Как подключить люминесцентную лампу; схемы с дросселем и балластом
Как подключить люминесцентную лампу — схемы с дросселем и балластом
Люминесцентные светильники основаны на свечении газового разряда в парах ртути. Излучение находится в ультрафиолетовом диапазоне и для его преобразования в видимый свет колба лампы покрыта слоем люминофора.
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф<0.5);
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
- полное отсутствие мерцания;
- широкий температурный диапазон использования;
- малые искажения формы напряжения сети;
- отсутствие акустических шумов;
- увеличение срока службы источников освещения;
- малые габариты и вес, возможность миниатюрного исполнения;
- возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Классическое подключение через электромагнитный балласт — дроссель
Наиболее распространенная схема подключения люминесцентной лампы включает в себя дроссель и стартер, которые именуются электромагнитной пускорегулирующей аппаратурой (ЭмПРА). Схема представляет собой последовательную цепь: дроссель — нити накала — стартер.
В начальный момент включения через элементы цепи протекает ток, нагревающий нити накала лампы и одновременно контактную группу стартера. После нагрева контактов они размыкаются, провоцируя появление ЭДС самоиндукции на концах обмотки электромагнитного балласта. Высокое напряжение вызывает пробой газового промежутка между электродами.
Конденсатор малой емкости, подключенный параллельно контактам стартера, образует с дросселем колебательный контур. Такое решение повышает величину напряжения импульса запуска и снижает подгорание контактов стартера.
При появлении устойчивого разряда сопротивление между электродами на противоположных концах колбы падает и ток протекает по цепи дроссель-электроды. Ток в это время ограничен индуктивным сопротивлением дросселя. Электрод в стартере замыкается, стартер в это время в работе уже не участвует.
Если разряд в колбе не возник, процесс подогрева и поджига повторяется несколько раз. В это время возможно мерцание лампы. Если люминесцентная лампа моргает, но не загорается, то это может свидетельствовать о выходе ее из строя в результате снижения эмиссионной способности электродов или о пониженном напряжении питающей сети.
Подключение люминесцентных ламп с дросселем может дополняться конденсатором, который снижает искажения сети. Также конденсатор устанавливается в сдвоенных светильниках для взаимного сдвига фар между соседними лампами для визуального уменьшения эффекта мерцания.
Подключение через современный электронный балласт
В светильниках, использующих для работы электронную пускорегулирующую аппаратуру, схема включения люминесцентных ламп приведена на кожухе ЭПРА. Для правильного включения необходимо в точности следовать указаниям. При этом не требуется никакой регулировки. Правильно собранная схема при исправных элементах начинает работать сразу же.
Схема для последовательного подключения двух ламп
Люминесцентные лампы допускают последовательное включение двух осветительных устройств в одну цепь при наличии следующих условий:
- использование двух идентичных источников света;
- предназначенный для подобной схемы электромагнитный балласт;
- дроссель, рассчитанный на удвоенную мощность.
Преимущество схемы с последовательным включением заключается в использовании только одного тяжелого дросселя, но при неисправности в одной из лампочек или стартер светильник оказывается полностью неработоспособным.
Современные ЭПРА допускают включение только согласно приведенной схеме, но много конструкций рассчитано на включение двух ламп. При этом в схеме организовано два независимых канала формирования напряжения, поэтому двойной электронный балласт обеспечивает работоспособность одной лампы при неисправности или отсутствии соседней.
Подключение без стартера
Разработано несколько вариантов включения люминесцентных светильников без дросселя и стартера. Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения.
Многие из схем допускают работу с перегоревшими нитями накала, что позволяет использовать неисправные лампы. Некоторые решения используют питание постоянным током. Это приводит к полному отсутствию мерцания, но электроды при этом изнашиваются неравномерно. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы.
Некоторые электрики вместо стартера устанавливают отдельную кнопку запуска, но это подразумевает управление включением светильника при помощи выключателя и кнопки, что неудобно и чревато повреждением лампы при излишне длительном нажатии на кнопку из-за перегрева электродов.
Схемы включения люминесцентных светильников без использования стартера, если не считать ЭПРА, промышленностью не выпускаются. Это связано с их низкой надежностью, отрицательным влиянием на срок службы ламп, большими габаритами из-за наличия конденсаторов большой емкости.
Пускорегулирующие аппараты для люминесцентных ламп: конструкция
Люминесцентные лампы с пускозарядной аппаратурой используются в учреждениях и на предприятиях, менее часто – в жилых домах. Для питания газоразрядной лампы требуется импульс высокого напряжения (поджиг) и далее – низкое напряжения для равномерного свечения. Прямое питание от сети 220В не подходит, поэтому для линейных светильников нужны пускозарядные устройства.
В настоящее время выпускаются модели двух типов: ПРА – традиционные токоограничители, которые принято называть дросселями или балластами, и электронные пускозарядные устройства, цена на которые несколько выше, но выше также и качество.
К освещению традиционными линейными газоразрядными лампами с ПРА периодически возникают претензии: мигают, гудят и т.д. Эти проблемы решены: вместо ПРА купить можно новые, усовершенствованные пускорегулирующие аппараты купить и забыть о «дрожащем» свете.
Функции электронных пускорегулирующих аппаратов
Электронные пускорегулирующие аппараты защищают люминесцентные лампы от электромагнитных помех в сети, но у фильтра есть и другая важная функция: он защищает сеть от помех, которые могут наводить газоразрядные импульсы.
К преимуществам ЭПРА относится и возможность плавной регулировки мощности светильника.
Если сравнить разные типы устройств, то найдутся доводы в пользу автоматов ПРА. Несмотря на некоторые недостатки, традиционные дроссели пользуются спросом, благодаря простотой удобной конструкции и невысокой цене.
Почему электронные пускорегулирующие аппараты лучше?
В новых устройствах устранены недостатки пускорегулирующих автоматов ПРА, нередко создающим неудобства при использовании линейных ламп. Электронные пускорегулирующие аппараты (ЭПРА) – это приборы со схему управления на полупроводниковых элементах, обеспечивающие «теплый старт» для светильника, поддерживающие стабильное напряжение на выходе при перепадах в питающей сети 220В.
Пускорегулирующие аппараты следует приобретать вместе с другим осветительным оборудованием. Можно заменять электромагнитные ПРА на электронные устройства ЭПРА.
Заказ пускорегулирующих аппаратов в «АВС-электро»
Пускозарядные устройства различных видов и конструкций для одного и нескольких светильников разной мощности можно купить в интернет магазине нашей компании. При заказе рекомендуем изучить весь ассортимент, сравнить характеристики разных устройств. Ваш заказ будет доставлен в назначенное вами время: у нас действуют удобные условия доставки по всей России.
Для работы люминесцентных ламп необходимы ЭПРА, электронные пускорегулирующие аппараты, которые стабилизируют ток нагрева ламп после включения их в сеть. ЭПРА для люминесцентных ламп Т5 обеспечивают им ровный свет, а предварительный подогрев катодов, «горячий старт», бережет лампы от досрочного выхода из строя.Пускорегулирующая аппаратура экономит ресурсы самой лампы, сохраняет энергию всей установки освещения и в целом повышает комфортность её использования.
ЭПРА работает на частоте 50-60 тысяч герц, поэтому позволяет избежать неприятного мерцания и гудения во время работы.Люминесцентные лампы с колбой Т5 обладают небольшими размерами и при этом очень эффективны и долго служат. Благодаря возможности получения очень высокой освещенности с единицы площади светильника лампы Т5 нашли широкое применение в разных сферах жизни человека: садоводстве, декоративном освещении, в промышленных помещениях, для подсветки витрин в магазинах.Комплект из люминесцентной лампы Т5 диаметром 16мм и электронной ПРА представляет собой абсолютно новое поколение современных систем освещения. Небольшие лампы и такие же небольшие электронные ПРА с маленьким поперечным сечением позволяют использовать их для создания самых разнообразных световых конструкций.
