Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управляем бесколлекторными двигателями, господа

Управляем бесколлекторными двигателями, господа

Привет Хабровчане!
Решил я рассказать «всему свету» о проблеме, с которой столкнулся при постройке своего проекта, и как мне удалось её решить.

А речь сегодня пойдет о бесколлекторных двигателях, о регуляторах хода и как ими управлять.
Что же такое бесколлекторный двигатель, я не буду долго расписывать (сами можете посмотреть Wiki), а скажу в 2х словах, это 3х фазный двигатель постоянного тока.

И приводится в движение сие чудо благодаря специальному регулятору, который последовательно переключает обмотки с определенной частотой.
Управляя частотой переключения обмоток мы управляем скоростью вращения ротора.
Ну что же, надеюсь тут все понято, идем дальше.

Первые проблемы
Были закуплены 2 комплекта двигатель + регулятор, ждал около месяца, пришли.
image

Мною овладел приступ безудержного веселья по этому поводу, но, к сожалению, это было ненадолго….
Рассмотрев эти чудеса техники я решил подключить их к источнику питания, и тут то первое разочарование, тихий хлопок (как от КЗ) и тишина, светодиоды не горят, писка нет (а он должен быть), только крутится кулер на регуле, беда…
Побежал в ближайший Хобби магазин, и добрый консультант вынес вердикт: сгорел!

Со вторым такая же история, в общем ребята, не повезло, оба бракованные…
Ну хоть кошечка порадовалась:

image

Пришлось раскошелиться и купить у них регулятор по цене обоих комплектов (поджимали сроки).
Купил, подключил, все пищит, горит, работает, прям аж душа радуется! (на фото он выделен):

image

Проблема номер два
Теперь настала пора покрутить двигателем.
А покрутить нужно не с сервотестера или аппы радиоуправления, а с микроконтроллера, а точнее вот с такой платки:
image

Перелопатив тонны сайтов, перечитав сотни форумов и ответов на мой вопрос, так как же управлять этим регулятором я слышать только одно: «…чувак да там простой ШИМ…», «… ШИМ тебе в помощь…».
Ну ШИМ, так ШИМ.
Написал простенькую программу:

Залил, ноль эмоций…

Бился 2 дня, пока не наткнулся на случайный пост, о том, что у регулятора есть защита, и он начинает функционировать только при подаче на его вход ШИМ сигнала 1,5 мс.
Окей, будет сделано.

Дальше я подцепил обыкновенный резистор через АЦП, и опытным путем подобрал крайние значения ШИМ регулятора.
Код получившийся в итоге:

И все заработало.
Теперь все крутиться, шумит, пищит и просто радует.
P.S. Это код для управления сразу 2мя двигателями.

И последняя проблема, питание…
Здесь расскажу немного, а именно, от регулятора идет 3 провода:
image

Центральная колодка, по порядку Черный — минус, Красный — плюс и Белый — провод управления.

Читайте так же:
Транзистор кт3107а параметры цоколевка аналоги

И загвоздка в том, что в отличие от сервоприводов, это не входы под питание, а выходы, т.е. питаемся от них.
К чему я это, да к тому, что подключив регулятор как серву, я чуть не спалил порты на ноутбуке, ибо плата в это время была запитана от USB.
Но к счастью у моего старичка сработала защита и все обошлось перезагрузкой…

Спасибо большое за внимание.
Надеюсь мой опыт будет полезен для вас.
До скорых встреч.

РЕГУЛЯТОР ОБОРОТОВ ЭЛЕКТРОДВИГАТЕЛЯ

Попросил меня как-то знакомый посмотреть-отремонтировать самодельный регулятор оборотов электродвигателя печки с его «копейки». Регулятор он хвалил так как можно было плавно изменять обороты двигателя, но чего-то в нем сломалось.

самодельный регулятор оборотов для мотора

Габариты корпуса регулятора меня сразу насторожили, уж больно он был громоздкий, когда я его разобрал то увидел внутри массивный радиатор с парочкой транзистор КТ819, еще в металлическом корпусе, и какую-то схемку собранную пайкой ножка к ножке от которой отходили провода на переменный резистор и на силовые транзисторы. Силовые транзисторы оказались пробитыми. Так как двигатель потреблял не малый ток то силовые транзисторы, особенно на малых оборотах, довольно сильно грелись. Посчитав такую схему регулировки устаревшей я решил собрать ШИМ (широтно-импульсная модуляция) регулятор с мощным полевым транзистором в качестве ключевого элемента. В качестве же собственно ШИМ модулятора решено было применить хорошо известный 555 таймер. Казалось бы, что можно сделать на микросхеме, которая разработана более 30 лет назад. Тем не менее, диапазон применений таймера 555 (наш аналог КР1006ВИ1) практически безграничен. Использование основных режимов работы и их модифицированных вариантов позволяет применять таймер во множестве разнообразных схем и устройств. Известно, что на микросхемах семейства 555 и 556 можно собрать следующие основные функциональные устройства:

  • – генератор моностабильный (одновибратор);
  • – генератор – мультивибратор;
  • – генератор временной задержки;
  • – широтно-импульсный модулятор;
  • – детектор импульсов;
  • – делитель частоты.

Схема регулятора оборотов электродвигателя получилась простой, с минимумом внешней обвязки:

Схема регулятора оборотов электродвигателя

Печатную плату на регулятор оборотов электродвигателя не травил, просто прорезал резаком контактные участки для таймера:

Дорожки платы - рисунок

Печатная плата на регулятор оборотов

Запаял таймер и собрал обвеску. В качестве ключевого элемента применен мощный полевой n-канальный транзистор с изолированным затвором, так называемый Power MOSFET IRF540.

Power MOSFET IRF540

Параметры и цоколёвка Power MOSFET IRF540

Закрепил его на небольшой радиатор – размеры выбираем исходя из рабочего тока электродвигателя. Если он небольшой, то охлаждение транзистору может вообще не понадобиться.

Даташит IRF540

Защитный диод разместил возле двигателя. Собранное устройство разместил в старом корпусе, так как для него в машине уже было крепление. В будущем в этом же корпусе можно будет разместить еще какое нибудь необходимое в автомобиле устройство. Вот такой вот получился «тюнинг». С вами был – Самоделкин.

Читайте так же:
Станок для смазки лыж своими руками видео

Регулятор оборотов электродвигателя: назначение, принцип работы

В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.

Принцип работы

Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.

Среди используемых в промышленной и бытовой сфере следует выделить:

  • Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
  • Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
  • Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.
Читайте так же:
Центраторы для сварки труб малого диаметра

Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.

  • Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.

Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.

  • Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
  • Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.

Как выбрать?

Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.

Помимо этого для регулятора оборотов необходимо выбрать:

  • Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
  • Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
  • Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
  • Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
  • Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.
Читайте так же:
Натрия тетраборат физико химические свойства

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

Схема подключения регулятора

Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

Распиновка регулятора

Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

Проверьте цветовую маркировку

Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Электротехника

Для дополнительной безопасности можно подключить диод (КД226 например) анодом к земле катодом к коллектору VT2.

если нетрудно , можешь сделать схему для регулирования оборотов двигателя QX-FC-280-18165. у меня что-то не получается регулировать его этой схемой:(

Не гарантирую работоспособность но можно попробовать схему на таймере КР1006ВИ1 (NE555-аналог) например такую как расположена по ссылке:
http://freedms.narod2.ru/regulirovka_oborotov_na_taimere.jpg
(скопируй ссылку в адресную строку)
Можно попробовать на мультивибраторе (какая ранее в другой статье приводилась но изменённая немного):
http://freedms.narod2.ru/regulirovka_oborotov_na_multe.jpg
Наверное ШИМ лучший способ регулировки оборотов таких коллекторных двигателей но если высокий КПД не требуется то можно просто последовательно с двигателем регулировочный резистор достаточно мощный поставить или несколько постоянных с переключением между ними(для дискретной регулировки).

Читайте так же:
Ремонт токарных станков в туле

я собрал ту схему работает, но регулировка осуществляется только на участке где R1 на других он не регулирует почему-то. Перепроверял несколько раз схема собрана правильно. А так работает, снижение идет до 500 об/мин

Судя по формулам которые приводятся на таймер КР1006ВИ1:
t1=0.69*(R1+R2)*C
t2=0.69*R2*C
длительность импульса t1 относительно длительности паузы t2 можно изменять только резистором R1 (частота при этом тоже будет меняться). Наверно поэтому так получается.

Я думаю что понял что такое "free load" в даташите это наверно означает режим без нагрузки на валу.

Конденсатор С1 влияет на частоту импульсов? И для чего нужен конденсатор С2?

C1 влияет на частоту импульсов. С2 для ослабления скачков напряжения на двигателе.

а что определяет длину импульсов?

Чем больше отношение R2/(R1+R2) ,при неизменных C1 и R1+R2, тем короче будет длительность импульса по отношению к длительности паузы и наоборот. На длительность импульса также влияют параметры транзисторов, нагрузки. Если нужно точно задавать длительность импульса или ещё чего нибудь то лучше сделать регулировку с операционным усилителем или таймером или микроконтроллером. В этой схеме с расчётами не так просто.

а vt1 правильно нарисован? у меня заработала, если коллектор на +, эмиттер на r3. в оригинале не работает.. загадка..
а как сделать, чтобы на маленьких оборотах двигатель не такой дерганный был?
p.s. питание 12в

Это распространённая схема мультивибратора. Транзисторы соединены так что получается неинвертирующий усилитель (т.е. на выходе напряжение увеличивается тогда когда на входе увеличивается и на выходе напряжение уменьшается тогда когда на входе уменьшается) поэтому возможно возникновение колебаний. На коллектор p-n-p транзистора надо подавать минус (в отличии от n-p-n) а на эмиттер плюс, ток в p-n-p транзисторе должен теч от эмиттера к коллектору, VT1 -это p-n-p транзистор. Для того чтобы двигатель не "дёргался" нужно увеличить частоту колебаний, для этого можно уменьшить ёмкость конденсатора С1. Такая схема не лучший вариант для регулировки оборотов, можно регулировку сделать на таймере 555: регулировка оборотов на 555, регулировка оборотов на
таймере

да, со всем согласен, но говорю как есть 🙂 на коллектор + и работает, "-" — не работает, могу видео сделать 😀

спасибо за схемы, попробую обе сделать, посмотрю что будет лучше, и с конденсатором тоже.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector