Вписанные правильные многоугольники
Вписанные правильные многоугольники
Любой правильный многоугольник является вписанным в окружность. Найдём, какой радиус описанной окружности имеют вписанные правильные многоугольники в общем случае и в некоторых частных случаях.
Пусть дан произвольный правильный многоугольник со стороной a. Обозначим одну из его сторон AB, AB=a. O — центр описанной окружности.
Проведём радиусы OA и OB.Так как OA=OB, треугольник AOB — равнобедренный с основанием AB. Если многоугольник имеет n сторон и n углов (n-угольник), то его центральный угол
Проведём высоту OF. По свойству равнобедренного треугольника, OF является также его биссектрисой и медианой. Поэтому
Рассмотрим прямоугольный треугольник AOF. По определению синуса,
Таким образом, формула радиуса описанной около правильного многоугольника окружности —
где n — количество сторон и количество углов, a — сторона n-угольника.
В частности, при n=3 формула для нахождения радиуса описанной около правильного треугольника окружности —
При n=4 формула радиуса описанной около правильного четырёхугольника окружности —
При n=6 формула радиуса описанной около правильного шестиугольника окружности —
Обратно, формула для нахождения стороны вписанного правильного многоугольника через радиус описанной окружности:
Как описать шестиугольник вокруг окружности
Правильный описанный треугольник строят следующим образом (рисунок 38). Из центра заданной окружности радиуса R1 проводят окружность радиусом R2 = 2R1 и делят ее на три равные части. Точки деления А, В, С являются вершинами правильного треугольника, описанного около окружности радиуса R1.
Правильный описанный четырехугольник (квадрат) можно построить с помощью циркуля и линейки (рисунок 39). В заданной окружности проводят два взаимно перпендикулярных диаметра. Приняв точки пересечения диаметров с окружностью за центры, радиусом окружности R описывают дуги до взаимного их пересечения в точках А, В, С,D. Точки A, B, C, D и являются вершинами квадрата, описанного около данной окружности.
Для построения правильного описанного шестиугольника необходимо вначале построить вершины описанного квадрата указанным выше способом (рисунок 40, а). Одновременно с определением вершин квадрата заданную окружность радиуса R делят на шесть равных частей в точках 1, 2, 3, 4, 5, 6 и проводят вертикальные стороны квадрата. Проведя через точки деления окружности 2–5 и 3–6 прямые до пересечения их с вертикальными сторонами квадрата (рисунок 40, б), получают вершины А, В, D, Е описанного правильного шестиугольника.
Остальные вершины C и F определяют с помощью дуги окружности радиуса OA, которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
3 СОПРЯЖЕНИЯ
Дата добавления: 2014-11-06 ; Просмотров: 4404 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Определение длины стороны правильного многоугольника по радиусу вписанной окружности
От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».
Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.
Правильные многоугольники и окружность. Здравствуйте, Дорогие друзья! Во многих задачах в курсе геометрии, в том числе и в составе ЕГЭ имеется много заданий связанных с понятием окружности вписанной в правильный многоугольник и описанной около него. Если конкретней, то в данном случае мы рассмотрим правильный треугольник, также квадрат и правильный шестиугольник. Именно с этими правильными многоугольниками связаны условия заданий на экзамене. Обычно в ходе решения таких задач возникает необходимость выразить:
1. Сторону правильного треугольника через радиус вписанной или описанной окружности.
2. Сторону квадрата через радиус вписанной окружности или описанной окружности.
3. Сторону правильного шестиугольника через радиус вписанной или описанной окружности.
4. Радиус вписанной в правильный многоугольник окружности через радиус описанной около него окружности и наоборот.
На сайте рассмотрены (и в будущем будут рассматриваться) задачи , в которых эти формулы используются. При решении подробно не описывается как они выводятся. Просто говорится, например, что сторона правильного треугольника соотносится с радиусом вписанной в него окружности как:
У многих возникают вопросы по этому поводу: Как? Почему? В этой статье мы выведем все указанные соотношения и в будущем при решении задач, если потребуется, просто буду давать ссылку на эту статью.
Что нужно всегда помнить и понимать?
Центр правильного многоугольника совпадает с центром вписанной о описанной около него окружности. Итак, приступим!
Правильный треугольник, вписанная и описанная окружность.
Пусть а – это его сторона, радиус описанной окружности равен R, а радиус вписанной окружности равен r.
Стороны правильного треугольника и вписанная в него окружность имеют общие точки (точки касания), эти точки делят стороны треугольника пополам. Радиус описанной окружности, проведённый к вершине треугольника является биссектрисой, то есть делит угол при этой вершине, равный 60 градусам, пополам. Рассмотрим прямоугольный треугольник (выделен жёлтым). По определению тангенса: Получаем, что: По определению косинуса: Получаем, что: Можем записать соотношение радиусов:
Квадрат, вписанная и описанная около него окружность.
Пусть а – это сторона квадрата, радиус описанной окружности равен R, а радиус вписанной окружности равен r.
Стороны квадрата и вписанная в него окружность имеют общие точки (точки касания), эти точки делят стороны квадрата пополам.
Радиус описанной окружности, проведённый к вершине квадрата является биссектрисой, то есть делит угол квадрата пополам.
Рассмотрим прямоугольный треугольник (выделен жёлтым). На основании вышеизложенного можно сделать вывод о том, что:
По определению косинуса: Получаем, что: *Можно было воспользоваться также теоремой Пифагора. Запишем соотношение радиусов:
Правильный шестиугольник. Вписанная и описанная окружность.
Стороны правильного шестиугольника и вписанная окружность имеют общие точки (точки касания), эти точки делят стороны данного шестиугольника пополам.
Радиус описанной окружности, проведённый к вершине шестиугольника является биссектрисой, то есть делит угол правильного шестиугольника равный 120 градусам пополам. Подробнее о правильном шестиугольнике и описанной около него окружности можете посмотреть информацию в этой статье .
Рассмотрим прямоугольный треугольник (выделен жёлтым). По определению тангенса: Получаем, что:
Тот факт, что сторона правильного шестиугольника равна радиусу описанной окружности известен практически всем школьникам изучившим соответствующий материал по планиметрии:
Если интересно посмотрите как это можно вывести. По определению косинуса в прямоугольном треугольнике: Получаем, что: Можем записать соотношение радиусов: Вот и всё.
Конечно же, учить и запоминать данные формулы не нужно. В ходе решения вы всегда сможете их также вывести используя свойства правильных многоугольников, определения тангенса и косинуса , теорему Пифагора.
Я решил изложить это в отдельной статье только для того, чтобы у вас не возникали вопросы при решении и изучении соответствующих заданий на блоге и вы всегда могли бы посмотреть откуда взялась формула. Везде, где потребуется данная информация я буду размещать ссылку на эту статью.
Описанный многоугольник
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это такая окружность, по отношению к которой каждая сторона описанного многоугольника является касательной. Двойственный многоугольник [en] описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Все треугольники являются описанными для какой-либо окружности, как и все правильные многоугольники с произвольным числом сторон. Хорошо изученная группа описанных многоугольников — описанные четырёхугольники, куда входят ромбы и дельтоиды.
Содержание
Описания [ править | править код ]
Выпуклый многоугольник имеет вписанную окружность тогда и только тогда, когда все внутренние биссектрисы его углов конкурентны [en] (пересекаются в одной точке) и эта общая точка пересечения является центром вписанной окружности [1] .
Единственность и неединственность [ править | править код ]
Если число сторон n нечётно, то для любого заданного набора длин сторон a 1 , … , a n
Радиус вписанной окружности [ править | править код ]
Если длины сторон описанного многоугольника равны a 1 , … , a n
где K — площадь многоугольника, а s — его полупериметр. (Поскольку все треугольники имеют вписанную окружность, эта формула применима ко всем треугольникам.)
Другие свойства [ править | править код ]
- Для описанного многоугольника с нечётным числом сторон все стороны равны тогда и только тогда, когда углы равны (многоугольник правильный). Описанный многоугольник с чётным числом сторон имеет все стороны равными тогда и только тогда, когда чередующиеся углы равны.
- В описанном многоугольнике с чётным числом сторон сумма длин нечётных сторон равна сумме длин чётных сторон [2] .
- Описанный многоугольник имеет бо́льшую площадь, чем любой другой многоугольник с тем же периметром и теми же внутренними углами в той же последовательности [5][6] . любого описанного многоугольника, барицентр его точек границы и центр вписанной окружности коллинеарны и барицентр многоугольника находится между двумя другими указанными центрами и вдвое дальше от центра вписанной окружности, чем от барицентра границы [7] .
Описанный треугольник [ править | править код ]
Все треугольники имеют некоторую вписанную окружность. Треугольник называется тангенциальным треугольником рассматриваемого треугольника, если все касания тангенциального треугольника окружности также являются вершинами рассматриваемого треугольника.
Треугольник описанный около окружности
Треугольник, описанный около окружности — это треугольник,
который находится около окружности и соприкасается
с ней всеми тремя сторонами.
На рисунке ниже изображена окружность, вписанная в треугольник;
и треугольник, описанный около окружности.
△ ABC — треугольник, описанный около окружности;
A, B, C — вершины треугольника, описанного около окружности;
F, D, E — точки касания треугольника, описанного около окружности;
O — центр окружности, вписанной в треугольник;
OD = OF = OE — радиусы треугольника, описанного около окружности;
AB, BC, CA — касательные;
FA = AE, EC = CD, FB = BD — отрезки касательных;
OF ⟂ AB, OD ⟂ BC, OE ⟂ AC;
Треугольник ABC имеет три точки, где соприкасаются
стороны и сама окружность, эти точки называют точками
касания. У данного треугольника их всего три.
В любой треугольник можно вписать окружность, причем
только одну. Треугольник, в который вписана окружность
называется треугольником описанным около окружности.
Треугольники, описанные около окружности, обладают рядом
рядом отличительных свойств, характерных признаков, уникальными
терминами, а также формулам, по которым можно найти разные величины.
Формулы радиуса вписанной окружности, радиуса описанной окружности,
диаметра, средней линии, периметра, площади стороны позволяют выразить
одни величины через другие, рассчитать длину величины, узнать во сколько
раз одна величина отличается от другой, какая прослеживается взаимосвязь.
Длина любой величины произвольного
треугольника может измеряется в мм, см, м, км.
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности треугольника, описанного около окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности треугольника, описанного около окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Площадь треугольника
S — площадь треугольника, описанного около окружности.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
[ S = frac<1><2>ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника, описанного около окружности.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Сторона треугольника
a — сторона треугольника, описанного около окружности.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Средняя линия треугольника
l — средняя линия треугольника, описанного около окружности.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Высота треугольника
h — высота треугольника, описанного около окружности.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
[ h = b cdot sin alpha ]
Свойства
Свойства треугольника, описанного около окружности,
а также окружности, вписанной в треугольник, медиан,
высот, биссектрис, радиусов-перпендикуляров.
Свойство 1. Окружность, можно вписать
в любой треугольник, только один раз.
Свойство 2. Центр окружности, вписанной в треугольник —
точка пересечения биссектрис, центр окружности.
Свойство 3. Центр окружности, описанной около треугольника —
точка пересечения серединных перпендикуляров.
Свойство 4. Центры вписанной и описанной окружностей
равностороннего треугольника, описанного около
окружности совпадают, имеют одну общую точку.
Свойство 5. Отрезок, проведенный из центра треугольника,
описанного около окружности, к любой из сторон,
является радиусом.
Свойство 6. У любого треугольника центр
вписанной окружности находится только внутри.
Свойство 7. Окружность находящаяся внутри
треугольника, описанного около окружности,
касается всех его сторон.
Свойство 8. Вписанная окружность и треугольник,
описанный около окружности, имеют три общие точки,
которые лежат на трех сторонах треугольника.
Свойство 9. Формула радиуса вписанной окружности
у треугольника, описанного около окружности, и четырехугольника,
у которого суммы противоположных равны, совпадает.
Свойство 10. Радиус описанной около треугольника окружности,
можно выразить и рассчитать через Теорему Синусов.
Свойство 11. У треугольника, описанного около
окружности, радиус вписанной окружности, можно
рассчитать через площадь и полупериметр.
Свойство 12. Радиус в точку касания есть перпендикуляр.
Свойство 13. Окружность, вписанная в треугольник, разделяет
стороны треугольника на 3 пары равных отрезков.
Свойство 14. Стороны треугольника, описанного около
окружности, можно также называть касательными.
Свойство 15. Отрезки, которые проведены из центра вписанной
окружности, к точкам касания, перпендикулярны сторонам.
Свойство 16. Сумма углов треугольника, описанного
около окружности, равна 180 градусам.
Свойство 17. Центр вписанной окружности
равноудален от всех сторон треугольника.
Свойство 18. Центр вписанной в треугольник окружности в научных
кругах называется замечательной точкой треугольника, либо инцентром.
Свойство 19. Правильный треугольник, описанный около
окружности, имеет точки касания с окружность, в серединах сторон.
Свойство 20. Равнобедренный, прямоугольный, равносторонний
треугольники, описанные около окружности, в точке пересечения
биссектрис и центре окружности, имеют одну общую точку.
Признаки существования
Признак 1. Центр вписанной окружности —
это точка пересечения биссектрис.
Признак 2. На сторонах треугольника лежат
три точки касания вписанной окружности.
Признак 3. Вписанная окружность делит смежные
стороны треугольника на равные отрезки касательных.
Признак 4. У вписанной окружности три радиуса в точку касания быть перпендикулярами.
Исходя из вышеперечисленных признаков, исходных
данных, внешнего вида, можно определить является ли
треугольник описанным около окружности или же нет.
Признаки равенства
Признак 1. По двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника, описанного
около окружности, равны двум сторонам и углу между ними другого
треугольника, описанного около окружности, то такие треугольники равны.
Признак 2. По стороне и двум прилежащим к ней углам.
Если сторона и два прилежащих к ней угла одного треугольника, описанного
около окружности, равны стороне и двум прилежащим к ней углам другого
треугольника, описанного около окружности, то такие треугольники равны.
Признак 3. По трем сторонам.
Если три стороны одного треугольника, описанного
около окружности, равны трем сторонам другого
треугольника, описанного около окружности.
Как мы знаем, любой треугольник может быть описан около
окружности, исходя из этого можно сказать, что около
окружности, могут быть описаны следующие виды треугольников:
- Разносторонний треугольник
- Равносторонний / правильный треугольник
- Прямоугольный треугольник
- Равнобедренный треугольник
- Равнобедренныйпрямоугольный треугольник
- Прямоугольный треугольник, описанный около окружности
Характерные признаки: один из углов прямой,
длину сторон можно найти через Теорему
Пифагора, сумма острых углов 90 градусов.
Основные формулы:
- Равнобедренный треугольник, описанный около окружности
Характерные признаки: два угла равны,
две стороны равны, третий угол можно
найти зная два других.
Основные формулы:
- Равносторонний треугольник, описанный около треугольника
Основные формулы:
Термины
Точка касания — это точка, где соприкасается вписанная
окружность с треугольником; это общая точка, для окружности
и треугольника, которая лежит на любой из сторон треугольника.
Инцентр — это точка, где пересекаются три биссектрисы
треугольника; это центр вписанной окружности в треугольник;
это одна из замечательных точек в геометрии.
Касательная — это сторона треугольника, которая имеет с
вписанной окружностью одну общую точку — точку касания.
Ортоцентр — точка, где пересекаются высоты треугольника.
Ось симметрии — это прямая, которая делит
треугольник на равные половины.
Замечательная точка — это точка пересечения медиан,
высот, биссектрис, серединных перпендикуляров.
Отрезок касательной — это отрезок, который берет начало
у одной из вершин треугольника, и имеет конец в точке касания.