Преимущества работы люминесцентных ламп Т5 с ЭПРА:
– приятный, немерцающий свет
– автоматическое отключение в случае неисправности
– большая световая отдача
– продолжительный срок службы ламп благодаря специальному щадящему режиму
– уменьшенные потери мощности и, как результат, пониженная нагрузка на систему кондиционирования
– возможность эксплуатации в системах аварийного освещения
Производитель ЭПРА, представленных в нашем каталоге электрики на сайте shop220.ru, немецкая компания Osram, завоевала свою долю рынка исключительно за счет новейших разработок и специальных применениях ламп. Вся продукция компании до поступления в продажу подвергается тщательной проверке и является гарантом качества и безопасности.
Трубчатые люминесцентные лампы Т8— один из самых распространенных и экономичных источников света, подходящий вариант для использования в системах освещения, которые не предъявляют высоких требований к качеству цветопередачи. Они дают холодный белый свет, подходят для освещения гаражей, подвалов, технических помещений.При этом световая отдача и срок службы таких ламп в несколько раз больше, чем у ламп накаливания того же назначения.Популярность люминесцентных ламп выросла также благодаря появлению электронной пускорегулирующей аппаратуры (ЭПРА).
Она стабилизирует ток нагрева ламп после включения их в сеть, обеспечивая таким образом их хорошую работу.Предотвращает неприятное мигание и гудение и в целом повышает комфортность использования световой конструкции. Кроме того, электронная ПРА компактна и экономит более чем 20% от общего электропотребления светильника. Такие исключительно малые потери энергии позволяют создавать эффективные энергосберегающие осветительные решения с использованием люминесцентных ламп Т8.
Электронная пускорегулирующая аппаратура бережет ресурсы самой лампы
— предотвращает её от досрочного выхода из строя благодаря функции «горячий старт», предварительному подогреву катодов.
ЭПРА оснащены защитой от короткого перегрева и короткого замыкания, автоматически отключаются в случае выхода лампы из строя.
Таким образом, использование люминесцентных ламп Т8 с ЭПРА имеет ряд весомых преимуществ, таких как:
– высокая экономичность световой конструкции
– щадящий режим для ламп и как следствие продолжительный срок их службы
– высокая световая отдача
– отсутствие неприятного мерцания и гудения
– безопасность — отключение в случае короткого замыкания
– снижение общей нагрузки на систему кондиционирования благодаря уменьшению потери мощности.
Все компании-производители ЭПРА, представленных в каталоге нашего интернет-магазина электрики shop220.ru, являются крупными игроками мирового рынка светотехнической продукции, ответственно подходящими к процессу её изготовления.
Аппараты для регулировки пуска начали появляться давно. За последнее время пускорегулирующая аппаратура была сильно изменена и усовершенствована. Не все понимают, насколько выгодна установка таких аппаратов.
Пускорегулирующая аппаратура на основе электронных элементов (ЭПРА) монтируется в приборы освещения. Светильники с таким аппаратом значительно экономят электричество, а также нет необходимости приобретать новые лампы, так как срок службы ламп значительно повышается.
Лампы с ЭПРА светят приятным качественным светом, который благотворно влияет на человека, по крайней мере, не вредит ему. Частота мерцания света таких ламп составляет около 400 Гц. При этом глаза человека меньше устают, нет головной боли.
Электронный пускорегулирующий аппарат (ЭПРА)
Для обеспечения качественной и безотказной работы светильников, стоит купить электронные пускорегулирующие аппараты. ОСК Лампы.РФ реализует продукцию оптом со склада в Москве. Трудно найти организацию, которая может предложить продукцию по цене, аналогичной нашей. Мы всегда знаем, что предложить клиентам, опыту наших специалистов можно доверять.
Преимущества ЭПРА по сравнению со стандартным индуктивным балластом для ламп:
- с таким аппаратом можно рассчитывать на мгновенное включение лампы. Это невозможно при использовании штатного устаревшего оборудования. При помощи традиционных решений нельзя также быстро включить прибор освещения, особенно при низких температурах. Оборудование с ballast загорается моментально в условиях низких температур;
- при использовании электронного пускорегулирующего аппарата гарантирован бесшумный рабочий режим за счет отсутствия шумового эффекта работающей лампы;
- еще одна причина заменить индуктивный балласт — моргание лампы при работе на низких частотах. Благодаря аппарату увеличивается частота мерцания до отметки 60 000 раз за секунду. Человеческий глаз воспринимает это как ровный, нераздражающий свет. Это касается момента включения и рабочего процесса в целом;
- энергопотребление. ЭПРА индуктивного типа несравним с новыми техническими решениями по потреблению энергии. Измерениями доказано, что использование аппарата экономит до 30 % электроэнергии;
- долговечность люминесцентных светильников и надежность системы. Использование новых технологий на крупных объектах Москвы и в частных домохозяйствах позволяет увеличить ресурс ламп.
Приятной особенностью аппарата считаются небольшие габариты. Применение этого оборудования помогает увеличить уровень светоотдачи, получить возможность управлять яркостью. Если Вы не будете проявлять излишнюю консервативность, то поймете, что от старого оборудования стоит избавиться при первой возможности.
Ряд потребителей считают недостатком дороговизну — электронный аппарат стоит в несколько раз дороже классических аналогов. Еще один нюанс состоит в том, что в случае эксплуатации электронных моделей ПРА с люминесцентными лампами до 15 Вт наблюдаются потери мощности в объемах, делающих их использование нерентабельным. Также не рекомендуется использовать балласт в цехах, оснащенных оборудованием, детали которого вращаются с частотой, равной миганию светоаппаратуры.
Конструкция
Стандартный электронный пускорегулирующий аппарат считается многокомпонентным устройством. В него входят несколько блоков. Специальный фильтр обеспечивает фильтрование входящих сетевых и проникающих в электросеть помех. В конструкцию интегрирован надежный выпрямитель. Опционально используется схема коррекции коэффициента мощности.
Неотъемлемые конструктивные элементы — сглаживающий фильтр, инвертор, дроссель. Возможна комплектация инвертора устройством плавной регулировки яркости. Это предполагает наличие внешнего светового регулятора для эффективного управления электронным балластом.
Схематически ballasts бывают полумостового и мостового типа. При мостовом исполнении количество ключевых элементов вдвое больше. Такие аппараты используются при наличии микросхем-драйверов, которые отвечают за управление ключевыми элементами.
В качественных электронных пускорегулирующих аппаратах предусмотрена встроенная защита от сетевых колебаний, импульсных помех и пуска при отсутствии лампы. Сегодня выпускаются электронные, цифровые и стандартные аппараты.
Работа изделий происходит в три фазы:
- разогрев электродных элементов лампы. Обеспечивается мгновенный мягкий пуск лампы;
- поджиг. Изделие генерирует импульс с высоким напряжением, который вызывает пробой газа, заполняющего колбу;
- горение. На электродах поддерживается небольшое напряжение. Его достаточно для горения. Процесс зажигания посредством электронного аппарата занимает меньше одной секунды.
Отзывы наших клиентов
Раньше на нашем предприятии постоянно перегорали лампы, вопрос с освещением стоял очень остро. Однако проблему удалось решить после обращения в компанию ОСК Лампы.РФ. Специалисты порекомендовали заказать пускорегулирующее устройство ЭПРА. В результате удалось значительно продлить срок службы ламп и добиться экономии электроэнергии где-то на 20%. Спасибо за комплексные решения!
В нашем офисном помещении были проблемы с освещением, поэтому мы начали искать эффективный способ повысить производительность ламп. Благодарим специалистов компании за предложение установить ЭПРА. Теперь в офисе всегда светло, нет мерцания, лампы включаются сразу после включения.
Делали ремонт в своем административном здании и уделили повышенное внимание новым технологиям в организации освещения. Менеджеры компании порекомендовали использовать пускорегулятор ЭПРА для увеличения срока службы ламп и удобного управления процессами. Полгода пользуемся помещениями после ремонта и действительно отмечаем позитивные изменения! Спасибо!
Схема подключения люминесцентных ламп к балласту
Несмотря на развитие технологий, обычные трубчатые лампы дневного света (ЛДС) до сих пор пользуются популярностью. Но если конструкция самих приборов так и остается практически неизменной, схемы подключения люминесцентных ламп постоянно меняются и дорабатываются. Взамен старым добрым дросселям приходят электронные балласты, а благодаря народной смекалке некоторые конструкции великолепно работают даже со сгоревшими спиралями запуска.
Как устроена и работает ЛДС
Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.
Схема люминесцентной лампы
Как правило, форма колбы – трубчатая, но для улучшения эргономичности устройства трубку изгибают, придавая ей самую различную конфигурацию.
Все это ЛДС, работающие на одном принципе.
Для нормальной работы люминесцентного светильника необходимо выполнить два условия:
- Обеспечить начальный пробой межэлектродного промежутка (запуск).
- Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).
Пуск лампы
В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.
До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.
Стартеры для пуска ЛДС на различные напряжения
Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.
Поддержание рабочего режима
Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:
- Электромагнитные (дроссельные).
- Электронные.
Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.
Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.
Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:
Электронное пускорегулирующее устройство для люминесцентной лампы
Преимущества балластов разных типов
Прежде чем выбрать и, тем более, купить балласт того или иного типа, имеет смысл разобраться в их отличиях друг от друга. К преимуществам ЭмПРА можно отнести:
- умеренную стоимость;
- высокую надежность;
- возможность подключения двух ламп половинной мощности.
Электронные балласты появились много позже своих дроссельных собратьев, а значит, и список преимуществ у них больше:
- небольшие габариты и вес;
- при той же светоотдаче энергопотребление на 20% ниже, чем у ЭмПРА;
- почти не нагреваются;
- работают абсолютно бесшумно (ЭмПРА нередко гудит);
- отсутствие мерцания лампы с частотой сети;
- срок службы лампы на 50% выше, чем с дросселем;
- лампа запускается мгновенно, без «мигания».
Но за все эти преимущества, естественно, придется заплатить – стоимость электронного устройства ощутимо выше, чем цена дроссельного, а надежность, увы, пока еще ниже. Кроме того, если мощность электронного балласта ниже мощности лампы, то в отличие от электромагнитного он просто сгорит.
Включение ламп дневного света
Хотя люминесцентную лампу нельзя просто воткнуть в розетку, запустить ее совсем несложно и под силу каждому, кто знаком с электрикой. Для этого достаточно обзавестись соответствующим пускорегулирующим устройством того или иного типа и собрать несложную схему.
Использование электромагнитного дросселя и стартера
Это, пожалуй, самый простой и бюджетный вариант. Для создания люминесцентного светильника понадобится лампа дневного света, электромагнитный балласт (дроссель), мощность которого соответствует мощности лампы, и стартер с рабочим напряжением 220 В (указано на корпусе). Схема подключения дросселя для люминесцентных ламп будет выглядеть так:
Схема подключения люминесцентной лампы с дросселем.
Работает схема следующим образом. При подключении светильника к сети лампа не горит – напряжения на ее электродах недостаточно для зажигания. Но одновременно это же напряжение поступает через спирали лампы на стартер, представляющий собой газоразрядную лампу со встроенной биметаллической пластиной.
Возникающий на электродах стартера тлеющий разряд разогревает биметаллическую пластину, но этого тока пока недостаточно для разогрева спиралей ЛДС.
Нагревшаяся пластина замыкает стартер накоротко, и возросший ток разогревает спирали лампы дневного света. Через некоторое время биметаллическая пластина остывает и разрывает цепь подогрева. За счет обратной самоиндукции дросселя на уже разогретых катодах ЛДС происходит бросок напряжения, поджигающий лампу. Благодаря возникшему тлеющему разряду напряжения на стартере уже не хватает для его срабатывания, и в дальнейшей работе он не участвует. Дроссель же ограничивает ток через колбу ЛДС, обеспечивая ей номинальный рабочий ток.
При необходимости один дроссель может питать и две лампочки, но здесь необходимо выполнить три условия:
- Мощность лампочек должна быть одинаковой.
- Мощность дросселя должна равняться суммарной мощности лампочек.
- Напряжение срабатывания стартеров (оно указано на корпусе устройства) должно быть 127 В.
Схема люминесцентного светильника с двумя лампами
Обратите внимание: соединение ламп должно быть последовательным и ни в коем случае не параллельным.
Работа люминесцентного светильника с ЭПРА
Если вы будете использовать в своем светильнике электронный балласт, то стартер не понадобится (он входит в ЭмПРА, хотя и выполнен отдельным узлом). Дело в том, что для пуска осветителя электронный балласт использует не подогрев спирали, а высокое напряжение (до киловольта), обеспечивающее разряд между электродами. Единственное условие, которое нужно соблюдать – мощность балласта должна равняться номинальной мощности осветителя. Схема же такого светильника будет совсем простая:
Включение электронного балласта для люминесцентных ламп (схема 36w)
Поскольку обычные ЭПРА не могут работать в двухламповых светильниках, выпускаются двухканальные приборы. По сути, это два обычных ЭПР в одном корпусе.
Схема светильника 2×36 с электронным балластом.
Приведенная схема не является единственной и зависит как от типа пускорегулирующего устройства, так и от производителя. Обычно она наносится прямо на корпус прибора:
Схема подключения и мощность осветителей(2х36) нередко наносится на корпус балласта.
Включение приборов со сгоревшими спиралями
Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора:
Схема включения ЛДС со сгоревшими спиралями
Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня.
Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника. В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана.
Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В:
Включение двух ЛДС со сгоревшими спиралями
Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями.
Энергосберегающая лампочка – та же ЛДС
Практически каждый видел, а многие и пользовались так называемыми энергосберегающими лампочками, которые вворачиваются в обычный осветительный патрон. Сходство их с люминесцентными просто поражает – та же трубочка, только маленькая и скрученная.
Это тоже ЛДС, только компактнее и удобнее.
Сходство это не случайно, поскольку «энергосберегайка» — обычная ЛДС с электронным пускорегулирующим устройством. Убедиться в этом можно просто разобрав вышедшую из строя «сберегайку»:
Разобранная энергосберегающая лампочка
Даже на фото отлично видно, что колба имеет 4 вывода – по 2 на каждую спираль – и подключается хоть и к компактному, но самому обычному ЭПРА. В том, что пускорегулирующее устройство самое обычное, вы можете даже убедиться экспериментально. Возьмите обычную трубчатую ЛДС с той же мощностью, что указана на цоколе «энергосберегайки», и подключите ее вместо родной. Ни лампа, ни электронный балласт даже не заметят подмены.
Такая гибридная сборка может быть полезна, если энергосберегающая лампочка разбилась или в ней сгорели спирали. Зачем же выбрасывать вполне исправную электронику, когда трубчатая ЛДС стоит совсем недорого?
Трубчатая газоразрядная лампа, включенная через балласт «энергосберегайки». Если разобраться в разных схемах подключения, можно сделать все самостоятельно, сэкономив и время, и средства.