Wabashpress.ru

Техника Гидропрессы
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор мощности без помех схема

Регулятор мощности без помех схема

НЕСКОЛЬКО ПРИНЦИПИАЛЬНЫХ СХЕМ РЕГУЛЯТОРОВ МОЩНОСТИ

РЕГУЛЯТОР МОЩНОСТИ НА СИМИСТОРЕ

Особенностями предлагаемого устройства являются использование D — триггера для построения генератора, синхронизированного с сетевым напряжением, и способ управления симистором с помощью одиночного импульса, длительность которого регулируется а втоматически. В отличие от других способов импульсного управления симистором, указанный способ некритичен к наличию в нагрузке индуктивной сос тавляющей. Импульсы генератора следуют с периодом приблизительно 1,3 с .
Питание микросхемы DD 1 производится током , протекающим через защитный диод , находящийся внутри микросхемы между ее выводами 3 и 14. Он течет , когда напряжение на этом выводе , соединенном с сетью через резистор R 4 и диод VD 5, превышает на пряжение стабилизации стабилитрона VD 4.

К. ГАВРИЛОВ, Радио, 2011, №2, с. 41

ДВУХКАНАЛЬНЫЙ РЕГУЛЯТОР МОЩНОСТИ НАГРЕВАТЕЛЬНЫХ ПРИБОРОВ

Регулятор содержит два независимых канала и позволяет поддерживать требуемую температуру для различных нагру зок : температуры жала паяльника , электроутюга , электрообогревателя , электроплиты и др . Глубина регулирования составляет 5. 95% мощности питающей сети. Схема регулятора питается выпрямленным напряжением 9. 11 В с трансформаторной развязкой от сети 220 В с малым током потребления .

В.Г. Никитенко, О.В. Никитенко, Радiоаматор, 2011, №4, с . 35

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

Особенностью этого симисторного регулятора является то , что число подаваемых на нагрузку полупериодов сетевого на пряжения при любом положении органа управления оказывается четным . В результате, не образуется постоянная составляющая потребляемого тока и , следовательно , отсутствует подмагничивание магнитопроводов подклю ченных к регулятору трансформа торов и электродвигателей . Мощность р егулируется изменением числа периодов переменного на пряжения , приложенного к нагруз ке за определенный интервал времени . Регулятор предназначен для ре гулирования мощности приборов , обладающих значительной инерци ей ( нагревателей и т . п .).
Для регу лирован ия яркости освещения он не пригоден , т . к . лампы будут сильно мигать .

В . КАЛАШНИК , Н . ЧЕРЕМИСИНОВА , В . ЧЕРНИКОВ , Радиомир, 2011, № 5 , с. 17 — 18

БЕСПОМЕХОВЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением. Как известно, подобные устройства создают заметный уровень радиопомех. Предлагаемый регулятор свободен от этого недостатка. Особенность предлагаемого регулятора — управление амплитудой переменного напряжения, при котором не искажается форма выходного сигнала, в отличие от фазоимпульсного управления.
Регулирующий элемент — мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенного последовательно с нагрузкой. Основной недостаток устройства — его низкий КПД. Когда транзистор закрыт, ток через выпрямитель и нагрузку не проходит. Если на базу транзистора подать напряжение управления, он открывается, через его участок коллектор—эмиттер, диодный мост и нагрузку начинает проходить ток. Напряжение на выходе регулятора (на нагрузке) увеличивается. Когда транзистор открыт и находится в режиме насыщения, к нагрузке приложено практически все сетевое (входное) напряжение. Управляющий сигнал формирует маломощный блок питания, собранный на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1.
Переменным резистором R1 регулируют ток базы транзистора, а следовательно, и амплитуду выходного напряжения. При перемещении движка переменного резистора в верхнее по схеме положение напряжение на выходе уменьшается, в нижнее — увеличивается. Резистор R2 ограничивает максимальное значение тока управления. Диод VD6 защищает узел управления при пробое коллекторного перехода транзистора. Регулятор напряжения смонтирован на плате из фольгиро- ванного стеклотекстолита толщиной 2,5 мм. Транзистор VT1 следует установить на теплоотвод площадью не менее 200 см2. При необходимости диоды VD1-VD4 заменяют более мощными, например Д245А, и также размещают на теплоотводе.

