Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Последовательное и параллельное соединения конденсаторов: применение, формулы расчёта ёмкости и напряжения

Последовательное и параллельное соединения конденсаторов: применение, формулы расчёта ёмкости и напряжения

Практически на любой электронной плате применяются конденсаторы, устанавливаются они и в силовых схемах. Для того чтобы компонент мог выполнять свои функции, он должен обладать определёнными характеристиками. Иногда возникает ситуация, когда необходимого элемента нет в продаже или его цена неоправданно завышена.

Выйти из сложившегося положения можно, используя несколько элементов, а необходимые характеристики получают, применяя параллельное и последовательное соединения конденсаторов между собой.

Немного теории

Конденсатор — пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.

При выборе этих электронных компонентов руководствуются двумя основными характеристиками:

  1. Номинальная ёмкость измеряется в фарадах, но так как это очень большая величина, чаще всего применяют микрофарады. Номинальную величину этого параметра указывают на корпусе. Необходимо учитывать, что в зависимости от класса точности, отклонение действительной величины от номинальной может достигать ±20%, а иногда и более. Такие элементы подходят для большинства схем, поэтому при составлении батареи конденсаторов точного подбора ёмкости не требуется, достаточно уложиться в указанную погрешность.
  2. Номинальное напряжение измеряется в вольтах. Применение электронного компонента с номинальным напряжением, которое ниже чем в схеме, может привести к пробою диэлектрика и выходу элемента из строя. Поэтому эту величину необходимо выбирать с некоторым запасом.

Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод — рис. 1, б.

Способы соединения конденсаторов

Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:

  • последовательное;
  • параллельное;
  • смешанное.

Последовательное соединение

Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.

Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.

После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.

Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.

Максимально упростить расчёты последовательно соединённых компонентов, позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.

Параллельное подключение

Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:

Читайте так же:
Расчет мощности резания при точении

С сум = С 1 + С 2 + С 3.

Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.

Смешанное включение

Смешанное подключение конденсаторов — это сочетание параллельного и последовательного соединений.

Схематически такая цепочка может выглядеть по-разному. В качестве примера рассмотрим схему, изображённую на рис. 1, д. Батарея состоит из шести элементов, из которых С1, С2, С3, соединены параллельно, а С4, С5, С6 — последовательно.

Рабочее напряжение можно определить сложением номинальных напряжений С4, С5, С6 и напряжения одного из параллельно подключённых конденсаторов. Если параллельно соединённые элементы имеют разные номинальные напряжения, то для расчёта берут меньшее из трёх.

Для определения суммарной ёмкости, схему разбивают на участки с одинаковым соединением элементов, производят расчёт для этих участков, после чего определяют общую величину.

Для нашей схемы последовательность вычислений следующая:

  1. Определяем ёмкость параллельно соединённых элементов и обозначаем её С 1-3.
  2. Рассчитываем ёмкость последовательно соединённых элементов С 4-6.
  3. На этом этапе можно начертить упрощённую эквивалентную схему, в которой вместо шести элементов изображаются два — С 1-3 и С 4-6. Эти элементы схемы соединены последовательно. Остаётся произвести расчёт такого соединения и мы получим искомую.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям.

Способы соединения конденсаторов

Иногда в наличии нет конденсатора с нужными параметрами. В таком случае, можно соединить несколько конденсаторов так, чтобы полученная система обладала необходимой электрической емкостью. Существуют два основных способа соединений:

  1. параллельный;
  2. последовательный;

Комбинируя эти способы, можно получить смешанное соединение.

Для каждого способа применяют специальные формулы, описывающие распределение заряда и напряжения на конденсаторах, а, так же, получаемую итоговую электроемкость системы.

Параллельное соединение

Этот способ соединения получаем, соединяя каждый вывод одного прибора с соответствующим ему выводом другого (рис. 1).

Емкость для параллельного включения можно определить так:

При этом, общая (large C_> ) электроемкость получится больше самой большой емкости, входящей в соединение.

(large C_<1>, C_ <2>left( text <Ф>right) ) – электроемкости конденсаторов.

Общая электроемкость включенных параллельно конденсаторов больше емкости большего из них.

Напряжение на конденсаторах

Напряжения, приложенные к параллельно подключенным обкладкам, равны.

(large U_<1>, U_<2>left( Bright) ) – напряжения на обкладках.

Правило для зарядов

Общий заряд системы разделится на части. Каждая из параллельно соединенных емкостей получит свой заряд.

(large q_<1>, q_<2>left( text <Кл>right) ) – заряды на конденсаторах.

При этом, из формулы емкости (ссылка), связывающей ее с напряжением на обкладках и зарядом, следует (рис. 4):

При параллельном соединении меньшая емкость содержит меньший заряд.

Из рисунка 4 следует, в параллельной части цепи конденсатор с наименьшей (0,1 Ф) электроемкостью накапливает меньший (1 Кулон) заряд. А набиольший заряд 4 Кулона содержится на приборе, обладающем максимальной емкостью 0,4 Ф.

Читайте так же:
Рейтинг самых лучших бензопил

Последовательное соединение

Для такого способа соединения складываются величины, обратные емкостям.

Примечание: Величина, обратно пропорциональная емкости, измеряется в обратных Фарадах.

(large displaystyle frac <1> left( frac <1>> right) ) – величину, обратную электроемкости в некоторых источниках называют электрической эластичностью (эластансом).

(large C_<1>, C_<2>left( text<Ф>right) ) – емкости конденсаторов.

При последовательном включении общая (large C_> ) электроемкость цепочки окажется меньше самой маленькой емкости включенной в цепочку.

Общая емкость системы меньше меньшей из включенных последовательно емкостей.

Правило для напряжений

Приложенное к концам последовательной цепочки напряжение распределится между элементами.

где (large U_<1>, U_<2>left( Bright) ) — это напряжения на обкладках.

Чем больше емкость конденсатора, тем меньшее напряжение будет наблюдаться на его обкладках при последовательном соединении.

Общее напряжение разделится на части. Большее напряжение будет на конденсаторе с меньшей электроемкостью.

На рисунке 7 представлена цепочка, состоящая из 4-ех емкостей, соединенных последовательно. На конденсаторе с наименьшей емкостью 0,3 Ф напряжение составляет 4 Вольта.

А наименьшее напряжение 1 Вольт, находится на обкладках конденсатора с наибольшей емкостью 1,2 Ф. Общее напряжение на концах цепочки равняется 10-и Вольтам.

Заряд на конденсаторах

Зарядив одну из обкладок конденсатора, мы получим на второй его обкладке такой же (по модулю) заряд противоположного знака. Поэтому, все конденсаторы, соединенные последовательно, будут иметь одинаковые заряды на обкладках.

где (large q_<1>, q_<2>left( text <Кл>right) ) – заряды, накопленные конденсаторами.

В последовательно включенной цепочке все конденсаторы обладают равными зарядами.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться как последовательным, так и параллельным способами.

В условиях последовательного соединения проводников (рис. 1 . 9 . 1 ) сила тока во всех проводниках одинакова:

Рисунок 1 . 9 . 1 . Последовательное соединение проводников.

Опираясь на закон Ома, можно заявить, что напряжения U 1 и U 2 на проводниках равняются следующим выражениям:

U 1 = I R 1 , U 2 = I R 2 .

Общее напряжение U на обоих проводниках эквивалентно сумме напряжений U 1 и U 2 :

U = U 1 + U 2 = I ( R 1 + R 2 ) = I R ,

где R является электрическим сопротивлением всей цепи.

Из этого следует, что общее сопротивление R равняется сумме сопротивлений на входящих в данную цепь отдельных проводников:

Данный результат применим для любого количества последовательно соединенных проводников.

Параллельное соединение проводников

В условиях параллельного соединения (рис. 1 . 9 . 2 ) напряжения U 1 и U 2 на обоих проводниках эквивалентны друг другу, из чего следует:

Совокупность существующих в обоих проводниках токов I 1 + I 2 равняется значению тока в неразветвленной цепи, то есть:

Данный результат исходит из того, что заряды не могут копиться в точках разветвления, то есть в узлах A и B , цепи постоянного тока.

Так, например, узлу A за время Δ t сообщается заряд I Δ t , а уходит из узла за то же время заряд I 1 Δ t + I 2 Δ t . Таким образом, подтверждается выражение I = I 1 + I 2 .

Рисунок 1 . 9 . 2 . Параллельное соединение проводников.

Опираясь на закон Ома, запишем для каждой ветви:

I 1 = U R 1 , I 2 = U R 2 , I = U R ,

где R является электрическим сопротивлением всей цепи, получим

Читайте так же:
Струбцина для сэндвич панелей своими руками

1 R = 1 R 1 + 1 R 2

В условиях параллельного соединения проводников обратная общему сопротивлению цепи величина, равняется сумме величин, обратных сопротивлениям параллельно включенных проводников.

Полученный вывод может быть применим для любого количества включенных параллельно проводников.

Применение формул для расчета сопротивления сложной цепи

Формулы для последовательного и параллельного соединений проводников дают возможность во многих случаях рассчитывать сопротивление сложной цепи, которая состоит из многих резисторов. На рис. 1 . 9 . 3 проиллюстрирована подобная сложная цепь и указана последовательность необходимых для расчета вычислений.

Рисунок 1 . 9 . 3 . Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах ( О м ).

Стоит акцентировать внимание на том факте, что далеко не каждая сложная цепь, состоящая из проводников с разными сопротивлениями, может быть рассчитана с использованием формул для последовательного и параллельного соединений. На рис. 1 . 9 . 4 изображена электрическая цепь, которую рассчитать данным методом не получится.

Рисунок 1 . 9 . 4 . Пример электрической цепи, не сводящейся к комбинации последовательно и параллельно соединенных проводников.

Аналогичные иллюстрированной на рисунке 1 . 9 . 4 цепи, так же, как и цепи с разветвлениями, содержащие более одного источника, можно рассчитать, используя правила Кирхгофа.

Последовательное, параллельное и смешанное соединение резисторов (сопротивлений)

Все разнообразие схем построено на двух типах соединения — параллельном и последовательном. Для разных соединений действуют разные законы, что и дает возможность создания устройств с различными характеристиками. Рассмотрим последовательное и параллельное соединение резисторов.

Что такое резистор и для чего он нужен

Резистор — это радиоэлемент, который увеличивает сопротивление цепи. Ставят его обычно для того, чтобы понизить/ограничить напряжение или ток. Есть сопротивления постоянные и переменные.

Например, светодиоды требуют небольшого тока, иначе перегревается и быстро выходит из строя. Чтобы ограничить ток, перед светодиодом поставьте сопротивление. Ток в цепи станет меньше.

Для чего ставят сопротивления

Для чего нужны резисторы: для подстройки параметров питания

Постоянные сопротивления — это те, которые не меняют своего номинала в процессе работы. Если это и происходит, то считается выходом из строя.

Внешний вид резисторов переменных и постоянных

Так выглядят переменные и постоянные резисторы

Переменные резисторы, наоборот, отличаются тем, что их сопротивление можно изменять. Они имеют бегунок или поворотную ручку, при помощи которых и изменяется номинал. На основе таких устройств делают регуляторы. Например, регулятор громкости, накала греющего элемента и т.д.

Последовательное соединение сопротивлений

Последовательное соединение характеризуется тем, что элементы идут друг за другом. Конец одного подключается к началу другого. При подключении полученной цепочки к источнику тока получается кольцо.

Пример последовательного соединения

Лампы накаливания соединенные последовательно, можно рассматривать как сопротивления

Теоретическая часть

Последовательное соединение характерно тем, что через все элементы протекает ток одинаковой силы. То есть, если цепочка состоит из двух резисторов R1 и R2 (как на рисунке ниже), то ток протекающий через каждое из них и любую другую часть цепи будет одинаковой (I = I1 = I2).

Схема последовательного соединения

Последовательно соединенные сопротивления. I1 — ток протекающий через резистор R1, I2 — ток протекающий через резистор R2

Суммарное сопротивление всей цепи последовательно соединенных резисторов считается как сумма сопротивлений всех ее элементов. То есть, номиналы складывают.

R = R1 + R2 — это и есть формула расчета сопротивления при последовательном соединении резисторов. Если элементов больше двух, будет просто больше слагаемых.

Еще одно свойство последовательного соединения — на каждом элементе напряжение отличается. Ток в цепи одинаковый, а напряжение на резисторе зависит от его номинала.

Читайте так же:
Скобы для маленького степлера размеры

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В.

Иллюстрация последовательного соединения

Так понятнее, что такое последовательное соединение

Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В.

А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Параллельное соединение резисторов

Параллельное соединение — это когда входы нескольких деталей соединяются в одной точке. Точно так же — в одну точку — соединяют их выходы.

Что такое параллельное соединение

Так выглядит параллельное соединение на схеме и в реальности

Теория и законы параллельного соединения

Если посмотреть на изображение параллельного соединения, заметно, что ко всем элементам прилагается одинаковое напряжение. То есть, при параллельном соединении резисторов, на каждом из них будет одинаковое напряжение.

Получается, что ток разделяется на несколько «ручейков». То есть, при параллельном соединении резисторов сила тока, протекающего через каждый из элементов, отличается. I = I1+I2+I3. И зависит сила тока (согласно тому же закону Ома) от сопротивления каждого участка цепи. В случае с параллельным соединением резисторов — от их номинала.

Схема параллельного соединения резисторов

Так выглядит параллельное соединение резисторов на схеме

Общее сопротивление участка цепи при таком соединении становится ниже. Его высчитывают по формуле:

Такая форма хоть и понятна, но неудобна. Формула расчета сопротивления параллельно подключенных резисторов получается тем сложнее, чем больше элементов соединены параллельно. Но больше двух-трех редко кто объединяет, так что на практике достаточно знать только две формулы приведенные ниже.

Формулы расчета: два резистора соединены параллельно и три резистора соединены параллельно

Формулы расчета сопротивления при параллельном подключении двух и трех резисторов

Если подставить значения в эти формулы, то заметим, что результат будет меньше, чем сопротивление резистора с наименьшим номиналом. Это стоит запомнить: результирующее сопротивление включенных параллельно резисторов будет ниже самого маленького номинала.

Примеры расчета параллельного соединения сопротивлений

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.
Читайте так же:
Чем измеряют шаг резьбы

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Формула дял соединения резисторов

Как высчитывать сопротивление составных резисторов

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Пример параллельного подключения

Еще один пример с лампочками

При соединении параллельно трех резисторов, считать приходится больше, так как формула сложнее. Но картина не отличается:

  • Если подключить параллельно 150 Ом, 100 Ом и 50 Ом, результирующее будет 27,3 Ом.
  • Попробуем с более низкими номиналами. Если параллельно включены 20 Ом, 15 Ом и 10 Ом. Получим результирующее сопротивление 4,61 Ом.

Вот вам подтверждение правила. Суммарное сопротивление параллельно соединенных резисторов меньше чем самый низкий номинал.

Смешанное соединение

Как быть, если в схеме есть и параллельное, и последовательное соединение резисторов? В таком случае считают общее сопротивление по участкам. Можно при этом перерисовывать схему, заменяя составные сопротивления на один «прямоугольник», но проставляя над ним высчитанный результат.

Расчет сопротивления цепи при смешанном соединении резисторов

Пример расчета сопротивления при смешанном соединении резисторов. Рассматриваем исходную схему как совокупность параллельных и последовательных соединений

Шаг 1. Нашли общее сопротивление последовательно соединенных резисторов R3 и R4:

R3-4 = 3 кОм + 3 кОм = 6 кОм;

Шаг 2. Рассчитали сопротивление параллельно соединенных резисторов R2 и R3-4:

R2-4 = 3 кОм * 6 кОм / (3 кОм + 6 кОм) = 18 кОм/9 кОм = 2 кОм;

Шаг 3. Рассчитали общее сопротивление последовательно соединенных резисторов R1 и R2-4:

R1-4 = R1 + R2-4 = 1 кОм + 2 кОм = 3 кОм.

Практическое применение параллельного и последовательного соединения резисторов

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Применение последовательного и параллельного соединения резисторов

Последовательное и параллельное соединение резисторов применяют для подбора требуемого номинала. Контролировать точное значение получившегося сопротивления можно при помощи цифрового мультиметра

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector