Wabashpress.ru

Техника Гидропрессы
34 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчетные сопротивления срезу и растяжению болтов

Расчетные сопротивления срезу и растяжению болтов

П р и м е ч а н и е. В таблице указаны значения расчетных сопротивлений для одноболтовых соединений.

Расчетные сопротивления смятию Rвр элементов,

соединяемых болтами

Временное сопротивление стали соединяемых элементов Run, МПа

Расчетные сопротивления, МПа, смятию элементов, соединяемых болтами

класса точности А

классов точности В и С (болты высокопрочные без регулируемого натяжения)

При действии на соединение момента, вызывающего сдвиг соединяемых элементов, распределение усилий на болты следует принимать пропорционально расстояниям от центра тяжести соединения до рассматриваемого болта (см. рис. 10.38, б). Усилие в наиболее нагруженном болте Nb,max не должно превышать меньшего из значений Nbs или Nbp.

Площади сечения болтов согласно СТ СЭВ 180-75,

СТ СЭВ 181-75 и СТ СЭВ 182-75

* Болты указанных диаметров применять не рекомендуется.

Коэффициенты условий работы соединения

Коэффициент условий работы соединения gb

1. Многоболтовое в расчетах на срез и смятие при болтах:

класса точности А

классов точности В и С, высокопрочных с нерегулируемым натяжением

2. Одноболтовое и многоболтовое в расчете на смятие при

a = 1,5d и b = 2d в элементах конструкций из стали с пределом текучести, МПа:

Обозначения, принятые в таблице:

a – расстояние вдоль усилия от края элемента до центра ближайшего отверстия;

b – то же, между центрами отверстий;

d – диаметр отверстия для болта.

Примечания: 1. Коэффициенты, установленные в поз. 1 и 2, следует учитывать одновременно.

2. При значениях расстояний a и b, промежуточных между указанными в поз. 2 и в табл. 2.2, коэффициент gb следует определять линейной интерполяцией.

При одновременном действии на болтовое соединение силы и момента, действующих в одной плоскости и вызывающих сдвиг соединяемых элементов, определяют равнодействующее усилие в наиболее нагруженном болте (рис. 10.39), которое не должно превышать меньшего из значений Nbs или Nbp.

Рис. 10.39. Усилия в болтах при одновременном действии N и M

При одновременном действии на болтовое соединение усилий, вызывающих срез и растяжение болтов, наиболее напряженный болт наряду с проверкой на растяжение проверяется по формуле

где Ns и Nt – усилия, действующие на болт, срезывающее и растягивающее соответственно;

Nbs и Nbt – расчетные усилия (с заменой в формулах Abn на Аb).

Болты, работающие одновременно на срез и растяжение, проверяются отдельно на срез и растяжение.

Болты, работающие на срез от одновременного действия продольной силы и момента, проверяются на равнодействующее усилие.

В соединениях внахлестку и посредством односторонних накладок возникает не учитываемый расчетом дополнительный изгибающий момент, поэтому количество болтов в соединении увеличивается на 10% сверх расчетного. То же относится к соединениям, где передача усилия осуществляется через прокладки.

При креплении выступающих полок уголков или швеллеров с помощью коротышей количество болтов, прикрепляющих одну из полок коротыша, должно быть увеличено против расчета на 50%.

Пример 10.11. Рассчитать и законструировать болтовое соединение двух центрально-растянутых листов сечением b×t = 300×20 мм посредством двусторонних накладок. Расчетное усилие N = 1000 кН (рис. 10.40). Материал листов и накладок – сталь С255 с расчетным сопротивлением Ry = 240 МПа и нормативным сопротивлением Run = 370 МПа. Болты класса прочности 5.6.

Рис. 10.40. Соединение на болтах нормальной точности

Назначаем толщину каждой накладки = 12 мм (из условия равнопрочности со стыкуемыми листами принимается не менее половины толщины листов t).

Число срезов ns = 2.

Наименьшая толщина элементов, сминаемых в одном направлении, Σtmin = t = 20 мм.

Принимаем болты с наружным диаметром d = 20 мм и отверстия под них dо = 23 мм. Площадь болта А = 3,14 см2.

Определяем расчетные сопротивления болтов:

– срезу Rbs = 190 МПа = 19 кН/см2 (см.табл. 10.24);

– смятию элементов из стали класса С255 Rbp = 450 МПа = 45 кН/см2 (см. табл. 10.25).

Коэффициент условий работы соединения γb = 0,9 (см. табл. 10.27).

Требуемое количество болтов:

– из условия среза

n ≥ N / (Rbs γb А ns) = 1000 / (16 · 0.9 · 3,14 · 2) = 11,06;

– из условия смятия

n ≥ N / (Rbp γb d Σtmin) = 1000 / (45 · 0.9 · 2 · 2) = 6,17.

Принимаем количество болтов из условия среза n = 12.

Располагаем болты в рядовом порядке. Минимальное расстояние между болтами в любом направлении

Читайте так же:
Определение сечения кабеля по мощности

a = 2,5dо = 2,5 · 23 = 57,5 мм.

Принимаем a = 70 мм (k = 4 – по ширине листа).

Минимальные расстояния от центра болта до края элемента:

– вдоль усилия c ≥ 2 do = 2 · 23 = 46 мм, принимаем c = 50 мм;

– поперек усилия c1 1,5do = 1,5 · 23 = 34,5 мм.

Принимаем c1 = (b – 3a) / 2 = (300 – 3 · 70) / 2 = 45 мм.

Проверяем прочность листа по ослабленному отверстиями сечению, для чего определяем площадь сечения листа нетто:

An = (b – k do) t = (30 – 4 · 2,3) · 2 = 41,6 см2.

Проверка прочности по нормальным напряжениям:

σ = N / A = 1000 / 41,6 = 24,04 кН/см2 = 240,4 МПа ≈ Ry γc = 240 МПа.

Определяем длину накладки:

= 2 (2a + 2c +Δ) = 2 (2 · 70 + 2 · 50 + 10) = 490 мм.

Расчетное сопротивление стали с255

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ЦЕНТРАЛЬНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ СТРОИТЕЛЬНЫХ МЕТАЛЛОКОНСТРУКЦИЙ им. Н. П. МЕЛЬНИКОВА

ЦНИИПСК

им. МЕЛЬНИКОВА
(Основан в 1880 г.)

Прокат для строительных стальных конструкций

МАРКИ СТАЛИ

СТО 02494680-0045-2005

Предисловие

1 РАЗРАБОТАН и ВНЕСЕН отделом экспертизы металлов ЗАО «ЦНИИПСК им. Мельникова»

2 ПРИНЯТ научно-техническим Советом ЗАО «ЦНИИПСК им. Мельникова» 25 ноября 2004 г.

3 ВВЕДЕН впервые

4 Разработка, согласование, утверждение, издание (тиражирование), обновление (изменение или пересмотр) и отмена настоящего стандарта производится отделом экспертизы металлов ЗАО «ЦНИИПСК им. Мельникова»

Настоящий стандарт разработан в соответствии с Федеральным законом «О техническом регулировании № 184-ФЗ» и предназначен для применения всеми подразделениями ЗАО «ЦНИИПСК им. Мельникова», специализирующимися на разработке проектов КМ и КМД, диагностике, ремонте, усилении и реконструкции промышленных зданий и сооружений различного назначения.

Стандарт может применяться другими организациями, если эти организации имеют сертификаты соответствия, выданные Органами по сертификации в системе добровольной сертификации, созданными организациями-разработчиками стандарта. Организации-разработчики стандарта не несут никакой ответственности за использование данного стандарта организациями, не имеющими сертификатов соответствия.

Необходимость разработки-стандарта вызвана тем обстоятельством, что применение в практической деятельности ГОСТ 27772 «Прокат для строительных стальных конструкций. Общие технические условия» в ряде случаев встречает затруднение. Отдельные металлургические предприятия отказываются поставлять прокат по этому стандарту. ГОСТ 27772 требует и гарантирует высокую надежность характеристик механических свойств, что предъявляет высокие требования к стабильности технологического процесса при производстве проката. Кроме того, в ряде случаев отсутствует прямое совпадение химического состава и механических свойств стали по ГОСТ 27772 и соответствующих ГОСТ на стальной прокат. Поскольку СНиП II -23-81* регламентирует расчетные характеристики для сталей по ГОСТ 27772, то возникают определенные трудности при выборе этих характеристик в случаях применения сталей, поставляемых по другим стандартам.

Настоящий документ выпущен с целью устранения неточностей в СНиП II -23-81*, внесения ясности в порядок применения ГОСТ 27772 и упорядочения замены углеродистых и низколегированных сталей по ГОСТ 27772 на марки стали по другим ГОСТ и ТУ, в том числе по ГОСТ 19281.

