородной фурмы;
- Контроль содержания углерода в металле;
- Контроль температуры металла;
- Контроль уровня ванны в продувке;
- Контроль шлакообразования.
Автоматические системы управления технологией плавки [ править | править код ]
С точки зрения автоматического управления в конвертерном производстве выделяют следующие величины [5] :
- Основные выходные (управляемые) величины: масса металла в процессе и в конце продувки, концентрация углерода, фосфора и серы в ванне в процессе и в конце продувки, температура металла в процессе и в конце продувки.
- Дополнительные выходные величины: масса шлака, температура шлака, температура конвертерных газов, количество конвертерных газов, состав шлака, состав конвертерных газов.
- Входные управляющие величины: масса чугуна, масса стального лома, масса руды в каждой порции, масса извести, масса известняка, время ввода в конвертер сыпучих материалов, расход кислорода, расстояние между кислородной фурмой и уровнем спокойной ванны, продолжительность продувки.
- Контролируемые возмущающие воздействия: содержание в чугуне кремния, марганца, серы, фосфора, температура чугуна, содержание кислорода в дутье, интервал времени между плавками.
- Неконтролируемые возмущающие воздействия: содержание углерода в чугуне, состав сыпучих материалов, размеры и температура лома, масса и состав попадающего в конвертер миксерного шлака.
Виды управления конвертерным процессом [ править | править код ]
В общем случае рассчитывается необходимое для плавки его количество и количество примесей, а также общее число кислорода. Такие расчеты производят обычно для систем со статическим управлением конвертерной плавки. Динамическое управление процессом плавки используется как метод повышения точности управления, когда необходимо получить сталь заданного состава и температуры без дополнительной операции додувки.
Цель динамического управления состоит не только в получении к моменту прекращения продувки заданных температур и содержания углерода, но и в обеспечении определённых траекторий измерения температуры металла и концентрации углерода в ходе плавки. От того, как изменяется температура металла в процессе продувки, зависит ход шлакообразования, а от него возможность выбросов из конвертера и степень дефосфоризации и десульфурапии металла [5] .
Различают четыре периода плавки в зависимости от динамики изменения температуры отходящих газов [5] :
Способы производства стали
Способы получения стали зависят от применяемого оборудования:
При первом способе выплавка стали производиться в конвертере, представляющим собой стальной сосуд грушевидной формы, выложенный внутри огнеупорным кирпичом. Для получения стали ,в конвертер заливают жидкий чугун, имеющий высокую температуру (1250-1400 С) и загружают известняк, металлолом. Затем подают кислород под давлением. При этом кислород быстро выжигает из чугуна избыток углерода и др. примесей, известь взаимодействует с фосфором, серой и переводит их в шлак. По ходу плавки берут пробы металла на экспресс-анализ. Если содержание углерода соответствует заданному продувку кислородом прекращают и сталь сливают в ковш, а шлак сливают через специальное отверстие.
В готовой стали остается кислород в виде окисла железа. Для его восстановления в ковш вводят раскислители. Если сталь полностью раскислена и при застывании в изложницах из нее почти не выделяются газы, ее называют «спокойной». При выплавке спокойной стали в качестве раскислителей вводят сначала ферромарганец, потом ферросилиций и в последнюю очередь алюминий.
В тех случаях, когда из стали не удален кислород при ее разливке в изложницы и постепенном охлаждении последний взаимодействует с углеродом. с образованием окиси углерода. При интенсивном выделении окиси углерода поверхность металла как бы бурлит и сталь называют «кипящей». В этом случае в качестве раскислителей вводят только ферромарганец.
Наличие в жидком металле растворенных газов является причиной образования в слитке пустот, снижающих свойства стали. Для предотвращения образования пустот необходима дегазация жидкой стали до разлива ее в изложницы. Наиболее полная дегазация достигается обработкой стали в вакуумных камерах, в результате которой значительно повышаются плотность слитка и физико-механические свойства металла. После раскисления и дегазации сталь разливают по изложницам.
Существует два типа конвертеров- бессемеровский и томассовский, которые отличаются видом футеровки (огнеупорный материал).Для кремнистых чугунов- бессемеровский конвертер, для чугунов, обогащенных окислами фосфора- томассовский. В кислородных конвертерах выплавляют углеродистые, низколегированные и легированные стали. Из таких сталей изготовляют проволоку, трубы, рельсы.
Преимущества конвертерного способа:
1) высокая производительность;
2) компактность и простота устройства конвертера;
3) 3) низкая себестоимость стали.
