Точность обработки
Точность обработки
Качество обработки деталей машин определяется двумя критериями: точностью обработки и шероховатостью обработанных поверхностей.
Под точностью обработки понимают степень соответствия изготовленной детали заданным размерам и форме. В большинстве случаев форма деталей определяется комбинацией известных геометрических тел: цилиндрических, конических, плоскостей и т. д. Можно установить следующие основные критерии соответствия детали заданным требованиям:
- точность формы, т. е. степень соответствия отдельных поверхностей детали тем геометрическим телам, с которыми они отождествляются;
- точность размеров поверхностей детали;
- точность взаимного расположения поверхностей
Отклонения формы и расположения поверхностей
Отклонение формы реальной поверхности от номинальной, т. е. заданной чертежом, оценивается наибольшим расстоянием D между точками реальной поверхности и номинальной, измеренным по нормали к последней. Отклонения формы и расположения поверхностей регламентируются ГОСТом. Наиболее часто встречающиеся из них:
Отклонения от плоскостности:
- Выпуклость — отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой уменьшается от края к середине (рис. 1, а, в);
- Вогнутость — отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой увеличивается от края к середине (рис. 1,б,г).
Отклонения от круглости:
- Овальность — отклонение от круглости при котором реальный профиль представляет собой овалообразную фигуру, наибольший и наименьший диаметры которой находятся во взаимно перпендикулярных направлениях (рис.1, д);
- Огранка — отклонение от круглости при котором реальный профиль представляет собой многогранную фигуру (рис.1,е).
Рисунок 1. Определение величины отклонения формы
Отклонения профиля продольного сечения — характеризуются непрямолинейностью и непараллельностью образующих:
- Конусообразность – отклонение профиля, при котором образующие прямолинейны, но не параллельны (рис. 2,а);
- Бочкообразность — отклонение профиля, при котором образующие непрямолинейны, а диаметры увеличиваются от краёв к середине сечения (рис. 2,б);
- Седлообразность — отклонение профиля, при котором образующие непрямолинейны, а диаметры уменьшаются от краёв к середине сечения (рис. 2,в).
Рисунок 2. Отклонения профиля продольного сечения
Рисунок 3. Отклонения расположения
Отклонения расположения характеризуется отклонением реального расположения поверхностей (осей) от их номинального расположения:
- Торцовое биение – разность D наибольшего и наименьшего расстояний от точек реальной торцовой поверхности, до плоскости, перпендикулярной базовой оси вращения (рис. 3,а);
- Радиальное биение – разность наибольшего и наименьшего расстояний от точек реальной поверхности до базовой оси вращения в сечении, перпендикулярном этой оси;
- Неперпендикулярность осей или оси и плоскости – расстояние D (Рис. 3,в) между осями или осью и плоскостью на заданной длине; Например: =0,025 мм на 100 мм длины.
- Непараллельность оси вращения и плоскости – разность А-В наибольшего и наименьшего расстояний между осью и прилегающей плоскостью на заданной длине (Рис. 3,г);
- Несоосность – наибольшее расстояние D (Рис. 3,е) между осью рассматриваемой поверхности и осью базовой поверхности на всей длине рассматриваемой поверхности или расстояние между этими осями в заданном сечении.
Факторы, определяющие точность обработки
Погрешность обработки — Отклонение параметров реальных поверхностей детали от заданных на чертеже ещё называется погрешностью. В результате несоответствия действительных движений заготовки и инструмента движениям, предусмотренным кинематической схемой станка, возникает погрешность обработки.
В состав погрешности обработки входят:
- погрешность работы станка, возникающая вследствие неточности кинематической схемы станка и его отдельных узлов;
- погрешность настройки, возникающая от неправильности взаимного расположения инструмента и заготовки, а также от неточности регулировки упоров и остановов.
Погрешность настройки складывается из:
- неточности настройки режущего инструмента;
- износа режущего инструмента;
- упругих деформаций технологической системы станок—приспособление—инструмент—деталь (СПИД);
- температурных деформаций узлов станка, обрабатываемой заготовки и режущего инструмента.
Точность настройки станка и режущего инструмента
При смещении резца на размер а вверх-вниз относительно оси станка (рис. 4) диаметр D заготовки увеличивается.
Биение вращающихся центров станка приводит к биению обрабатываемых поверхностей заготовки относительно оси центральных отверстий. При перестановке обработанной заготовки на другой станок с другим биением центров может возникнуть отклонение от соосности у заготовок, обрабатываемых в разных условиях.
Жёсткость технологической системы
Жёсткостью технологической системы называют отношение радиальной силы резания Py, направленной перпендикулярно обрабатываемой поверхности, к смещению y режущей кромки инструмента относительно обрабатываемой поверхности заготовки в том же направлении:
Под влиянием силы резания возникает упругая деформация элементов технологической системы СПИД (изгиб и сжатие резца, изгиб заготовки и т.п.). Если бы под действием сил резания заготовка и инструмент не деформировались, то обработанная поверхность имела бы форму цилиндра диаметром d (рис.5).
Однако, в результате упругих деформаций резца и заготовки диаметр обработанной поверхности будет отличаться от заданного на величину погрешности — . Эта погрешность тем больше, чем больше величины сил , чем больше вылет резца. В различных точках обрабатываемой поверхности жёсткость технологической системы различна. Например, при консольном закреплении в 3-х кулачковом патроне жёсткость детали будет уменьшаться по мере удаления от патрона. Следовательно, при обработке с продольной подачей стрелка прогиба детали от действия сил резания будет изменяться по длине обработанной поверхности, и мы получим погрешность формы детали — конус вместо цилиндра (см. рис. 6).
Деформации режущего инструмента, зависящие от величины его вылета из резцедержателя, особенно сказываются при растачивании глубоких отверстий (рис. 8).
Повышение жёсткости технологической системы — непременное условие применения высокопроизводительных режимов резания и повышения точности обработки.
Влияние на точность обработки температуры и других факторов
В процессе резания звенья технологической системы нагреваются, что приводит к возникновению температурных погрешностей. Так, вследствие нагрева инструмента удлиняется его режущая часть, что приводит к возникновению погрешности формы и размеров при обработке длинных поверхностей.
Выделение тепла при резании приводит к нагреву обрабатываемой заготовки, причём — чем длиннее заготовка, тем неравномернее она нагревается. Следовательно, изменяется её форма и размеры, что вносит дополнительную погрешность обработки.
Температура нагрева обрабатываемой заготовки зависит от количества теплоты, поступающей в заготовку, которая в свою очередь зависит от массы заготовки, теплоёмкости её материала, режима резания. Чем больше масса заготовки, тем меньше она подвержена температурным деформациям.
При работе станка выделяется теплота из-за трения в узлах и подшипниках, вследствие чего нагреваются детали станка и его механизмы. У токарно-винторезного станка главным образом нагревается передняя бабка. Задняя бабка, суппорт и станина нагреваются незначительно. Ввиду больших масс частей станка происходят медленные температурные деформации, которые незначительно влияют на точность обработки.
Большое влияние на точность обработки оказывает размерный износ режущего инструмента в направлении нормали к обрабатываемой поверхности. Величина износа зависит от пути, пройденного резцом за период его стойкости, т.е. пути резания:
[м], где скорость резания, м/мин.
Характеристикой интенсивности размерного износа является относительный износ (мкм), т.е. размерный износ приходящийся на 1000 м пути резания:
Относительный износ имеет сложную зависимость от скорости резания (см. рис. 9). В зоне низких скоростей (50 м/мин) он довольно велик; при возрастании скорости резания он уменьшается, достигая минимума при оптимальном значении . Дальнейшее возрастание скорости резания приводит к увеличению относительного износа.
Зависимость скорости изнашивания от времени работы инструмента имеет следующий вид (см. рис. 10). В начале работы резец изнашивается значительно интенсивнее. Начальный износ можно учесть, прибавляя к пути резания длину .
Контрольная оправка
Контрольная оправка — используется для проверки геометрической точности универсальных станков различных групп, а так же станков с ЧПУ.
КОНТРОЛЬНАЯ ОПРАВКА
бывает двух видов: полностью цилиндрическая и цилиндрическая с коническим хвостовиком.
Коническая часть оправки является крепёжной и выполняется:
— Для станков универсальных токарных и сверлильных в виде
метрического или конуса морзе (КМ- ру , MТ- англ ., MК- нем .)
— Для универсальных фрезерных и расточных станков в виде крутого конуса 7:24 (BТ, SK, DV, ISO, NMTB, NST, CAT, CV)
— Для станков c ЧПУ в виде крутого конуса 7:24 (BТ, SK, DV, ISO, NMTB, NST, CAT, CV) и коротким штревелем.
Оправка контрольная купить в СтавИнКом
Контрольная оправка с конусом морзе (КМ, MТ, МК)
Контрольные оправки с Конусом Морзе
Контрольные оправки с конусом морзе КМ 1, 2, 3, 4, 5, 6 и оправки с метрическим конусом 80, 90, 100, 110, 120, 140, 160, используются для настройки универсальных токарных и сверлильных станков различных модификаций. Комплектуются съёмным кольцом.
Оправки контрольные КМ
Основные размеры и цена контрольных оправок с Конусом Морзе:
KМ1 x L100мм — 5900 (₽)
KМ2 x L150мм — 6500 (₽)
KМ3 x L250мм — 8500 (₽)
KМ4 x L300мм — 9000 (₽)
KМ5 x L300мм — 11100 (₽)
KМ6 x L300мм — 23600 (₽)
KМ6 x L500мм — 32800 (₽)
Основные размеры и цена контрольных оправок с Метрическим Конусом:
№80 х L300мм — 42950 (₽) (под заказ)
№90 х L300мм — 54500 (₽) (под заказ)
№100 х L300мм — 61500 (₽) (под заказ)
№110 х L300мм — 72500 (₽) (под заказ)
№120 х L300мм — 85000 (₽) (под заказ)
№140 х L300мм — 105000 (₽) (под заказ)
№160 х L300мм — 151600 (₽) (под заказ)
№80 х L500мм — 56600 (₽) (под заказ)
№90 х L500мм — 68600 (₽) (под заказ)
№100 х L500мм — 80600 (₽) (под заказ)
№110 х L500мм — 91300 (₽) (под заказ)
№120 х L500мм — 102000 (₽) (под заказ)
№140 х L500мм — 126000 (₽) (под заказ)
№160 х L500мм — 175200 (₽) (под заказ)
Цену и наличие оправок — уточняйте в магазине.
Оправку контрольную с Конусом Морзе заказать в СтавИнКом
Оправки контрольные с крутым конусом 7:24 (BТ, SK, DV, ISO, NMTB, NST, CAT, CV)
Оправки контрольные BT
Контрольные оправки с крутым конусом 7:24 используются для
проверки универсальных фрезерных, расточных и станков с ЧПУ.
Контрольные оправки 7-24
Основные размеры контрольных оправок с конусом 7:24 и ориентировочная цена:
BT30-250L1 — 14300 (₽)
BT40-300L1 — 21900 (₽)
BT45-300L1 — 26700 (₽)
BT50-300L1 — 28200 (₽)
BT55-300L1 — 42900 (₽)
BT60-300L1 — 44000 (₽)
BT60-500L1 — 57200 (₽)
SK30-250L1 — 14300 (₽)
SK40-300L1 — 21900 (₽)
SK45-300L1 — 26700 (₽)
SK50-300L1 — 28200 (₽)
SK55-300L1 — 42900 (₽)
SK60-300L1 — 44000 (₽)
SK60-500L1 — 57200 (₽)
Цену и наличие оправок — уточняйте в магазине.
Оправку контрольную с конусом 7 : 24 заказать в СтавИнКом
Оправки цилиндрические контрольные.
Оправка контрольная цилиндрическая
Основные размеры контрольных оправок цилиндрических (концевых) и ориентировочная цена:
20*200 — 7250 (₽)
20*250 — 7700 (₽)
30*300 — 10300 (₽)
30*350 — 11300 (₽)
35*400 — 16200 (₽)
42*500 — 21100 (₽)
50*600 — 28650 (₽) (под заказ)
50*1000 — 52500 (₽) (под заказ)
Цену и наличие оправок — уточняйте в магазине.
Оправку контрольную Цилиндрическую заказать в СтавИнКом
Изготовление контрольных оправок
После токарной обработки, оправки подвергаются термической обработке, затем предварительной шлифовке и отправляются на отстой (процесс старения в течении 3-6 месяцев). И завершает процесс изготовления — окончательная шлифовка.
Благодаря такому сложному технологическому процессу изготовления, оправки приобретают высокую точность:
- твердость рабочих поверхностей оправки 57…63 HRC
- шероховатость рабочих поверхностей до 8 кл. (Rz0,32 мкм)
- точность конуса морзе АТ7 по ГОСТ 2848-75
- радиальное биение оправки до 0.003 мм
Правила применения контрольных оправок
Методы применения оправок для настройки станков и допустимые нормы отклонений указываются в соответствующих паспортах станков и в ГОСТах норм точности.
ГОСТ 18097–93 — Станки токарные и токарно-винторезные.
ГОСТ 17734-88 — Станки фрезерные консольные.
ГОСТ 370-93 — Станки вертикально-сверлильные.
ГОСТ 2110-93 — Станки расточные горизонтальные.
Проверка станка на геометрическую точность заключается в замере фактических отклонений и в сравнении их с допустимыми параметрами, на основании которых и делается заключение о состоянии станка.
Проверке подвергаются станки как новые, так и бывшие в употреблении, а так же после капитального ремонта или станки дающие брак.
1 Область применения
Настоящий стандарт распространяется на универсальные токарно-винторезные и токарные станки с горизонтальным шпинделем прецизионные (классов точности П, В и А) с Da ≤ 500 мм и DC ≤ 1500 мм и прочие (класса точности Н) с Da ≤ 1600 мм. Стандарт не распространяется на специальные станки, станки, предназначенные для учебных целей, индивидуальной трудовой деятельности и для использования в бытовых целях.
Требования стандарта являются обязательными.
Номенклатура средств измерений и предъявляемые к ним основные требования приведены в приложении А.
Стандарт пригоден для сертификации.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 8-82 Станки металлорежущие. Общие требования к испытаниям на точность
ГОСТ 6636-69 Основные нормы взаимозаменяемости. Нормальные линейные размеры
ГОСТ 8026-92 Линейки поверочные. Технические условия
ГОСТ 12593-93 Станки металлорежущие. Концы шпинделей фланцевые под поворотную шайбу и фланцы зажимных устройств. Основные и присоединительные размеры
ГОСТ 12595-2003 Станки металлорежущие. Концы шпинделей фланцевые типа А и фланцы зажимных устройств. Основные и присоединительные размеры
ГОСТ 22267-76 Станки металлорежущие. Схемы и способы измерений геометрических параметров
ГОСТ 24643-81 Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения
ГОСТ 25346-89 Основные нормы взаимозаменяемости. Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений
ГОСТ 25443-82 Станки металлорежущие. Образцы-изделия для проверки точности обработки. Общие технические требования
ГОСТ 25889.1-83 Станки металлорежущие. Методы проверки круглости образца-изделия
ГОСТ 25889.4-86 Станки металлорежущие. Метод проверки постоянства диаметров образца-изделия
ГОСТ 26651-85 Станки металлорежущие. Концы шпинделей фланцевые типа Кэмлокк и зажимные устройства. Основные и присоединительные размеры
3 Основные размеры
3.1 Основные размеры станков должны соответствовать указанным на рисунке 1 и в таблице 1.
Da — наибольший диаметр заготовки; DC — наибольшее расстояние между центрами передней и задней бабок; D1 — наибольший диаметр заготовки, обрабатываемой над суппортом; h — наибольшая высота резца, устанавливаемого в резце-держателе.
Примечание — Рисунок не определяет конструкцию станка.
3.2 Допускается увеличивать наибольший диаметр заготовки, устанавливаемой (обрабатываемой) над станиной, для базовых станков на величину до 12,5 % по сравнению с указанным в таблице 1.
Размеры в миллиметрах
Условный размер конца шпинделя, выполненного по ГОСТ 12593, ГОСТ 12595 или ГОСТ 26651
Наибольший диаметр d прутка, проходящего в отверстие шпинделя, не менее
h, не менее
3.3 Допускается изготавливать модификации станков с наибольшим диаметром устанавливаемой заготовки, увеличенным по сравнению с указанным в таблице.
3.4 Допускается использовать наибольшую длину заготовки, устанавливаемой в центрах, вместо наибольшего расстояния между центрами передней и задней бабок.
4 Точность станка
4.1 Общие требования к испытаниям станков на точность — по ГОСТ 8. Схемы и способы измерения геометрических параметров — по ГОСТ 22267 и настоящему стандарту.
При приемке станка не всегда необходимо проводить все проверки, указанные в настоящем стандарте. По согласованию с изготовителем потребитель может выбрать проверки, которые характеризуют интересующие его свойства, но эти проверки должны быть четко определены при заказе станка.
4.2 Допуски при проверках точности станков не должны превышать значений, указанных в 4.4 — 4.18.
Если длина измерения (перемещения) отличается от указанной в стандарте, то допуск должен быть пересчитан для новой длины в соответствии с приложением Б.
При этом минимальный допуск составляет 10 мкм для станков класса точности Н и 5 мкм — для станков класса точности П.
В 4.11 — 4.16 допускается округление длины оправки как в меньшую, так и в большую стороны до величины L , указанной в соответствующих таблицах.
4.3 При наличии на станке нескольких рабочих органов одинакового функционального назначения соответствующие проверки выполняют на каждом из этих рабочих органов, кроме станков с последовательным расположением суппортов.
В 4.8, 4.10 и 4.11 измерения допускается проводить только в плоскости расположения режущей кромки инструмента.
а) продольном,
б) поперечном
Отклонения не должны превышать для станков класса точности Н — 0,04 мм/м, классов точности П, В и А — 0,03 мм/м.
Измерения проводят в ряде точек, равномерно расположенных по всей длине станины (рисунок 2а). Уровни можно устанавливать на поперечных салазках (рисунок 2б).
Если направляющие не горизонтальны, используют специальный мостик с горизонтальной рабочей поверхностью.
Измерения — по ГОСТ 22267, разд. 3, методы 2а, 7 и 8 (рисунки 3, 4 и 5).
Суппорт перемещают в продольном направлении на всю длину перемещения. При использовании методов 7 и 8 измерения проводят с интервалами равными 0,2 длины перемещения, но не более 1 м. По значениям углов поворота и величине интервала вычисляют отклонения и строят график траектории. Отклонение от прямолинейности — в соответствии с приложением 3 к ГОСТ 22267.
С.А. Рябов Проверка геометрической точности токарно-винторезного станка
Изучение методики проверки геометрической точности металлорежущих станков на основе выполнения проверки точности токарно-винторезного станка в соответствии с ГОСТ 42—56.
2. СОДЕРЖАНИЕ РАБОТЫ
Погрешности взаимного расположения и геометрической формы направляющих, по которым перемещаются подвижные рабочие органы станка, опорных и посадочных поверхностей, служащих для установки на станок обрабатываемых деталей, зажимных приспособлений и режущего инструмента, определяют геометрическую точность станка.
По нормали станкостроения Н70-11 станки подразделяются на пять классов точности; станки нормальной точности (Н), повышенной (П), высокой (В), особо высокой (А) и особо точные станки (С).
Для типовых моделей станков нормальной точности с установившейся компоновкой геометрическая точность регламентируется соответствующими ГОСТами. В них указываются виды проверок, методы их выполнения и допустимые отклонения. Работа по проверке станка на точность заключается в замерах фактических отклонений и сравнении их с допустимыми, на основе чего делается заключение о состоянии станка и устанавливается необходимый вид ремонта.
Проверка станка на точность производится заводом-изготовителем при приемке станка после его изготовления. Затем станок проверяется после транспортирования и установки на место эксплуатации, после ремонта, а также в тех случаях, когда на станке систематически получается бракованная продукция.
В настоящей работе студенту предлагается проверить точность токарно-винторезного станка в соответствии с ГОСТ 42—56.
Проверки 1—15 охватывают геометрическую точность станка, проверки 16 и 17точность станка в работе.
3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
Проверки станков выполняются в изложенной ниже последовательности и в соответствии с приведенными методами.
Результаты замеров, выполняемых в процессе проверок, заносятся в журнал лабораторных работ.
По окончании выполнения всех проверок в журнале лабораторных работ записывается заключение о состоянии и о необходимом ремонте станка.
Ниже приведены дополнительные указания по выполнению проверок 6, 9, 11 и 15.
Рис.1. Цилиндрическая оправка с коническим концом
Проверки 6, 9, 11. В проверках 6, 9 и 11 используются цилиндрические оправки с коническим концом, устанавливаемые в отверстиях шпинделя (проверки 6 и 9), и пиноли задней бабки (проверка 11). Эти оправки изготовлены с высокой точностью, однако и при этом условии имеется некоторая погрешность взаимного расположения их конической и цилиндрической поверхности (рис. 1).
Величину данной погрешности У надо измерить и учесть при осуществлении проверок 6, 9 и 11.
Для этой цели при выполнении проверки 6 необходимо, устанавливая оправку в различных угловых положениях относительно шпинделя и измеряя в каждом угловом положении бой конца оправки (путем проворота шпинделя), отыскать такое положение оправки в коническом отверстии шпинделя, при котором биение оправки будет наибольшим. Эта наибольшая величина биения будет равна сумме отклонений оправки У и оси конического отверстия шпинделя х (рис.2,а); x+y . Затем, отметив мелом на торце шпинделя и на оправке их взаимные положения, следует вынуть оправку из конического отверстия, повернуть ее на 180° и вновь установить в шпиндель.
При этом оправка займет положение, изображенное на рис. 2б, и индикатором можно будет измерить новую величину биения ее конца, которая в этом случае будет равна разности х и у.
Рис.2. Положение оправки в различных угловых положениях относительно шпинделя
По этим двум значениям биения конца оправки можно определить действительную величину биения отверстия шпинделя:
Если биение оправки у больше, чем биение отверстия шпинделя х, то после поворота оправки на 180° относительно шпинделя точка наибольшего биения переместится вместе с оправкой и при втором положении оправки замеренное индикатором биение будет иметь обратный знак, т.е. будет равно (у — х). В этом случае, так же, как и в первом, величина х определяется как полусумма двух замеров:
При выполнении проверок 9 и 11 также необходимо исключить влияние неточности оправки на результаты измерения. Однако поскольку в этих случаях измеряется не биение, а непараллельность между направлением перемещения суппорта и осями шпинделя и конического отверстия пиноли задней бабки, в этих проверках не требуется устанавливать оправку в положение наибольшего биения. При выполнении этих проверок оправка устанавливается в коническое
отверстие в произвольном угловом положении, замеряется отклонение её образующей от параллельности направления движения суппорта.
Затем оправка поворачивается на 180° (в проверке 9 вместе со шпинделем, в проверке 11—относительно пиноли задней бабки) и производится второй замер.
В соответствии с изложенными выше соображениями (см. рис. 2) действительное отклонение оси шпинделя или оси конического отверстия пиноли задней бабки определяется и в этих случаях как полусумма результатов двух замеров (с учетом знака отклонения, если он меняется).
В соответствующие графы журнала, лабораторных работ заносятся по этим трем проверкам значения двух измерений х+у и х—у и полученное по ним расчетом значение искомой величины х.
Проверка 15. Цель данной проверки—определение накопленных ошибок ходового винта и передаточной цепи от шпинделя к ходовому винту станка на длине 100 и 300 мм и сопоставление их с допускаемыми величинами.
Для определения накопленных ошибок необходимо по всей проверяемой длине ходового винта произвести измерение ошибок передаточной цепи и винта в ряде точек, расположенных на небольшом расстоянии друг от друга. Затем по значениям этих ошибок построить график ошибок на проверяемой длине и по этому графику определить накопленные ошибки на длине 100 и 300 мм.
Расстояние между точками по длине винта, в которых следует измерять ошибку, задается индивидуально. Перемещение суппорта на требуемую длину выполняется путем проворота шпинделя (с эталонным винтом) от руки на требуемое число оборотов по меловой риске. Результаты замеров ошибки в каждой точке заносятся в журнал лабораторных работ. По результатам измерения во всех точках на отдельном листе (который в дальнейшем вклеивается в журнал лабораторных работ) строится, с соблюдением масштабов по осям, график ошибок цепи и ходового винта на всей проверяемой длине и по этому графику находятся и на нем изображаются величины накопленных погрешностей на длине 100 и 300 мм.
Пример возможного вида графика ошибок передаточной цепи и ходового винта и определения по нему накопленных ошибок показан на рис 3.
Рис. 3. График ошибок передаточной цепи и ходового винта
4. СОДЕРЖАНИЕ ОТЧЕТА
Отчет, выполняемый в журнале лабораторных работ, должен содержать: 1) таблицу с фактическими отклонениями; 2) таблицу фактических ошибок передаточной цепи и ходового винта и построенный по этой таблице график на отдельном вклеенном в журнал листе; 3) заключение о состоянии станка с указанием ремонта, необходимого для устранения погрешностей, превышающих допустимые величины.
1. Кучер И. М. Металлорежущие станки. М.:Машиностроение, 1971.
2. Ачеркан Н. С. и др. Металлорежущие станки. Т. 2. М.: Машиностроение, 1965.