СТАНДАРТ ОРГАНИЗАЦИИ

Прокат для строительных стальных конструкций

МАРКИ СТАЛИ

Утвержден и введен в действие Приказом ЗАО «ЦНИИПСК им. Мельникова» от 04 июля 2005 г. № 168

Марка стали СТ3: характеристики, применение и иные нюансы

Сталь СТ3 на сегодняшний день является одной из наиболее востребованных в производстве разновидностей стали. В частности, ее задействуют для изготовления труб системы теплоснабжения, садовых скамеек, крышек для станочного оборудования и многих других предметов повседневного использования.

Этот материал принято классифицировать как конструкционную углеродистую сталь обыкновенного качества. Несмотря на доступную стоимость, она обладает выдающимися физическими и химическими характеристиками.

Химсостав материала: к какому классу относится?

С точки зрения химического состава, для стали СТ3 характерны следующие особенности:

  1. Легирующих компонентов в составе структуры СТ3 достаточно мало. Концентрация никеля, меди и хрома достигает 0.3%.
  2. Элементами, определяющими принадлежность материала к классу сталей, являются углерод и железо. В марке СТ3 железо присутствует в концентрации 97%, а углерод — в диапазоне от 0,14% до 0,22%.

Содержание углерода отвечает за показатели твердости и ряда прочих физико-механических свойств материала.

Также в состав материала входят следующие химические элементы в следующей концентрации:

  • от 0,15% до 0,3% кремния;
  • от 0,4% до 0,65% марганца;
  • до 0,3% никеля;
  • до 0,3% хрома;
  • до 0,05% серы;
  • до 0,04% фосфора;
  • до 0,08% арсена;
  • до 0,008% азота.
Читайте так же:
Сварка медных проводов в распределительной коробке

От специфики химического состава непосредственно зависит удельный вес стали СТ3, вес куба и показатель “сталь СТ3 цена за тонну”.

Чем выше концентрация углерода в стали, тем она прочнее. Однако при сварке повышается риск формирования в шве горячих трещин.

Расшифровка

Определить, какие у материала сталь СТ3 характеристики в соответствии с ГОСТ, можно благодаря расшифровке. Согласно ГОСТ 380, данный материал представлен в следующих разновидностях:

  1. Сталь Ст3сп.
  2. Сталь Ст3пс.
  3. Сталь Ст3кп.

Эти индексы применимы в обязательном порядке при любой маркировке. При расшифровке марки материала необходимо учитывать следующие обозначения:

  1. Ст — применяется для указания стандартных качеств углеродистых сталей.
  2. 3 — условный номер марки сплава. Он может меняться в диапазоне от 0 до 6, в соответствии с процентным содержанием углерода в материале.
  3. Г — этот символ употребляют, если в состав материала входит марганец. Так, для стали типа Ст3гпс характерно содержание 0.8% марганца.
  4. Сп — обозначает степень раскисления стали. Аббревиатурой “кп” обозначают кипящие сплавы, “пс” — полуспокойные.

Таким образом, марка Ст3пс5 является полуспокойной, но характеризуется высокой степень раскисления. Специфика маркировки материала регламентирована ГОСТом 380-2005.

Если в названии марки отсутствуют буквы “пс” либо “кп”, сталь следует считать спокойной.

Чтобы понять свойства изделий, произведенных из стали СТ3, следует ориентироваться на их ГОСТы:

  • ГОСТ 107105-80 — для труб и арматуры к ним;
  • ГОСТ 2591-2006 — для проката;
  • ГОСТ 14918-80 — для ленточного и полосового проката;
  • ГОСТ 5812-82 — для рельсов;
  • ГОСТ 8479-70 — для поковок.

Характеристики

При выпуске заготовок мастера следят за следующими параметрами материала:

  • временным сопротивлением;
  • пределом текучести;
  • степенью изгиба под воздействием значительных усилий;
  • относительным удлинением;
  • ударной вязкостью при определенных температурах.

Отличную сталь марки СТ3 можно сваривать газовым, электрическим или любым другим методом, без каких-либо ограничений.

К важнейшим техническим показателям данного типа стали относят следующие:

  1. Ее поверхность характеризуется твердостью 131 МПа.
  2. За счет неоднородной плотности материла его масса может существенно варьироваться.
  3. Ограничений касательно свариваемости материала не существует.
  4. Отпускная хрупкость не является характерной чертой данного типа стали.

Благодаря этим характеристикам материал удается использовать для производства чрезвычайно обширного ассортимента заготовок.

Механические характеристики материала удобнее всего систематизировать в формате таблицы.

Сфера применения

Сфера применения стали СТ3 варьируется в зависимости от степени ее раскисления. Раскислением называют процесс, при котором из состава стали выводят кислород. Чем выше концентрация кислорода, тем ниже химические и физические характеристики материала.

В зависимости от содержания кремния, сталь СТ3 бывает:

  • кипящей — содержит минимум 0,05% кремния;
  • полуспокойной — содержит от 0,05% до 0,15% кремния;
  • спокойной — содержит свыше 0,15% кремния.

Кипящие стали кипят и насыщаются газами в процессе разливки по изложницам. Эти стали относятся к категории нераскисленных. Раскисленные стали в процессе разливки не кипят и за счет этого ценятся выше.

Спокойная разновидность стоит ощутимо дороже двух других в силу следующих причин:

  • выдающихся эксплуатационных качеств, которые объясняются минимальным содержанием кислорода;
  • за счет своей однородности материал надежно защищен от агрессивных воздействий окружающей среды.

Спокойную сталь задействуют для изготовления следующих типов продукции:

  1. Фасонной и листовой разновидностей проката.
  2. Основных и второстепенных элементов для железнодорожных элементов и подвесных конструкций. Железнодорожная отрасль обеспечивает стабильный спрос на металлы с невысокой стоимостью и выдающимися эксплуатационными качествами. Стоимость одного квадратного метра является чрезвычайно значимым фактором в силу крупных габаритов подвесных конструкций.
  3. Деталей и арматур, используемых для создания трубопроводов. Трубы нужны, чтобы транспортировать газ, теплоносители и прочие среды. Материалы для их изготовления должны быть твердыми и прочными, чтобы справляться с высокими нагрузками и агрессивными воздействиями внешней среды.

В полуспокойной разновидности СТ3 содержится примерно 1% кислорода. За счет этого ее твердость и пластичность несколько ниже, чем у спокойной. Данный тип стали применяется для производства следующих изделий:

  1. Труб с различным диаметром и толщиной стенок. В отопительных системах они выполняют функцию несущих элементов. Коррозионная стойкость у рассматриваемого сплава невысокая, поэтому его поверхность необходимо защищать от воздействия повышенной влажности.
  2. Шестигранников. Эти элементы востребованы в самых разных отраслях промышленности.
  3. Уголков и квадратов для несущих конструкций. За счет своей повышенной прочности они способствуют увеличению жесткости конструкции и оптимальному распределению нагрузки на нее. Выбор уголков и квадратов для конкретной конструкции осуществляется в зависимости от их толщины листа, длины и формы поперечного сечения, угла расположения плоскостей.

Кипящие сплавы являются наиболее доступными с финансовой точки зрения. Для структур, которые получаются на их основе, характерна высокая степень обрабатываемости. Сплавы можно успешно обрабатывать термическими методами, однако высокая концентрация кислорода приводит к снижению их эксплуатационных качеств.

Особенности механической обработки

Для корректной механической обработки изделий из стали СТ3 важно соблюдать правила подбора инструмента и выбора режима резания.

Режущий инструмент для фрезерования и точения СТ3 выполняется из твердых сплавов Т5К10 и ВК8. Стали Р6М5 и Р18 задействуют для изготовления метчиков и плашек, которыми выполняют внутреннюю и наружную резьбу на СТ3. Когда эта сталь обрабатывается на токарно-фрезерных станках, следует пользоваться Эмульсолом либо иными водоэмульсионными СОЖ. Если резьба нарезается вручную, для облегчения работы рекомендуется пользоваться касторовым маслом.

На то, с какой скоростью будет производиться обработка, влияют свойства самой стали (расчетное сопротивление, допускаемое напряжение, магнитная проницаемость), тип обработки и технические параметры станочного оборудования. На токарных станках допустимо вращать шпиндель со скоростью до 700 оборотов в минуту.

Производство

Стальные сплавы изготавливаются на основе феррита, то есть твердого раствора углерода с легирующими элементами. Этот расплав насыщают углеродом, чтобы повысить его прочность. Концентрация фосфора в марке СТ3 не должна превышать 0,04%, серы — 0,05%.