Недостатки:
1)в конвертерах перерабатывается только жидкий чугун, а переработка металлолома возможна в небольшом количестве (до 10%);
2)в процессе продувки наряду с выгоранием углерода и других примесей выгорает немалая часть железа (потери металла составляют 10-15%);
3)процесс получения стали вследствие большой скорости с трудом поддается регулированию, что сокращает возможность получения стали точно определенного состава.
Конвертерную сталь применяют главным образом для изготовления изделий не требующих от металла особо высоких качеств.
Технологический процесс производства стали представлен на рис. 10.6.1
кислород | |
Жидкий чугун | Металлолом |
Конвертер | |
Разливка стали в ковш | |
Раскисление стали | |
Дегазация стали | |
Разливка стали в изложницы |
Рис.10.6.1 Технологический процесс изготовления стали.
При конвертерном способе производства стали возможность переработки металлолома невелика. С ростом потребления металла и развитием машиностроения проблема утилизации отходов металлообработки и металлолома становится все более актуальной и она обусловила возникновение нового способа производства стали — в мартеновских печах.
Мартеновская печь-это печь особой конструкции пламенная печь, в которой металл плавится под непосредственным воздействием пламени горящего топлива. Мартеновская печь работает на газообразном и жидком топливе (мазуте).
В зависимости от состава шихты различают скрап-процесс и скрап-рудный процессы плавки. При скрап–процессе в печь загружаются скрап (55-75%) и чушковый чугун (25-45%). При скрап-рудном процессе в печь заливают жидкий чугун (55-75%), добавляют руду (12-20%) и скрап
Преимущества мартеновского способа:
1) процесс плавки хорошо поддается управлению, что дает возможность получать сталь высокого качества и определенного состава;
2) возможность использования постоянно возрастающих ресурсов вторичного сырья (отходы сталелитейного производства, отходы металлообработки, амортизационный лом, который образуется в процессе эксплуатации машин и металлических изделий).
Недостатки:
1) значительный расход топлива.
Одним из основных путей снижения себестоимости стали является снижение расхода топлива и увеличение производительности мартеновских печей.
Производство стали в электрических печах (дуговые и индукционные печи) является более совершенным, чем предыдущие способы. Наиболее широкое распространение в металлургической промышленности поучили дуговые электрические печи. При плавке стали в дуговых электропечах в состав шихтовых материалов входят в основном стальной лом и скрап с добавками чугуна, железной руды, флюсов, раскислителей и ферросплавов. В этих печах плавку металла осуществляют теплом, выделяемым электрической дугой, образуемой между электродами и металлом (служащим вторым электродом) (температура до 3500°С).
В индукционных печах плавку металла осуществляют теплом, выделяемым от вихревых токов, образующих от подачи на корпус индуктора тока высокой частоты. Плавку ведут быстро, поэтому металл не успевает сильно окислиться. Плавка в индукционных печах ведется в воздушной среде или вакууме.
Преимущества способа получения стали в электропечах:
1) создание высокой температуры в плавильном пространстве печи дает возможность быстро проводить плавку;
2) получать сталь и сплавы любого состава;
3) использование известкового шлака, способствует хорошему очищению металла от вредных примесей серы и фосфора;
4) возможность ведения плавки при всех режимах и условиях производства;
5) создание воздушной среды или вакуума в печи способствует хорошему раскислению и дегазации стали.
Недостатки:
1) значительный расход электроэнергии и электродов;
2) высокая стоимость получения стали.
В электропечах получают высоколегированные жаростойкие, жаропрочные и конструкционные стали и сплавы с особыми свойствами. В обычных сталеплавильных печах трудно, а иногда и невозможно получить металл, который удовлетворял бы возросшим потребностям современной техники. Поэтому большое развитие получают различные специальные способы производства высококачественных сплавов и сталей. К ним относятся плазменный, электрошлаковый, вакуумный, и другие. наиболее перспективны методы внепечной обработки стали: обработка жидкой стали в вакууме, продувка стали газами, обработка стали жидкими синтетическими шлаками.
Выбор способа производства стали зависит от ряда технических, экономических и географических факторов. Предпочтение отдается тому способу производства, который позволяет получить сталь необходимого состава и высокого качества при меньшей ее себестоимости.
Вопросы для самопроверки:
1.Назовите виды сырья используемые при производстве чугуна и стали.
2.В чем заключается доменный процесс?
3.Где используются продукты доменной плавки?
4.Назовите технико-экономические показатели плавки.
5. Каковы пути интенсификации доменного процесса?
6.Какое влияние оказывает подготовка шихтовых материалов на себестоимость чугуна?
7.В чем заключается сущность передела чугуна в сталь?
8.Назвать и охарактеризовать способы производства стали.
9. Каковы преимущества и недостатки способа производства стали в мартеновских печах?
10.В чем заключается операция «дегазация стали»?
Дополнительная литература
1.Бурла М.П., Гушан В.А., Казмалы И.М..Экономика Приднестровья на переходном этапе Тирасполь.:ИПЦ «Шериф», 2000
studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.004 с) .
Особенности кислородно-конвертерного способа производства стали
Согласно технологическим особенностям, конвертерный способ подразделяется на две разновидности:
- Конвертерные процессы с донным воздушным дутьем – бессемеровский и томасовский процессы.
- Кислородно-конвертерный процесс с продувкой кислородом сверху и снизу.
Кислородно-конверторный способ
При воздушном дутье, залитый в конвертерах чугун, продувают снизу воздухом. Благодаря тому, что частицы воздуха окисляют любые примеси чугуна, происходит повышение температуры стали вплоть до 1,6 тыс. градусов. Именно это тепло и превращает чугун в сталь.
Принцип работы кислородного конвертера
Впервые кислородное дутье было запатентовано Г. Бессемером. Однако в течение продолжительного времени кислородно-конвертерный процесс не применялся, в связи с отсутствием массового производства кислорода. Первые опыты по продувке кислородом стали возможными в начале сороковых годов прошлого столетия.
Устройство кислородного конвертера осталось прежним:
- камера сгорания изнутри защищена основной футеровкой,
- однако вместо воздуха в нем применяется продувка кислородом,
- подача кислорода осуществляется через водоохлаждаемые сопла.
На территории России применяются сталеплавители с верхней подачей кислорода.
Особенностью конвертерного способа с кислородной продувкой является скоротечность. Весь процесс расплавления металла занимает десятки минут. Однако во время работы требуется тщательно отслеживать содержание в чугуне углерода, температуры его расплава и прочие параметры, чтобы вовремя прекратить продувку.
Процесс сталеплавильного производства упростился, когда кислородные конвертеры оснастили автоматическими системами, усовершенствовали лабораторную технику и измерительные приборы. Усовершенствование кислородно-конвертерного процесса позволило повысить производительность, снизить себестоимость металла и повысить его качество.
Современные кислородные конвертеры могут работать в трех основных режимах:
- с полным дожиганием окиси углерода,
- с частичным дожиганием ОС,
- без дожигания ОС.
Они позволяют производить сталь из чугуна различного состава.
Различия двух способов
Вышеупомянутое производство подразделяется на бессемеровский и томасовский процессы. Различия между ними в основных составляющих футеровках конвертеров.
Бессемеровский путь выплавки стали позволяет использовать низкое содержание фосфора и серы. При томасовском способе, наоборот, чугун переплавляется посредством высокого содержания фосфора.
Суть кислородно-конвертерного производства заключается в выплавке стали посредством футеровки и продувки кислородом из жидкой чугунной основы. В обязательном порядке для этого используется водоохлаждающая форма.
Водоохлаждающая форма
В агрегатах кислород подается снизу. Этот метод наиболее распространен в России. Хотя в зарубежных странах нередко применяется и комбинированный способ продувки. В металлургии кислородно-конвертерный метод выплавки признан практически одним из самых эффективных по нескольким параметрам:
- Воспроизведение одного сталеплавильного агрегата превышает в мощности иные способы в несколько тон.
- В большегрузных конвертерах воспроизведение достигает порядка 500 тонн за 1 час.
- Затратные средства значительно ниже, чем при ином производстве.
- Довольно экономное обустройство любого цеха, даже в независимости от мощности плавильных агрегатов.
- Простота процесса состоит в автоматизации метода выплавки стали.
Благодаря тому, что используется чистый кислород, сталь, получаемая на выходе, не имеет высокого содержания азота. Это позволяет использовать материал в широких спектрах малой промышленности. Важно и то, что сравнительная безопасность для здоровья, позволяет задействовать специалистов среднего звена.
Возможность предоставить работу большему количеству населения
Бессемеровский конвертер
Бессемеровский процесс (кислая футеровка конвертора) разработан англи-чанином Г. Бессемером в 1856-1869гг. и позволяет перерабатывать чугун с низ-ким содержанием фосфора и серы и достаточным количеством кремния. Плавка в бессемеровском конвертере проводится следующим образом. В конвертер заливают бессемеровский чугун (0,7-1,25%Si; <0,06%P; <0,06%S) при температуре 1250 – 1300 °C и продувают его воздухом. За время продувки окисляются углерод, кремний и марганец чугуна и из образующихся оксидов формируется кислый шлак. После того, как углерод окислился до заданного со-держания, продувку заканчивают. Металл сливают через горловину в ковш, одновременно раскисляя его. Поскольку шлак кислый при плавке не удаляются сера и фосфор.
Особенности производства стали кислородно-конвертерным способом
Для создания стали подобным способом используется не только специальное оборудование.
В первую очередь необходимо учитывать технологические требования к подготовительным работам.
Неотъемлемой частью подобных работ является соблюдение техники безопасности. В обязательном порядке инженер по охране труда должен периодически инспектировать каждого занятого на производстве человека. При малейших изменениях условий труда необходимо проинструктировать каждого сотрудника.
Конвертерное производство посредством продувки кислородом происходит в несколько этапов:
- в конвертер загружается металлолом;
- заливается чугунное сырье;
- включается продувка содержимого конвертера кислородом;
- загружаются сливы стали, шлаки и шлакообразующие.
Процесс конвертерной выплавки стали
Каждый из этапов выполняется только в описанной последовательности с правильным учетом пропорций. В наклоненную конвертерную емкость лом любых видов металла загружается с помощью завалочных машин.
На следующем шаге специально установленные заливочные краны позволяют залить необходимое количество чугуна. После этого конвертер нужно установить вертикально и только затем начинать продувку кислородом. Частота которого не менее 99,5% О2.
Как только начинается продувка, важно загрузить часть шлаковых материалов. Весь объем которых, в том числе и железной руды, распределяется в несколько приемов. Важно соблюдать скорость их загрузки, но не позже чем через 5–7 минут после первого этапа выплавки.
Принцип томасовского способа
В 1878 году англичанину С.Г. Томасу удалось устранить главный недостаток бессемеровского способа. Кислую футеровку конвертера он заменил основной. Внутренний защитный слой в ванной был выложен смолодоломитовым кирпичом. А чтобы удалить из металла большую часть примесей, он предложил использовать известь, функция которой заключалась в связывании фосфора.
Томасовский процесс позволил перерабатывать чугун с высоким содержанием фосфора. Поэтому наибольшее распространение данный способ получил в странах, где железные руды содержат много фосфора. Во всем остальном метод, изобретенный Томасом, мало чем отличается от предложенного Бессемером:
- и в том, и в другом случае используется сталеплавильный агрегат, в который чугун подается сверху через отверстие в горловине,
- через это же отверстие производится выпуск стали.
- снизу сталеплавильный агрегат снабжен съемным днищем, что позволяет заменять его по мере выработки определенного срока службы,
- дутье в полость сталеплавителя поступает через специальные сопла, расположенные в футеровке днища.
Как уже говорилось выше, слив стали производится через отверстие в горловине. Перевернуть многотонный агрегат позволяют цапфы в цилиндрической части конвертера. При томасовском процессе в сталеплавитель загружают известь, позволяющую получить основной шлак. Далее туда же заливают высокофосфористый чугун, нагретый до 1200–1250°С и подают дутье. При подаче дутья происходит окисление кремния, марганца и углерода. В основной шлак удаляются сера и фосфор. Продувка завершается тогда, когда содержание фосфора снизится до определенных показателей. Окончательным этапом, как и в бессемеровском процессе, является выпуск металла с последующим раскислением.
К прочтению: Что входит в состав сплава из бронзы
Особенности и секреты процесса
От иных способов стального производства подобный метод отличается тем, что завязан на очень высоких скоростях. Весь метод, как правило, проходит буквально за 14–24 минуты. Высокие температуры позволяют задавать мгновенную скорость растворения извести в шлаковых содержимых.
Поэтому и выплавка стали в одном конвертере, включая весь процесс производства, не составляет более 30 минут. Важно отметить, что на качество основного процесса непосредственное влияние оказывает неравномерность окисления каждого из компонента, содержащегося в агрегате.
Ведущий принцип кислородно-конвертерного процесса обусловлен регулированием температурного режима и изменением количества продувок. Необходимое условие для эффективности выплавки – введение охладителей в качестве железной руды, металлолома, известняка.
Очистка пылевых отходов происходит при помощи котла-утилизатора. Все отходящие газы от процесса выплавки попадают в установку для их очистки. Все производство стали кислородным способом управляется мощными современными компьютерами.
Стоит отметить, что при донной продувке удельный объем готовой стали гораздо меньше, чем при верхней продувке. Именно при донном методе скорость получения готовой стали гораздо выше.
Технологии получения жидкой стали
К тому же что касается готового металла, то по окончании всех производственных работ результат эффективнее на 1–2%.
Дополнительно во время процесса сокращается длительность продувки, происходит ускорение плавления лома. Все это позволяет налаживать конкретный технологический процесс при меньшей высоте производственного здания.
Ведущие принципы выплавки качественной стали
Согласно статистическим показателям каждая десятая тонна выплавленной стали в мире получается в результате кислородно-конвертерного способа при донной продувке.
Весь процесс при низких производственных затратах и адекватных условиях для хода работ, способствует выплавки высококачественной стали. Уникальные технологические мощности конвертерных агрегатов позволяют использовать различные составы сплавов, кроме самого жидкого чугуна.
Определенный интерес в промышленности к этому способу вызван и широким его применением еще с 60-х годов прошлого столетия. Основной типовой ряд емкостей конвертерных агрегатов установлен еще при Советском Союзе. Огромные сосуды представлены в грушевидной форме и имеют объемный ряд от 50 до 400 тонн.
Необходимо отметить, на улучшение показателей готовой стали влияет именно размер конвертера. Оптимальный удельный объем кислородного конвертера способствует интенсивной подаче кислорода и предотвращению выбросов вспенивающихся шлаков и металлов.
Одним из ведущих принципов производства стали в кислородных конвертерах является их проектирование емкостью от 400 до 4,3 тыс. тонн и минимальной высотой 6–8 метров. Слишком низкие агрегаты провоцируют выбросы вспенивающегося металла через узкие горловины. Подобный факт негативно сказывается на всем процессе производства и на качестве самой стали на выходе.
Кислородный конвертер – описание процесса плавки
Кислородный конвертер – это стальной сосуд грушевидной формы. Его внутренняя часть защищена смолодоломитовым (основным) кирпичом. Вместимость сталеплавильного агрегата варьируется от 50 до 350 тонн. Сосуд распложен на цапфах и способен поворачиваться вокруг горизонтальной оси, что позволяет беспрепятственно заливать в него чугун, закладывать другие добавки и сливать металл со шлаком.
Чтобы получить конечный продукт, в конвертер заливается не только чугун, но и закладывают добавки. К ним относятся:
- лом металла,
- шлакообразующие материалы (железная руда, известь, полевой шпат, бокситы).
К прочтению: Виды песка для пескоструя
Конвертерный способ с кислородной продувкой предусматривает заливку в конвертер чугуна, нагретого до 1250–1400°С. Установив конвертер в вертикальное положение, в него подают кислород. Как только началась продувка, в расплавленный чугун вводят остальные компоненты, входящие в состав шлака. Перемешивание чугуна со шлаком осуществляется под действием продувки.
Так как концентрация чугуна гораздо выше, чем примесей, в процессе продувки происходит образование оксида железа, который растворяясь, обогащает металл кислородом. Именно растворенный кислород способствует уменьшению в металле концентрации кремния, углерода и марганца. А когда примеси окисляются, выделяется полезное тепло.
Особенностью основного шлака является большое содержание оксида кальция и оксида железа, которые в начале продувки способствуют удалению фосфора. Если же содержание фосфора превышает требуемый показатель, шлак сливают и наводят новый. Продувку кислородом заканчивают, когда содержание углерода в конечном продукте соответствует определенному параметру. После этого конвертер переворачивают и производят слив стали в ковш, куда добавляют раскислители и другие добавки.
Планирование процесса
Принципиально важно и перед каждой плавкой осуществлять детальное планирование всех оптимальных условий. Они включают в себя:
- расход чугуна и лома;
- уровень подачи кислорода в фурму;
- приблизительные расчеты по концентрации фосфора, серы и шлаков;
- анализ окончательной массы стали и заданных объемов отходов.
Удельная интенсивность выплавки стали кислородным способом в конвертерах позволяет производить высокие объемы сырья при минимальных нагрузках на ход процесса. Немаловажную роль здесь играет фактор проектирования и выбора сопутствующих условий, а также организации технологии производства.
Высококачественную сталь в стране получают не только на огромных заводах, но и на территории малых помещений, для эффективного производства требуется необходимая мощность агрегатов и квалифицированные специалисты.
Кислородно – конвертерное производство стали
В статье приводится краткая история конвертерного производства, основные технические характеристики , особенности конвертерной плавки и требования к оборудованию.На примере существующего цеха рассмотрены его устройство, назначение основных механизмов и машин. Подробно рассмотрены грузопотоки конвертерного цеха. Вцелом данный материал носит познавательный характер и будет полезна всем.
Файлы: 1 файл
ккц.docx
1. КИСЛОРОДНО – КОНВЕРТЕРНОЕ ПРОИЗВОДСТВО СТАЛИ
В статье приводится краткая история конвертерного производства, основные технические характеристики , особенности конвертерной плавки и требования к оборудованию.На примере существующего цеха рассмотрены его устройство, назначение основных механизмови машин. Подробно рассмотрены грузопотоки конвертерного цеха. Вцелом данный материал носит познавательный характер и будет полезна всем.
Впервые в мировой практике продувка чугуна кислородом была осуществлена инж. Н. И. Мозговым на машиностроительном заводе «Большевик» в г. Киеве в 1933 году. В период 1937 – 39 гг. в АН УССР была проведена серия опытов по продувке кислородом чугуна в ковшах с целью снижения содержания кремния, марганца и углерода. В 1944 г. продували чугун кислородом в конвертерах на Мытищинском машиностроительном заводе «Динамо», а за период 1944 – 52 годы экспериментировали продувку кислородом конвертеров вместимостью до 12,5 т различными способами: боковым, донным и подачей сверху. В 1945 г. был пущен первый кислородный конвертер на Тульском машиностроительном заводе, а в 1955 – 1957 гг. введены в строй конвертерные печи на Днепропетровском и Криворожском металлургических заводах.
Большой вклад в развитие кислородного способа производства стали внес коллектив ЦНИИЧМ под руководством акад. И. П. Бардина. В зарубежной практике начали применять кислород в конвертерном производстве в Австрии (фирма «Фёст») с 1949 г.
В последние годы кислородно-конвертерный способ получения стали стал ведущим, вытеснив ранее господствовавший мартеновский способ, и обеспечивает выплавку большей части мирового производства стали.
Первоначально предполагалось выплавлять в кислородных конвертерах рядовые углеродистые стали, в основном низкоуглеродистые для производства тонкого листа. Теперь этим способом выплавляют высокоуглеродистые и легированные стали, не уступающие мартеновской соответствующих марок. Он развивается такими прогрессирующими темпами, которых не знала сталеплавильная промышленность.
Увеличение производства стали будет происходить и дальше благодаря строительству новых мощных кислородно – конвертерных и электросталеплавильных цехов при полном прекращении строительства мартеновских печей.
Такое изменение структуры сталеплавильного производства диктуется значительными технико- экономическими преимуществами кислородно-конвертерного способа выплавки стали по сравнению с мартеновским: более высокая производительность на единицу выплавляемой стали, меньшие капитальные затраты, более благоприятные условия для механизации и автоматизации производственных процессов и совмещения процесса выплавки стали с ее непрерывной разливкой.
Развитие конвертерного способа производства стали идет по пути увеличения единичной вместимости конвертеров с одновременным повышением интенсификации работы и расширением сортамента выплавляемой стали.
Производительность большегрузного кислородного конвертера в несколько раз превышает производительность самых мощных мартеновских печей; например, производительность одного конвертера вместимостью 400 т превышает производительность 600-т мартеновской печи в 8 – 10 раз. Современный конвертерный цех с тремя-четырьмя конвертерами вместимостью по 400 т каждый, два-три из которых работают непрерывно, при автоматизации и механизации производства может выдавать плавки с циклом 35 – 40 мин, что соответствует производительности 12 – 20 млн. т в год.
При создании мощных кислородно-конвертерных цехов важно выбрать оптимальную вместимость агрегата, что решается технико-экономическими расчетами. С увеличением вместимости конвертеров показатели работы цеха улучшаютсяю
Лучшими технико-экономическими показателями обладают конвертеры вместимостью 400 т. Дальнейшее повышение вместимости конвертеров будет зависеть в значительной степени от создания высокопроизводительных машин непрерывного литья заготовок (МНЛЗ).
В металлургии применяют несколько способов подачи кислорода в конвертер и ведения технологического процесса.
Способ продувки ванны кислородом сверху получил название кислородно-конвертерного; в настоящее время он применяется наиболее широко и обладает большой технологической гибкостью. Шихту (лом и жидкий чугун), загруженную в конвертер, подвергают продувке технически чистым кислородом через фурму, которая вводится сверху по оси конвертера. Изменением положения фурмы и давления кислорода можно в широких пределах управлять процессами расплавления шихты, усвоения кислорода расплавом, окисления фосфора и углерода, шлакообразования. Эффективность кислородно- конвертерного процесса зависит от решения следующего комплекса вопросов: улучшение подготовки лома и ускорение его завалки; сокращение длительности цикла плавки; интенсификация продувки с применением многоструйных фурм; освоение передела низкомарганцовистого чугуна; широкое применение систем автоматического управления плавкой и цехом в целом; усовершенствование газоочистки. К недостаткам способа относится невозможность увеличения доли металлолома в шихте, большой угар (до 13 – 19 %) и дымообразование при продувке.
Технологический процесс производства стали в кислородных конвертерах требует большого количества мягкообожженной извести. Ее расход составляет порядка 80 кг на 1т стали. Обжиг известняка с целью получения конвертерной извести производят в обжиговых печах трех типов – шахтных, вращающихся барабанных и кипящего слоя. Для мощных кислородно – конвертерных цехов известь производят в специализированных известково-обжи-гательных отделениях, оснащенных вращающимися и шахтными обжиговыми печами.
Кратко рассмотрим другие кислородно-конвертерные процессы, имеющие ограниченное применение.
В процессе «Ротоверт» кислород подается фурмой, направленной на верхнюю часть параболоида поверхности ванны, а массо-перенос в ванне обеспечивается вращением конвертера вокруг вертикальной оси с частотой до 85 об/мин. Процесс пока не получил промышленного применения.
Роторный процесс предусматривает подачу кислорода двумя фурмами через отверстие в торце медленно вращающегося вокруг горизонтальной оси сталеплавильного агрегата (частота вращения до 4 об/мин). Применения этот способ не получил из-за низкой производительности.
Процесс Кал – До осуществляется в конвертере, вращающемся вокруг наклоненной под углом 17 – 20° к горизонту оси с частотой до 40 об/мин. Водоохлаждаемая фурма для подачи кислорода наклонена к зеркалу расплава под углом 3 – 5°. Широкого применения процесс не получил по причине малой производительности, повышенного расхода кислорода и больших капитальных затрат.
Кислородно-конвертерный процесс с донным дутьем заключается в продувке расплава через фурмы, установленные в днище конвертера, струями кислорода, окруженными кольцевыми струями защитного газа. Преимущество этого процесса заключается в повышении допускаемого содержания лома в шихте, увеличении выхода годного и, что самое главное, возможности установки этих конвертеров в существующих зданиях мартеновских и томасов-ских цехов при низких капиталовложениях. Недостатки конвертеров с донным дутьем: низкая стойкость футеровки днищ, невозможность остановить продувку на заданном содержании углерода, сложность конструкции днищ удорожание эксплуатации.
Производительность конвертерного цеха
При установке трех конвертеров из которых два постоянно работают, а один в ремонте 'продолжительность работы одного конвертера,:составит /„ = 365 – 0,66 сут в год.
Годовое количество плавок /одного конвертера пк == 1440/„//п (1440 – число минут в сутках).
Продолжительность плавки tn ориентировочно принимают в зависимости от вместимости конвертера
Годовая производительность двух работающих конвертеров, т
где kr — коэффициент, учитывающий потери жидкой стали в процессе разливки (при разливке на МНЛЗ kf = 0,95).
2. ГРУЗОПОТОКИ И УСТРОЙСТВО ЦЕХОВ
Основные грузопотоки цеха
В системе грузопотоков конвертерного цеха различают следующие основные линии: подачи и загрузки лома в конвертер; доставки и заливки жидкого чугуна; подачи, дозирования и загрузки сыпучих шлакообразующих материалов; подачи кислорода; доставки, дозирования, нагрева и подачи ферросплавов в сталеразливочные ковши; приема, транспортирования и разливки стали; уборки и переработки шлака.
Схема основных грузопотоков конвертерного цеха показана на рис. III.1. Металлолом подают железнодорожным транспортом в отделение / магнитных материалов и загружают в приемные бункера. Совки заполняют металлоломом магнитогрейферными кранами 28. Груженые совки взвешивают и устанавливают на скраповоз 1, подающий их на рабочую площадку или в загрузочный пролет. Завалку металлолома в конвертер 3 осуществляют загрузочной машиной 4.
Подачу и заливку жидкого чугуна в конвертер производят двумя способами, определяющимися типом применяемых миксеров – стационарных или передвижных.
Рисунок 1 – Схема грузопотоков
В первом случае чугун доставляют в ковшах чугуновозов 13 из доменного цеха в миксерное отделение IV и краном сливают в стационарный миксер 12. При необходимости чугун выдают из миксера в ковш самоходных чугуновозов 11, транспортирующих его в загрузочный пролет к конвертерам. Заливку чугуна производят заливочным краном 10. Во втором случае чугун подают передвижными миксерами 14 в отделение перелива IV, в котором осуществляют заполнение заливочных ковшей. Транспортирование ковшей в главный корпус производят самоходными чугуновозами 15, заливку чугуна – заливочными кранами 10.
Сыпучие материалы доставляют в шихтовое отделение // немагнитных материалов железнодорожным или автомобильным транспортом. Материалы из железнодорожных полувагонов 30 разгружают в приемные бункера 29 с последующей выдачей электровибрационными питателями. Подачу материалов в расходные бункера 9 конвертерного корпуса /// осуществляют наклонным конвейерным трактом 7 и реверсивными передвижными конвейерами 8. Система 6 весового дозирования и подачи, состоящая из вибропитателей, весовых дозаторов, конвейеров, промежуточных бункеров и течек, обеспечивает загрузку определенных порций шлакообразующих материалов в конвертер в процессе плавки.
Подачу технически чистого кислорода в конвертер производят машиной 5 через кислородную фурму. Снабжение осуществляется по магистрали из кислородного цеха.
Доставку ферросплавов в главный корпус цеха осуществляют автомобильным или железнодорожным транспортом в контейнерах либо используют конвейерный тракт подачи сыпучих материалов. В первом случае контейнеры с ферросплавами разгружают краном в расходные бункера 16. Взвешенные порции ферросплавов нагревают в камерных печах 17 и по течке 18 подают в сталеразли-вочный ковш на сталевозе. Во втором случае ферросплавы поступают в железнодорожных вагонах в отделение ферросплавов, непосредственно примыкающее к отделению сыпучих материалов. Из приемных бункеров ферросплавы выдают на ленточные конвейеры тракта подачи сыпучих материалов, заполняющие расходные бункера в главном корпусе.
В конвертерных цехах применяют два основных способа разливки – в изложницы, установленные на тележках, и на машинах непрерывного литья заготовок (МНЛЗ). Во всех случаях сталь сливают из конвертера в сталеразливочный ковш, установленный на сталевозе 19. По первому способу ковш со сталью передают сталевозом в отдельное разливочное отделение V или в разливочные пролеты, примыкающие к главному корпусу. Изложницы заполняют жидким металлом из ковша, перемещаемого разливочным краном 20 над составом 21 с изложницами. После затвердевания и полной кристаллизации слитков составы с изложницами подают локомотивом в стрипперное отделение VI для снятия прибыльных надставок и подрыва слитков с уширением кверху. Изложницы с уширением книзу снимают с тележек и направляют на подготовку к следующему наливу. Все операции выполняют стрипперным краном 22. Затем состав подают в нагревательное отделение VII обжимного стана, в котором слитки устанавливают в нагревательные колодцы, а состав с изложницами направляют на душирующую установку VIII. После охлаждения изложницы поступают в отделение IX чистки и смазки, а затем в отделение X подготовки составов, где осуществляют уборочные работы и установку на тележки поддонов, центровых, прибыльных надставок и т. д. Подготовленные составы вновь подают в разливочное отделение. Изложницы совершают замкнутый цикл работы и подготовки.
По второму способу сталеразливочный ковш подают сталевозом в отделение V непрерывного литья и устанавливают разливочным краном на стенд 23. Заготовки, получаемые на МНЛЗ 24, поступают в прокатный цех.
Шлак из конвертера сливают в ковш самоходного шлаковоза 2 и передают сначала в шлаковый пролет главного корпуса для перестановки чаши на уборочный шлаковоз 26, а затем направляют в шлаковое отделение XI для охлаждения и последующего дробления ударами бабы, поднимаемой краном 27. Переработанный шлак отгружают в отвал думпкарами 25.
Устройство конвертерных цехов
Рассмотрим'Конвертерный цех с двумя конвертерами вместимостью 300 – 350 т. В состав такого цеха входят главный (конвертерный) корпус и ряд отделений, тесно связанных с ним единым технологическим процессом и расположенных в отдельных зданиях. К ним относятся отделения: перелива чугуна, металлошихтовое, разливочное, шлаковое и дымососное. Кроме того, цех обслуживают вспомогательные отделения – раздевания слитков, охлаждения, чистки и смазки изложниц, подготовки составов.
Жидкий чугун поступает в конвертерный цех в передвижных миксерах вместимостью 420 и 150 т. Первые служат для доставки чугуна по внутризаводским путям из доменного цеха в конвертерный, вторые – по железнодорожной магистрали с соседнего завода. В отделении перелива чугун из миксеров сливается в заливочные ковши, которые самоходными чугуновозами грузоподъемностью 350 т по чугуновозной траншее подаются в главный корпус. Здесь же выполняются вспомогательные операции – взвешивание металла на платформенных весах, взятие проб и замер температуры жидкого чугуна. Отделение оборудовано системами удаления газов и графита. Помимо специализированного отделения, в главном корпусе предусмотрен участок перелива чугуна из передвижных миксеров в заливочные ковши.