Гармонический нный еский атический маятник
Гармонический осциллятор.Пружинный маятник.Физический маятник.Математический маятник.
(1)
где две точки сверху означают двукратное дифференцирование по времени.
1. Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид
Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой
(2)
(3)
Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна
2. Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела.
Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы
где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как
(5)
идентичное с (1), решение которого (1) найдем и запишем как:
(6)
Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом
где введена величина L=J/(ml) — приведенная длина физического маятника.
Точка О’ на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем
т. е. ОО’ всегда больше ОС. Точка подвеса О маятника и центр качаний О’ имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.
3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести.
(8)
где l — длина маятника.
Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника
(9)
Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы.
Сложение гармонических колебаний (одного направления и одинаковой частоты).
На основании закона cos:
=
Таким образом возникают колебания, амплитуда которых будет исследована из следующей функции времени:
Свободные гармонические колебания.
Если заряженный конденсатор подсоединить к катушке, то конденсатор начнет разряжаться. По мере разрядки увеличивается разрядный ток, который достигает максимума при полной разрядке конденсатора, при этом энергия переходит в энергию магнитного поля.
С момента полной разрядки конденсатора ток в цепи начнет убывать. При уменьшении тока явление самоиндукции в цепи возникает индукционный ток того же направления, что и токI и конденсатор начинает перезаряжаться. И в момент полной зарядки ток в цепи станет равным нулю. На основе законов Ома:
Гармонический осциллятор. Пружинный, физический и математический маятники
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными).
1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F = – kx , где k — жесткость пружины. Уравнение движения маятника
Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону х=А со s ( w t + j ) с циклической частотой
Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна
2. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).
Если маятник отклонен из положения равновесия на некоторый угол a , то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент M возвращающей силы можно записать в виде
где J — момент инерции маятника относительно оси, проходящей через точку подвеса О, l – расстояние между ней и центром масс маятника, F t = – mg sin a » – mg a . — возвращающая сила (знак минус обусловлен тем, что направления F t и a всегда противоположны; sin a » a соответствует малым колебаниям маятника, т.е. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде
идентичное с (142.1), решение которого (140.1) известно:
Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w (см. (142.5)) и периодом
где L = J /( ml ) — приведенная длина физического маятника.
Точка О’ на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L , называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим
т. е. ОО’ всегда больше ОС. Точка подвеса О маятника и центр качаний О’ обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса
станет новым центром качаний, и период колебаний физического маятника не изменится.
3. Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника
где l — длина маятника.
Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (1417), получим выражение для периода малых колебаний математического маятника
Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
Пружинный и математический маятники колебания формулы
§2 Пружинный маятник.
Упругие и квазиупругие силы .
Уравнение колеблющейся пружины
Рассмотрим тело массы m , закрепленное на пружине с коэффициентом жесткости k (массой пружины пренебрегаем). Растянем пружину на х. Тогда по закону Гука на тело будет действовать сила упругости F упр :
1) величина силы пропорциональна величине отклонения системы от положения равновесия
2) направление сила противоположно направлении смещения, т.е. сила всегда направлена к положению равновесия (при х > 0, F упр < 0, при х < 0, F упр > 0)
3) В положении равновесия х = 0 и F упр = 0.
Систему, состоящую из материальной точки массы m и абсолютно упругой пружины с коэффициентом жесткости k , в которой возможны свободные колебания, называют пружинным маятником.
Запишем второй закон Ньютона для рис. б
Если сила не является по своей природе упругой, но подчиняется закону F = — k х , то она называется квазиупругой силой.
Получим уравнение пружинного маятника. Учтем в записи второго закона Ньютона, что
— дифференциальное уравнение точки, совершающей колебательное движение (дифференциальное уравнение пружинного маятника).
Решение дифференциального уравнения:
— уравнение колеблющейся точки (уравнение колеблющейся пружины).
— собственная частота колебаний.
§3 Математический и физический маятники.
Периоды колебаний математического и физического маятников
Математический маятник — материальная точка, подвешенная на невесомой нерастяжимой нити, и совершавшая колебания в вертикальной плоскости под действием силы тяжести. Материальная точка — тело, масса которого сосредоточена в центре масс и размерами которого в условиях данной задачи, можно пренебречь.
Математический маятник при колебаниях совершает движение по дуге окружности радиуса
. Его движение подчиняется законам вращательного движения.
Основное уравнение вращательного цветения запишется в виде
(1)
М – момент сил, I – момент инерции, ε – угловое ускорение.
Равнодействующая сил и
равна
.
Из треугольника АВС
таким образом, колебания математического маятника происходят под действием квазиупругой силы — силы тяжести.
Тогда (1) запишется в виде
(2)
Знак минус учитывает, что векторы и
имеют противоположные направления (угол поворота можно рассматривать, как псевдовектор углового смещения
, направление вектора
определяется по правилу правого винта, из-за знака минус
направлен в противоположную сторону).
Сократив в (2) на m и получим
При малых углах колебаний α = 5 ÷6° , , получим
получим дифференциальное уравнение колебаний математического маятника
— уравнение математического маятника.
из которого видно, что угол α изменяется по закону косинуса. α — амплитуда, ω — циклическая частота, φ — начальная фаза.
— период колебаний математического маятника
Физический маятник — твердое тело, колеблющееся под действием силы тяжести вокруг неподвижной горизонтальной оси, не проходящей через центр тяжести тела, называемой осью качания маятника.
Основное уравнение – вращательного движения для физического маятника запишется в виде
При малых углах колебаний и уравнение движения имеет вид
Свободные колебания. Пружинный маятник
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:
F (t) = ma (t) = –m ω 2 x (t). |
В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закон Гука:
Fупр = –kx. |
Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.
Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.
Круговая частота ω свободных колебаний груза на пружине находится из второго закона Ньютона:
,
Частота ω называется собственной частотой колебательной системы.
Период T гармонических колебаний груза на пружине равен
При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x, равную
и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω и периода колебаний T справедливы и в этом случае.
Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:
Поэтому второй закон Ньютона для груза на пружине может быть записан в виде
(*)
Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида
x = xm cos (ωt + φ). |
Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.
Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ = 0.
Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость , то
Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ определяются начальными условиями.
Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:
Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде
где I = IC – момент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.
По аналогии с грузом на пружине можно получить:
Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.