Если устройство собрано без ошибок, оно начинает работать сразу и практически не требует налаживания. Необходимо лишь подобрать резистор R2.
С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт . Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт.; КТ856А -75 Вт.; КТ834А, КТ834Б — 100 Вт.; КТ847А-125 Вт. Мощность нагрузки допустимо увеличить, если регулирующие транзисторы одного типа включить параллельно: коллекторы и эмиттеры соединить между собой, а базы через отдельные диоды и резисторы подключить к движку переменного резистора.
В устройстве применим малогабаритный трансформатор с напряжением на вторичной обмотке 5. 8 В. Выпрямительный блок КЦ405Е можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого тока базы регулирующего транзистора. Эти же требования относятся и к диоду VD6. Конденсатор С1 — оксидный, например, К50-6, К50-16 и т. д., на номинальное напряжение не менее 15 В. Переменный резистор R1 — любой с номинальной мощностью рассеяния 2 Вт. При монтаже и налаживании устройства следует соблюдать меры предосторожности: элементы регулятора находятся под напряжением сети. Примечание: Для уменьшения искажения синусоидальной формы выходного напряжения попробуйте исключить конденсатор С1. А. Чекаров

Регулятор напряжения на MOSFET — транзисторах ( IRF540, IRF840 )

Олег Белоусов , Электрик , 201 2 , № 12 , с. 64 — 66

Так как физический принцип работы полевого транзистора с изолированным затвором отличается от работы тиристора и симмистора , то его в течение периода сетевого напряжения можно многократно включать и выключать . Частота коммутации мощных транзисторов в данной схеме выбрана 1 к Гц . Достоинством этой схемы является простота и возможность изменять скважность импульсов , мало изменяя при этом частоту повторения импульсов .

Читайте так же:
Сталь 17г1с характеристики применение

В авторской конструкции получены следующие длительности импульсов : 0,08 мс , при периоде следования 1 мс и 0,8 мс при периоде следования 0,9 мс , в зависимости от положения движка резистора R2.
Отключить напряжение на нагрузке можно , замкнув выключатель S 1, при этом на затворах MOSFET — транзисторов устанавливается напряжение , близкое к напряжению на 7 выводе микросхем ы . При разомкнутом тумблере напряжение на нагрузке в авторском экземпляре устройства можно было изменять рези стором R 2 в пределах 18. 214 В ( измерено прибором типа TES 2712).
Принципиальная схема подобного регулятора показан на рисунке ниже. В регуляторе использется отечественная микросхема К561ЛН2 на двух элементах которой собран генератор с регулируемой суважностью, а четыре эелемента используюся как усилители тока.

Для исключения помех по сети 220 послеловательно нагрузке рекомендуется подключить дроссель намотанный на ферритовом кольце диаметром 20. 30 мм до заполнения проводом 1 мм.

Генератор тока нагрузки на биполярных транзисторах ( КТ817 , 2SC3987 )

Бутов А . Л . , Радиоконструктор, 201 2 , № 7 , с. 11 — 12

Для проверки работоспособности и настройки источников питания удобно использовать имитатор нагрузки в виде регулируемого генератора тока . С помощью такого устройства можно не только быстро настроить блок питания , стабилизатор напряжения , но и, например , использовать его как генератор стабильного тока для зарядки , разрядки аккумуля торных батарей , устройств электролиза , для электрохимического травления печатных плат , как стабилизатор тока питания электроламп , для «мягкого» пуска коллекторных электродвигателей .
Устройство является двухполюсником , не требует дополнитель ного источника питания и может включаться в разрыв цепи питания различных устройств и исполнительных механизмов .
Диапазон регулировки тока от 0. 0 , 16 до 3 А , максимальная потребляемая ( рассеиваемая ) мощность 40 Вт , диапазон питающих напряжений 3. 30 В постоянного тока . Ток потребления регулируется переменным резистором R 6. Чем левее по схеме движок резистора R6, тем больший ток потребляет устрой ство . При разомкнутых контактах переключателя SA 1 резистором R6 можно установить ток потребления от 0,16 до 0,8 А . При замкнутых контактах этого переключателя ток регулируется в интервале 0,7. 3 А .


Принципиальная схема генератора тока


Чертеж печатной платы генератора тока

Имитатор автомобильного аккумулятора ( КТ827 )

В . МЕЛЬНИЧУК , Радиомир, 201 2 , № 1 2 , с. 7 — 8

При переделке компьютерных импульсных блоков питания ( ИБП ) подзарядные устройства ( ЗУ ) для автомобильных аккумуляторов готовые изделия в процессе наладки необходимо чем — то нагружать . Поэтому я решил изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации , схем а которого показана на рис . 1 . Резистором R 6 можно регулировать напряжение стабилизации от 6 до 16 В . Всего было сделано два таких устройства . В первом варианте в качестве транзис торов VT 1 и VT 2 применены КТ 803.
Внутреннее сопротивление такого стабилитрона оказалось слишком велико . Так , при токе 2 А напряжение стабилизации составило 12 В , а при 8 А — 16 В . Во втором варианте использованы составные транзисторы КТ827. Здесь при токе 2 А напряжение стабилизации составило 12 В , а при 10 А — 12,4 В .

Однако при регулировке более мощных потребителей, например электрокотлов симисторные регуляторы мощности становятся не пригодными — уж слишком большую помеху по сети они будут создавать. Для решения этой проблемы лучше использовать регуляторы с бОльшим периодом режимов ВКЛ-ВЫКЛ, что однозначно исключает возникновение помех. Один из вариантов схемы приведен ТУТ.

Симисторный регулятор мощности, схема на КР1182ПМ1

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

graf_simist

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

sim_reg_simple

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

КР1182ПМ1

Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.

Читайте так же:
Насадка для полировальных кругов

KR1182PM1_struct

Внутренняя структура микросхемы КР1182ПМ1.

Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.

Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.

sim_reg_mosh

Таблица номиналов элементов

  • C1 – 47 мкФ 10В;
  • C2, С3 – 1 мкФ 6,3 В;
  • DA1 – КР1182ПМ1;
  • R1 – переменный резистор 68 кОм;
  • R2 – 470 Ом;
  • S1 – кнопка выключения;
  • VS1 – BT136-600E.

В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.

Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.

22 thoughts on “ Симисторный регулятор мощности, схема на КР1182ПМ1 ”

Микросхема КР1182ПМ1 описание. Кстати полных зарубежных аналогов нету, разработка и выпуск отечественного ЗАО «НТЦ СИТ».

В маломощных (до 200 — 300 Вт) регуляторах лучше использовать транзисторные, а не симисторные схемы. Они не искажают форму сигнала (изменяется амплитуда, а не фаза) поэтому избавлены от помех.

  1. Pavel06.06.2016 в 11:07

Для прямого изменения амплитуды сетевого напряжения в регуляторах на транзисторах, уже при 50 ваттной нагрузке потребуется огромный радиатор.
Импульсные источники питания на транзисторах намного сложнее симисторных, и включают в себя преобразователь частоты, тоже создающий помехи, которые затем необходимо подавлять дополнительными фильтрами.
Симисторные регуляторы обладают высоким КПД, и часто работают вообще без радиаторов, они компактны и легки в регулировке.
Их особенно выгодно применять на повышенных мощностях, где коммутируются большие токи, например в сварочных аппаратах.
Что касается применения КР1182ПМ1, то если в самой нижней схеме R1 заменить на постоянный в 1М, и параллельно ему добавить фототранзистор, например КТФ102, то совместно с лампой можно получить автоматический регулятор освещения.

Ну, лампочке, к примеру, форма сигнала до лампочки, уж простите за каламбур. А чем меньше потребляемая мощность, тем меньше и помехи наводимые в сети. Двигатели электроинструмента и сами являются источниками помех, даже без регуляции. Так что вопрос целесообразности применения зависит больше от свойств нагрузки, а не от мощности.
В любом случае, будущее данного направления за частотными преобразователями, а не за фазовыми. Там и с КПД и с формой сигнала все хорошо… с ценой только плохо. Настолько плохо, что используются пока только в промышленности. В быту очень редко.

Цена сейчас определяющий фактор. Для мощных нагрузок симисторы дешевле, чем транзисторы и проще. Управление ими проще. Чаще всё равно требуется управлять двигателями или регулировать температуру. Помехи критичны в специализированной аппаратуре.

Собирал данную схему на панели для монтажа , что то не так сначала скачек напряжения до 80 вольт далее моментальное его падение до нуля и все…В чем проблемам может быть? в нагрузке была лампа на 60 ватт

  1. Дмитрий07.02.2018 в 14:05

Вход перепутан с выходом

При использовании транзисторов необходимы большие радиаторы, что делает схему громоздкой.

Ошибка в схеме. При подключении симистора перепутаны T1 и T2.

Ошибка в схеме. Плюс конденсатора С2 должен быть присоединен к 16-му выводу микросхемы.

данную схему собрал на зарубежном аналоге, как раз таки не создающем никаких помех (Недоработка нашего производителя)

  1. Михаил.23.08.2018 в 17:30

Подскажите,пожалуйста,марку зарубежного аналога.

  1. Серг07.07.2019 в 13:32

Анплогов нет. м.д. немножко пофантазировал

Здравствуйте коллеги! Ох и намучался я со схемой собранной по последнему рисунку (с микросхемой и симмистром ВТ136)… И так и сяк и нагрузку с другого плеча и резистор в цепь 9,10,11 ножек… И на другой микросхеме и симмистр менять пробовал… В нуле переменника горит в пол накала, потом сразу в полный при небольшом повороте. Всё наладилось когда взял симмистр другой — ВТА140. Сразу всё наладилась — и глубина регулировки и плавность… У кого-то получилось использовать в этой схеме ВТ136?

  1. Mell12.04.2020 в 09:13

ВТ136 вроде тиристор, а не симистор. См. даташит. Жж

Падение напряжения недопустимо высоко ? на нагрузке 170в при 215в в сети

Попробовал эту схему c симисторjv ВТВ12-600. Нагрузка — двигатель от электрорубанка.
Первое — симистор на схере неправильно включен. Нужно перевернуть его вверх тормашками.
Во вторых горит резистор R2. Быстро обугливается. резистор 0.5 Вт

Читайте так же:
Металл находящийся в жидком состоянии

Собирайте по даташиту там указаны все штатные схемы включения и будет Вам счастье собирал устройсво плавного пуска все хорошо

Переделал 12в шуруповёрт для работы от сети. Подключаю к самодельному зарядному 14.5в. Работает аж свистит. Нашёл в инете, что можно снизить напряжение диодом. Подскажите модель или х-ки диода. Сам что-то не могу выбрать.

Убогое подключение,так нельзя

Микросхемы КР1182ПМ1 допускают параллельное включение двух и более приборов, что позволяет увеличить выходную мощность регулятора. Устройство, схема которого изображена на рис. 4, может работать с нагрузкой, мощностью до 300 Вт.

Помехи тиристорных регуляторов мощности

Резко выключать мощную нагрузку в сети нельзя и оптоэлектронные реле даже имеют специальные средства для отслеживания момента перехода через ноль. Между тем, все разобранные схемы с фазовым управлением именно это и де­лают. Потому, если вы включите такой регулятор напрямую в сеть, то помех не избежать— как электрических по проводам сети, так и электромагнитных, распространяющихся в пространстве, и чем мощнее нагрузка, тем больше эти помехи. Особенно чувствительны к этому делу АМ-приемники — мощный ре­гулятор может давить передачи ВВС не хуже советских глушилок. Для того чтобы свести помехи к минимуму, необходимо, во-первых, заземлить корпус прибора, а во-вторых, на входе питания устройства вместе с нагрузкой поста­вить LC-фильтр. Это относится и к регуляторам в интегральном исполнении.

Заметки на полях

Внимательный читатель, несомненно, давно уже задает вопрос: если тиристор при отсутствии тока через него выключается, то как можно запустить тири-сторную схему в момент перехода напряжения через ноль? Отвечаю: естест­венно, никак. Поэтому схема zero-коррекции на самом деле запускает мощный тиристор не точно в момент равенства анодного напряжения нулю, а тогда, ко­гда ток через него уже достигает некоторой небольшой, но конечной величины. Практически это обеспечить несложно: надо дождаться момента очередного перехода через ноль и сразу запустить генератор открывающих импульсов на достаточно высокой частоте. Тиристор «сам выберет» из последовательности импульсов тот, при котором «уже можно открываться».

Для заземления корпус, естественно, должен быть металлический или металли­зированный изнутри. В выигрышном положении окажутся те, кто будет изго­тавливать корпуса самостоятельно из стеклотекстолита, по технологии, изло­женной в главе 3— у них уже есть прекрасный экран из медной фольги, достаточно только припаять провод заземления в любом удобном месте на внутренней стороне корпуса и присоединить его к зелененькому третьему про­воду в сетевой вилке. Если же корпус пластмассовый, то его нужно изнутри обклеить алюминиевой фольгой потолще (предназначенная для применения в микроволновых печах, конечно, не подойдет). Надежно обеспечить контакт вывода заземления с таким экраном можно, приклеив зачищенный на несколь­ко сантиметров провод широким скотчем или соорудив прижимной контакт из упругой бронзы (например, из контакта старого мощного реле).

clip_image002

Рис. 10.7. Схемы фильтров сетевого питания для подавления помех

На рис. 10.7 приведены два варианта построения развязывающего LC-фильтра. Второй вариант (внизу на рисунке) более «продвинутый». Для изго­товления дросселя (так называют индуктивности, если они служат для фильтрации высоких частот в шинах питания и в некоторых других случаях) нужно взять ферритовое кольцо марки 600—ЮООНН диаметром 20—30 мм и намотать на него виток к витку провод МГШВ сечением около 1 мм^ — сколько уместится. Во втором варианте фильтра дроссели L1 и L2 можно объединить, намотав их на одном кольце — причем если помехи будут по­давляться плохо, то надо поменять местами начало и конец одной из обмо­ток. Можно использовать и готовые дроссели подходящей мощности.

Если нагрузка совсем маломощная (до 20 Вт), то дроссели можно в крайнем случае заменить резисторами в 10—15 Ом мощностью не менее 2 Вт. Кон­денсаторы — любые неполярные на напряжение не менее 400 В, среднюю точку их во втором варианте нужно подсоединить к настоящему заземлению (то есть к уже заземленному корпусу). Если таковое отсутствует, то все равно надо присоединить эту точку к корпусу прибора, но без настоящего заземле­ния работа фильтра заметно ухудшится — фактически он превратится в не­сколько улучшенный первый вариант.

Прочее

Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности. В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей.

Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей , температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.п. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Читайте так же:
Печь в гараж из дисков

Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. В результате этого на нагрузке форма напряжения представляет собой «обрезки» полуволн синусоиды с крутыми фронтами (рис.1). При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.2. Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т.п. В связи с этим на сетевых входах таких регуляторов мощности устанавливаются RC- или RLC-фильтры.

На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств. Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-

пьютер, приемник FM и DVD-проигрыватель с УМЗЧ Воздействия помех на эту аппаратуру не наблюдалось, но это не значит, что фильтры вообще не нужны. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий. Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,

сетевые фильтры

Принципиальная схема сетевого фильтра промышленного регулятора мощности до 4 кВт типа РТ-4 УХЛ4.2 220В-1 Р30 показана на рис.3, монтаж регулятора — на рис.4. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф600 диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т.п., то есть вдали от соседей. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение. По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром.

В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех . Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие — схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор. Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т.п., часть которых приведена в [ 1—6]. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке.

Регуляторы на тиристорах

Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления (рис.5) . Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое

регулятор мощности на тиристоре

Рис.5 регулятор мощности на тиристоре

сопротивление открытого тиристора. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку. Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах. На двух тиристорах КУ202Н с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности [7].

Принципиальная схема такого регулятора с сетевым фильтром показана на рис.6. Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров.

Читайте так же:
Приспособления для кладки облицовочного кирпича своими руками

Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают. Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали.

Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.5 с разделением положительных и отрицательных управляющих импульсов с помощью диодов или динисторов.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис.7. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис.8 виден стрелочный индикатор (поз.1), на котором приклеены детали его выпрямителя и фильтра. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже. При необходимости в нем можно применить фильтр, схема которого показана на рис.3.

регулятор мощности на оптотиристорах

Рис.7, схема регулятора мощности на оптотиристорах

Регуляторы на симисторах

Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис.4. Например, микросхема КР1167КП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме (рис.9). Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. 10. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до 200 Вт

(рис. 11 ), а с радиатором площадью не менее 100 см 2 — до 2 кВт. Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. 12. При использовании исправных деталей эти схемы не требуют наладки.

Регулятор мощности на симисторах

Рис.10, схема регулятора мощности на симисторах

При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их

миганию. Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. 10 (без R1 и С1) с панелькой для однорядной микросхемы, которая решила указанные проблемы. К контактам 1 -2 печатной платы подпаивают регу-

Регулятор мощности на симисторе

лировочный резистор R5. В качестве нагрузки подключают лампу накаливания. Перед установкой деталей для проверки плату в обязательном порядке отключают от электросети.

На базе схемы рис.11 изготовлен портативный технологический регулятор для различных работ. Монтаж деталей показан на фото в начале статьи (нижняя крышка снята). Схема собрана в алюминиевом корпусе, который также служит охладителем симистора, изолированным от корпуса слюдяной прокладкой и изоляционной спецшайбой. После крепления симистора необходимо в обязательном порядке проверить сопротивление изоляции между его анодом и корпусом, которое должно быть не менее 1 МОм Данный регулятор при испытании в течение двух часов нормально работал без нагрева корпуса на нагрузку мощностью 500 Вт.

В заключение следует отметить, что регуляторы мощности нагрузки, собранные по схемам рис.6 и рис. 10, испытанные длительной эксплуатацией, наиболее оптимальны в части надежности, компактности, простоты деталей, монтажа и наладки. С небольшими разбросами параметров тиристоров и асимметричностью параметров симисторов эти регуляторы могут работать на все типы нагрузок соответствующей мощности, кроме осветительных приборов. Отклонение номиналов резисторов и конденсаторов от указанных в схемах на 10. 20% на работу регуляторов не влияют. Приведенные схемы управления могут работать и с более мощными тиристорами и симисторами в регуляторах мощности нагрузок до 5 кВт. Регулятор мощности по схеме рис. 12 рекомендуют применять для осветительных приборов мощностью до 100 Вт без теплоотвода. Работа этого регулятора на другие типы нагрузок не испытывалась, но предположительно он не должен быть хуже регулятора, собранного по схеме рис. 10 .

1. Золотарев С. Регулятор мощности // Радио. -1989. — №11.

2. Карапетьянц В. Усовершенствование регулятора мощности // Радио. — 1986. -№11.

3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением // Радио -1992. — №9.

4. Бирюков С. Двухканальный симисторный регулятор // Радио. — 2000. — №2.

5 . Зорин С. Регулятор мощности // Радио. -2000 . — № 8 .

6. Журенков А. Фен с электронным регулятором мощности // Электрик. — 2009. — №1-2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector