Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Длина окружности

Длина окружности

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

C= π.
D

Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

C = πD = 2πR,

где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Решение: Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

Ответ: 15,7 см.

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Решение: Сначала найдём диаметр окружности, умножив длину радиуса на 2:

D = 3,5 · 2 = 7 (м),

теперь найдём длину окружности, умножив π на диаметр:

Ответ: 21,98 м.

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Решение: Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π:

R=C,
2π

следовательно, радиус будет равен:

R7,85=7,85= 1,25 (м).
2 · 3,146,28

Ответ: 1,25 м.

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Решение: Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2 ).

Ответ: 12,56 см 2 .

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Решение: Сначала найдём радиус круга, разделив его диаметр на 2:

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2 ).

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = πD 2≈ 3,14 ·7 2

= 3,14 ·49=
444

=153,86= 38,465 (см 2 ).
4

Ответ: 38,465 см 2 .

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Решение: Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

Урок 76. Длина окружности. Площадь круга

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.

Круг – это часть плоскости, ограниченная окружностью.

Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.

Хорда – это отрезок, соединяющий две точки окружности.

Диаметр – это хорда, проходящая через центр окружности.

Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.

Элементы окружности: центр, радиус, диаметр.

Отрезок, соединяющий две точки окружности, называется хордой.

Диаметр – это хорда, проходящая через центр окружности.

Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)

Как измерить дину окружности?

Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).

Можно прокатить кольцо по ровной поверхности, сделав полный оборот.

Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?

Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).

Результаты измерений можно записать в таблицу в тетради.

Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.

Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.

При решении обычных задач используют приближенное значение

иногда используют π ≈ 3

Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:

Площадь поперечного сечения: особенности величины, как найти её для круга

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Окружность и круг — в чём отличие?

Часто понятия круг и окружность путают, хотя это разные вещи. Окружность — это замкнутая линия, а круг — это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко — это окружности, а монета или вкусный блин — это круги.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.

Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Уравнение окружности

1. Уравнение окружности с радиусом r и центром в начале декартовой системы координат: r2 = x2 + y2

2. Уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

r2 = (x – a)2 + (y – b)2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Калькулятор площади круга

Варианты расчёта площади круга через радиус или диаметр
Выбираем вариант расчёта площади

Визуально выглядит так:

Вводим диаметр или радиус:

Площадь круга равна :

Калькулятор длины окружности

Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).

Википедия

Таблица с формулами площади круга

Радиус круга r
Диаметр

– это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно
разделить
его обратно на два.
Длина окружности
представляет собой удвоенное произведение радиуса и числа π:
P=2πr
, обратным методом получаем, что
радиус равен длине окружности
, разделенной на его множитель.

Длина окружности круга

Множество точек удаленных от центра круга на расстояние, не превышающее радиус круга, называется кругом. Отношение длины любой окружности C

к ее диаметру
d
всегда будет равно одному и тому же числу. Это число – всем известное число
π
(«пи»), которое примерно равно 3,14. Так же, справедлива формула определения числа
π
, как отношение длины окружности
C
к двум ее радиусам
r
. Исходя из этого, выводится формула длины окружности
C
, которая равна произведения числа
π
и диаметра
d
окружности или 2-м ее радиусам
r
.

Для примера

решим простую задачу, где нужно найти длину окружности, у которой известен радиус
r
=2 см.

Подставляем известные данные в формулу длины окружности и получаем, что длина окружности примерно равна 12,56 см.

Как найти площадь круга

Площадь круга можно найти двумя способами:

  • используя радиус круга,
  • используя диаметр круга.

Остановимся чуть подробнее на каждом способе и рассмотрим несколько примеров.

Формула площади круга через радиус круга

Сначала разберем общий случай.

Пусть нам дана окружность O O O произвольного радиуса R . R. R. Площадь круга через радиус вычисляется при помощи формулы

S = π R 2 S=pi R^2 S=πR2,

где π pi π – число «Пи», выражающее отношение длины окружности к ее диаметру и численно равное около 3 , 14 3,14 3,14,

R R R – радиус нашей окружности.

Теперь, чтобы было более понятно, рассмотрим пару практических примеров.

Найдите площадь круга, радиус которого равен 6 см. Ответ дайте, округленный до целого числа.

Решение:

Пользуемся нашей формулой для вычисления площади круга и получаем:

S = π R 2 = 3 , 14 ⋅ 6 ⋅ 6 = 3 , 14 ⋅ 36 = 113. S=pi R^2=3,14cdot 6 cdot 6=3,14 cdot 36=113. S=πR2=3,14⋅6⋅6=3,14⋅36=113.

Ответ: 113 см2.

Формула площади круга через диаметр

Рассмотрим сначала обобщенный случай без использования цифр.

Формула вычисления площади круга с помощью диаметра немного отличается от формулы, в которой мы использовали радиус. Но ответ остается, безусловно, таким же.

Итак, наша формула выглядит следующим образом:

S = π D 2 4 S=pi frac <4>S=π4D2​

Давайте разберемся, откуда она вообще взялась.

Для начала выразим радиус через диаметр. Получаем R = D 2 R=frac <2>R=2D​, затем подставляем полученное выражение в нашу исходную формулу S = π R 2 S=pi R^2 S=πR2 и получаем результат: S = π D 2 2 2 S=pi frac <2^2>S=π22D2​, далее упрощаем и выходим на окончательный ответ S = π D 2 4 S=pi frac <4>S=π4D2​.

Пример Найти площадь круга, если известно, что четвертая часть диаметра равна 2,5 см.

Решение:

D 4 = 2 , 5. frac <4>=2,5. 4D​=2,5.

D = 2 , 5 ⋅ 4 = 10. D=2,5 cdot 4=10. D=2,5⋅4=10.

Подставляем значения в формулу:

S = π D 2 4 = 3 , 14 ⋅ 1 0 2 4 = 3 , 14 ⋅ 100 4 = 3 , 14 ⋅ 25 = 78 , 5 S=pi frac <4>=3,14 cdot frac<10^2> <4>=3,14 cdot frac<100> <4>=3,14 cdot 25=78,5 S=π4D2​=3,14⋅4102​=3,14⋅4100​=3,14⋅25=78,5

Ответ: 78,5 см2.

Пример решения задачи посложнее.

Имеется два круга. Площадь первого 153 , 86 153,86 153,86 см2. Найдите площадь второго круга, радиус которого в 2 2 2 раза больше радиуса первого круга.

Решение: Для решения задачи нам в первую очередь нужно найти радиус первого круга. Из формулы S = π R 2 S=pi R^2 S=πR2 находим, что R = S π R=sqrt> R=πS​ ​.

R = 153.86 3.14 = 49 = 7. R=sqrt<3.14>>=sqrt <49>= 7. R=3.14153.86​ ​=49 ​=7.

Радиус второго круга равен 7 ⋅ 2 = 14. 7 cdot 2=14. 7⋅2=14.

Наконец, найдем площадь этого круга: S = π R 2 = 3.14 ⋅ 1 4 2 = 3 , 14 ⋅ 196 = 615 , 44. S=pi R^2=3.14cdot14^2=3,14 cdot 196=615,44. S=πR2=3.14⋅142=3,14⋅196=615,44.

Ответ: 615 , 44 615,44 615,44 см2.

Ищете специалиста, который сможет написать контрольную работу на заказ для вас? Наши эксперты подбирают индивидуальный подход к каждому клиенту!

Площадь круга описанного вокруг квадрата

Очень легко можно найти площадь круга описанного вокруг квадрата.
Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда . После того, как найдем диагональ – мы сможем рассчитать радиус: . И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата. Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности. Для начала рассчитаем длину диагонали d. Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Примеры решения задач

Задача 1

Найдите площадь круга, если известен его радиус см.

Решение: Для определения площади круга используем формулу (1):

см2. Сейчас мы имеем точное значение площади круга. Но если мы возьмем вместо число 3,14, то получим приближенное значение площади круга:

Задача 2

Найдите площадь земельного участка, если известно, что форма участка — круг, а диаметр участка составляет 50 м.

Решение: Чтобы найти площадь земельного участка, мы должны рассчитать площадь круга с диаметром 50 м. Используем формулу (2):

Основные свойства касательных к окружности

1. Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.

2. Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Основные определения и свойства

ФигураРисунокОпределения и свойства
ОкружностьМножество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
ДугаЧасть окружности, расположенная между двумя точками окружности
КругКонечная часть плоскости, ограниченная окружностью
СекторЧасть круга, ограниченная двумя радиусами
СегментЧасть круга, ограниченная хордой
Правильный многоугольникВыпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Окружность
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Дуга
Часть окружности, расположенная между двумя точками окружности
Круг
Конечная часть плоскости, ограниченная окружностью
Сектор
Часть круга, ограниченная двумя радиусами
Сегмент
Часть круга, ограниченная хордой
Правильный многоугольник
Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1. Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2. Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2. Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

Как найти площадь круга по диаметру?

Формула Чтобы найти длину окружности, нужно либо диаметр окружности умножить на π ≈ 3 , 1415926535 … , либо найти удвоенное произведение радиуса и числа . Здесь — это радиус заданной окружности, а — диаметр, π ≈ 3 , 1415926535 … .

Как найти площадь круга по его длине?

Найти площадь круга можно разными способами, в зависимости от известных данных. Если известен радиус, то по формуле: S=πr² (где r — радиус). Если известен диаметр, то по формуле: S=¼πd² (где d — диаметр). Если известна длина окружности, то по формуле: S=L²/4π (где L — длина окружности).

Как найти длину окружности и площадь круга?

Так как длина всей окружности равна C = 2 π ⋅ R , то длина дуги в 1° равна 2 π R 360 ° = π R 180 ° . Если градусная мера дуги равна α градусам, то длина такой дуги ∪ AB = l выражается формулой l = π R 180 ° ⋅ α . Площадь круга определяется по формуле S = π ⋅ R 2 .

Как вычислить площадь круга вписанного в треугольник?

S=p. (p−a) (p−b) (p−c) , где р — полупериметр треугольника.

Как найти площадь круга вписанного в трапецию?

Sо = пR², отсюда: R = √(So/п) = 4 (см). Если в трапецию вписана окружность, то её диаметр — средняя линия трапеции (назовём её MN).

Как вычислить длину дуги окружности?

Если измерение дуги (или центрального угла) задано в радианах, то формула для длины дуги окружности является произведением радиуса и измерения дуги. где r-радиус окружности, а m-мера дуги (или центрального угла) в градусах.

Чему равна окружность?

Длина окружности круга равна двум пи умноженным на радиус. — это формула, которая помогает высчитывать точный периметр круга.

Как отмечается длина окружности?

Длина окружности — это произведение числа π и диаметра окружности. Длина окружности обозначается буквой «С» (читается как «Це»).

Как найти площадь круга 6 класс?

  1. S = πR2, где R — радиус круга,
  2. S = π ( D. )2 = π D2 22 = π D2 , где D — диаметр круга, т.к. R = D.

Как посчитать площадь круга онлайн?

Для того чтобы найти площадь круга, существует формула, которую лучше запомнить: S=πr2 – это произведение числа пи на квадрат радиуса. Поскольку радиус тесно связан отношениями с диаметром и длиной окружности, то путем нехитрых замен можно также вычислить площадь круга через диаметр или длину окружности .

Какая формула окружности?

откуда вытекает формула для длины окружности радиуса R: C = 2πR. Следствие. Длина окружности радиуса 1 равна 2π.

Как найти длину и площадь окружности 6 класс?

  1. S = π * r2, где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.
  2. S = d2 : 4 * π, где d — это диаметр.
  3. S = L2​ : 4 * π, где L — это длина окружности.

Как вычислить длину окружности по радиусу?

Радиус равен половине диаметра, а диаметр, соответственно, — двум радиусам (2r). Тогда формула имеет вид: C = 2πr, где C — длина окружности, r — радиус окружности. То есть длина окружности равна удвоенному произведению радиуса на число пи (π примерно равно 3,14).

Какая формула описывает длину окружности?

= π. Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам.

голоса
Рейтинг статьи
Читайте так же:
Поделки из профильной трубы своими руками фото
Ссылка на основную публикацию
Adblock
detector