За счет реакции феррита с фосфором пластичность сплава понижается под воздействием высоких температур, а под воздействием морозов материал становится более хрупким. Формирование сернистого железа в процессе расплава может стать причиной красноломкости материала.

Чтобы, наоборот, повысить прочность готового материала, к пластичному и малопрочному ферриту добавляют углерод, легируют его с дополнительным термическим упрочнениями либо с добавками: марганцевыми, никелевыми, хромовыми, кремниевыми. Феррит в чистом виде для производства строительных конструкций использоваться не может.

Для улучшения эксплуатационных характеристик изделий из СТ3, их рекомендуется подвергать термической обработке. Так, отжиг необходим сложным конструкциям сразу после сооружения, чтобы снять напряжения, возникшие при выполнении сварочных работ. Аналогично следует снимать напряжение у деталей с толщиной либо радиусом свыше 36 мм.

С255 и иные аналоги

Аналоги этой востребованной разновидности стали выпускают на металлургических предприятиях как в России, так и за рубежом. Упоминания заслуживает, например, С255 марка стали аналог СТ3. Систематизировать все аналоги стали СТ3 в соответствии со страной производства удобнее всего в формате таблицы.

Если сталь ввозится в Россию из другого государства, ее производитель обязан предоставить документы, подтверждающие соответствие материала российским ГОСТам и ТУ.

Расчетные значения сопротивления арматуры

) принимается наименьшее контролируемое значение предела те­кучести с обеспеченностью 0,95, т.е.

Расчётные сопротивления арматуры растяжению для расчётов по предельным состояниям первой и второй группы определяют де­лением нормативных сопротивлений на соответствующие коэффи­циенты надёжности по арматуре, т.е.

где gs – коэффициент надежности по арматуре, принимаемый равным:

для предельных состояний первой группы:

1,1 – для арматуры классов А240, А300 и А400;

1,15 – для арматуры класса А500;

1,2 – для арматуры класса В500;

1,0 – для предельных состояний второй группы, т.е.

Расчётное сопротивление стержневой арматуры классов A240, А300, A400 сжатию Rsc,

используемое при расчётах по предельным состояниям первой группы, при наличии сцепления с бетоном при­нимают
Rsc —
| |, так как при такой арматуре предел текучести стали при сжатии обычно достигается раньше разрушения сжатого железобетонного элемента.

Структура расчётных формул

В расчётах по несущей способности (по предельным состояниям пер­вой группы) исходят из стадии III напряжённо-деформированного состояния. При этом проверяется выполнение условия

вероятное наибольшее усилие, которое может возникнуть в элементе при исключительных критических, но всё же возможных обстоятельствах;

– вероятная минимальная несущая способность элемента, определённая с учётом пониженной против контролируе­мой прочности бетона и арматуры.

Изменчивость величин F

и
Fult
как правило, описывается зако­ном нормального распределения случайных величин. Условие (2.14) можно изобразить графически (рис. 34).

Рис. 34. Кривые распределения:

а – усилий от внешней нагрузки в расчётном сечении; б – несущей способности в том же сечении: – среднестатистическое значение усилия от внешней нагрузки (

);
N –
расчётное значение усилия; – среднестатистическое значение несущей способности элемента; Ф – значение несущей способности с учётом пониженных против контролируемых прочностей бетона и арматуры

Подробнее условие (2.14) можно записать так:

коэффициент, учитывающий насколько точно выбранная расчётная схема отражает работу реальной конструкции и другие факторы;

коэффициент, учитывающий форму и размеры попе­речного сечения элемента.

Учтя, что и , a Rb = , Rs = ,

неравенство (2.15) можно записать несколько короче

Оценим в явном виде реальный коэффициент запаса прочности, который получается при расчёте по этому методу, приравняв

При определении k

для короткого центрально сжатого бетонного элемента примем, что
N н = Nэкспл..
Сучётом этого (2.16 а) можно пере­писать так:

– площадь поперечного сечения элемента;

= 0, 9 – коэф­фициент, который вводится при расчёте бетонных конструкций.

С учётом того, что Npaзp = ,

формулу (2.16 б) можно записать так:

Аналогично можно записать условия, которые должны соблю­даться при расчётах по предельным состояниям второй группы, т.е. при расчёте прогибов, ширины раскрытия трещин и при расчёте по образованию трещин.

Расчёт по перемещениям обычно заключается в определении прогиба конструкции от нагрузок с учётом длительности их дей­ствия и и в сравнении его с предельно допустимым прогибом

– предельно допустимый прогиб по нормам для рассматри­ваемой конструкции.

Расчёт по раскрытию трещин заключается в определении ши­рины раскрытия трещин и сравнении её с предельно допустимой шириной раскрытия

Расчет железобетонных элементов следует производить по продолжительному и по непродолжительному раскрытию нормальных и наклонных трещин.

Ширину продолжительного раскрытия трещин определяют по формуле:

acrc = acrc1

а непродолжительного раскрытия трещин – по формуле:

acrc = acrc1 + acrc2 — acrc3

– ширина раскрытия трещин от продолжительного действия постоянных и временных длительных нагрузок;

– ширина раскрытия трещин от непродолжительного действия постоянных и временных (длительных и кратковременных) нагрузок;

– ширина раскрытия трещин от непродолжительного действия постоянных и временных длительных нагрузок.

Считается, что трещины не появляются, если усилие N

от дей­ствия внешних нагрузок не превосходит усилия
Fcrc,ult,
т.е.

где Fcrc,ult –

усилие, воспринимаемое сечением в момент, предшеству­ющий образованию трещин.

Метод расчёта по предельным состояниям называют полуверо­ятностным. Большинство величин, входящих в расчётные форму­лы, являются величинами случайными. Нормативные значения на­грузок и воздействий, а также сопротивлений материалов обоснова­ны с позиций теории вероятностей. Однако проектировщик пользу­ется конкретными детерминированными величинами, полученными на основании теории вероятностей. Таким образом, теория вероят­ностей используется в нормах проектирования строительных кон­струкций в неявной форме, что послужило основанием называть метод рас­чёта по предельным состояниям полувероятностным.

Основная идея метода расчёта по предельным состояниям за­ключается в обеспечении гарантии того, чтобы даже в тех редких случаях, когда на конструкцию действуют максимально возмож­ные нагрузки, прочность бетона и арматуры минимальна, а условия эксплуатации весьма неблагоприятны, конструкция не разрушалась или не получала бы недопустимых прогибов или трещин.

1. Введением в расчёты вместо единого коэффициента запаса проч­ности системы расчётных коэффициентов, диф­ференцированно учитывающих влияние на несущую способность элемента из­менчивости нагрузок, прочностных свойств материалов, условий эксплуатации, класса ответственности достигают лучшей сходи­мости теоретических данных с опытными, чем при едином коэф­фициенте запаса k

в прежних методах расчёта.

2. Каждое новое достижение в повывшении однородности матери­алов может быть учтено в нормах, что приведёт к их экономии.

3. Конструкции, рассчитанные по предельным состояниям, получа­ются несколько экономичнее по расходу материалов.

1. Некоторые коэффициенты метода не получили достаточного опытного обоснования. Так, например, одинаковый коэффициент надёжности по нагрузке для собственного веса , приме­няемый как для большепролётных тонкостенных покрытий типа оболочек, где нагрузка от массы покрытия является основной, так и для междуэтажных перекрытий, которые работают на зна­чительную временную нагрузку, недостаточно обоснован.

2. Определение несущей способности элементов, состоящих из двух и более материалов (например, железобетонных) выполняется в настоящее время без учёта совместного статистического раз­броса прочности этих материалов при расчётных сопротивлени­ях, соответствующих низкой прочности каждого материала. Ве­роятность обнаружить материал с прочностью ниже расчётно­го сопротивления приблизительно равна 0,001. Вероятность сов­местного невыгодного попадания арматуры и бетона минималь­ной прочности является величиной чрезвычайно малой (пример­но 2 • 10-6), которая практически не может встретиться в экс­плуатируемых конструкциях. В связи с этим запроектированные по нормам конструкции обладают дополнительными резервами прочности, которые не учитываются в расчётах.

Нормативные и расчетные значения характеристик арматуры

Нормативные значения прочностных характеристик арматуры

2.2.2.1 Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению , принимаемое в зависимости от класса арматуры по таблице 7.

Класс арматурыНоминальный диаметр арматуры, ммНормативные значения сопротивления растяжению и расчетные значения сопротивления растяжению для предельных состояний второй группы , МПа
А2406-40
А3006-40
A4006-40
А50010-40
А60010-40
А80010-32
А100010-32
В5003-12
Вр1200
Вр1300
Вр14004; 5; 6
Вр1500
К1400(К-7)
К1500(К-7)6; 9; 12
К1500(К-19)

Расчетные значения прочностных характеристик арматуры

2.2.2.2 Расчетные значения сопротивления арматуры растяжению определяют по формуле

где — коэффициент надежности по арматуре, принимаемый равным:

для предельных состояний первой группы:

1,1 — для арматуры классов А240, А300 и A400;

1,15 — для арматуры классов А500, А600 и А800;

1,2 — для арматуры классов А1000, В500, Вр1200-Вр1500, К1400, К1500;

для предельных состояний второй группы — 1,0.

Расчетные значения сопротивления арматуры растяжению приведены (с округлением) для предельных состояний первой группы в таблице 8, второй группы — в таблице 7. При этом значения для предельных состояний первой группы приняты равными наименьшим контролируемым значениям по соответствующим ГОСТ.

Расчетные значения сопротивления арматуры сжатию принимают равными расчетным значениям сопротивления арматуры растяжению , но не более значений, отвечающих деформациям укорочения бетона, окружающего сжатую арматуру: при кратковременном действии нагрузки — не более 400 МПа, при длительном действии нагрузки — не более 500 МПа. Для арматуры классов В500 и А600 граничные значения сопротивления сжатию принимаются с коэффициентом условий работы равным 0,9 (таблица 8).

Класс арматурыРасчетные значения сопротивления арматуры для предельных состояний первой группы, МПа
растяжениюсжатию
А240
А300
А400
А500435(400)
А600470(400)
А800500(400)
А1000500(400)
В500415(360)
Вр1200500(400)
Вр1300500(400)
Вр1400500(400)
Вр1500500(400)
К1400500(400)
К1500500(400)
Примечание — Значения в скобках используют только при расчете на кратковременное действие нагрузки.

2.2.2.3 В необходимых случаях расчетные значения прочностных характеристик арматуры умножают на коэффициенты условий работы , учитывающие особенности работы арматуры в конструкции.

Расчетные значения сопротивления хомутов и отогнутой поперечной арматуры классов А600-А1000, Вр1200-Вр1500 и канатной принимают не более 0,8 (с учетом всех потерь) и не более 300 МПа. В расчетах принимают большее из указанных значений. Расчетные значения для арматуры классов А240-А500, В500 приведены в СП 52-101.

Деформационные характеристики арматуры

2.2.2.4 Основными деформационными характеристиками арматуры являются значения:

относительных деформаций удлинения арматуры при достижении напряжениями расчетного сопротивления ;

модуля упругости арматуры .

2.2.2.5 Значения относительных деформаций арматуры принимают равными:

для арматуры с физическим пределом текучести

для арматуры с условным пределом текучести

2.2.2.6 Значения модуля упругости арматуры принимают одинаковыми при растяжении и сжатии и равными:

=1,8·10 МПа — для арматурных канатов (К);

=2,0·10 МПа — для остальной арматуры (А и В).

Диаграммы состояния арматуры

2.2.2.7 При расчете железобетонных элементов по нелинейной деформационной модели в качестве расчетной диаграммы состояния (деформирования) арматуры, устанавливающей связь между напряжениями и относительными деформациями арматуры, принимают для арматуры с физическим пределом текучести классов А240-А500, В500 двухлинейную диаграмму (рисунок 2, а), а для арматуры с условным пределом текучести классов А600-А1000, Вр1200-Вр1500, К1400, К1500 — трехлинейную (рисунок 2, б).

а — двухлинейная; б — трехлинейная

Рисунок 2 — Диаграммы состояния растянутой арматуры

Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми.

2.2.2.8 Напряжения в арматуре согласно двухлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций по формулам:

Значения , и принимают согласно пп.2.2.2.5, 2.2.2.6 и 2.2.2.2. Значения относительной деформации принимают равными 0,025.

2.2.2.9 Напряжения в арматуре согласно трехлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций по формулам:

Значения , и принимают согласно пп.2.2.2.5, 2.2.2.6 и 2.2.2.2.

Значения напряжений принимают равными 0,9 , а напряжений — равными 1,1 .

Значения относительных деформаций принимают равными , а деформаций — равными 0,015.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector