Wabashpress.ru

Техника Гидропрессы
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фазовое пространство технологической машины

Фазовое пространство технологической машины

Фазовое пространство технологической машины (станка) описывают через такие его параметры, как координаты, определяющие расположение рабочих органов в процессе их перемещения относительно обрабатываемой детали и скорость движения по указанным координатам [1, 4].

Различают физические и логические координатные оси. Физические оси называют также системными, и связаны непосредственно с приводами станка. Они группируются по каналам ЧПУ, причем в рамках канала координатные оси находятся в единообразном технологическом отношении друг к другу. Таким образом, группы осей могут работать (выполнять технологические операции) независимо и параллельно. Физические оси, не привязанные к каналу, называют асинхронными, или вспомогательными. Вспомогательные оси служат, к примеру, для организации перемещений в механизмах смены
инструмента [1, 2, 4].

Отдельные оси внутри группы канала ЧПУ называют логическими, и используются при программировании станка с ЧПУ. Они объединены интерполяционными алгоритмами,
и в этой связи их называют также синхронными осями. Логические оси канала имеют индексы. Связывание физических и логических осей осуществляют при помощи
так называемых «машинных параметров» станка [2, 3].

2.2. Координатные оси и координатные системы.
Трансформация координат

Для программирования станков с ЧПУ принята декартова (прямоугольная) система координат (рис. 2.1, а).

а)б)
в)г)

Рис. 2.1. Система координат станков с ЧПУ:

а – общая схема; б – система координат токарного станка с ЧПУ;
в – система координат вертикально-сверлильного и вертикально-фрезерного станков с ЧПУ;
г – система координат 4-координатного обрабатывающего центра

Каждому направлению оси координат присваивается свой адрес (X, Y, Z) и знак (+, –). Положительным направлением оси считается то, при котором инструмент или заготовка отступают друг от друга.

Ось Z всегда связана с главным движением станка (шпинделем станка).

Ось Х всегда находится в плоскости закрепления заготовки и, как правило, совпадает с направлением наибольшего перемещении стола станка или инструмента.

Ось Y связана с направлением наименьшего перемещения стола станка или инструмента.

Кроме линейных перемещений по осям (Х, Y, Z) есть вращательные движения вокруг каждой оси (А, В, С). Положительным направлением вращения является вращение по часовой стрелке, если смотреть из начала системы координат в положительном направлении оси.

Различают следующие виды систем координат:

1. Система координат станка (главная расчетная система) (Х, Y, Z), (А, В, С). Определяет начальное, конечное и текущее положение любого рабочего органа станка в текущий момент времени. Система координат с плавающим нулем позволяет перемещать начало системы координат станка в любую точку его рабочего пространства.

2. Система координат детали (Х’, У’, W); (А’,В’,С’). Определяет положение детали относительно системы координат станка. Чаще программирование производят в системе координат детали. Направление осей системы координат детали противоположно осям координат станка.

3. Система координат инструмента. Определяет положение инструмента в системе координат станка (рис. 2.2).

а)б)

Рис. 2.2. Привязка инструмента:

а – неосевого; б – осевого; Wx, Wz, Li – настроечные размеры инструмента
(вносятся как константы в память УЧПУ станка по каждому инструменту)

Связь между этими системами координат осуществляется через базовые точки станка с ЧПУ.

При программировании, наладке, и эксплуатации станков с ЧПУ используют следующие характерные точки:

1. Нулевая точка. Всегда связана с началом координат станка.

2. Исходная точка. Определяется относительно нулевой точки; из исходной точки начинается движение рабочих органов станка по управляющей программе. Обозначение исходной точки представлено на рис. 2.3.

3. Фиксированная точка. Определяется относительно нулевой точки и, как правило, связана с базовыми точками станков. Она используется только при наладке станка на первую деталь группы.

4. Опорная точка. Точка смены направления движения инструмента по траектории (например, точка перехода дуги окружности в линию, точка изменения радиуса дуги и т. д.).

При программировании обычно не обязательно знать, что перемещается (заготовка или инструмент); принимается, что заготовка – неподвижна, а инструмент перемещается относительно нее.

Читайте так же:
Что такое титан металл

Дата добавления: 2016-06-22 ; просмотров: 3029 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Коммерческое предложение

Официальный дистрибьютор в странах Балтии и СНГ

Справочник

G-код (NC-код)

G-код (NC-код)

G-код (NC-код) — условное именование языка программирования устройств с числовым программным управлением (ЧПУ). Был создан компанией Electronic Industries Alliance в начале 1960-х. Финальная доработка была одобрена в феврале 1980 года как стандарт RS274D. Комитет ISO утвердил G-код, как стандарт ISO 6983-1:2009, Госкомитет по стандартам СССР — как ГОСТ 20999-83. В советской технической литературе G-код обозначается как код ИСО 7-бит (ISO 7-bit). G-код кодировали на 8-мидорожечную перфоленту в коде ISO 7-bit (разработан для представления информации УЧПУ в виде машинного кода так же, как и коды AEG и PC8C), восьмая дорожка использовалась для контроля чётности.

Производители систем УЧПУ(CNC), как правило, используют софт управления станком, для которого написана (оператором) программа обработки в качестве осмысленных команд управления, используется G-код в качестве базового подмножества языка программирования, расширяя его по своему усмотрению.

Структура программы

Программа, написанная с использованием G-кода, имеет жесткую структуру. Все команды управления объединяются в кадры — группы, состоящие из одной или более команд. Кадр завершается символом перевода строки (CR/LF) и имеет номер, за исключением первого кадра программы и комментариев. Первый (а в некоторых случаях ещё и последний) кадр содержит только один символ «%». Завершается программа командой M02 или M30. Комментарии к программе размещаются в круглых скобках, как после программных кодов, так и в отдельном кадре.

Порядок команд в кадре строго не оговаривается, но традиционно предполагается, что первыми указываются подготовительные команды (например, выбор рабочей плоскости), затем команды перемещения, затем выбора режимов обработки и технологические команды.

Подпрограммы могут быть описаны после команды M02, но до M30. Начинается подпрограмма с кадра вида Lxx, где xx — номер подпрограммы, заканчивается командой M17.

Сводная таблица кодов

Ниже представлен далеко не самый полный перечень g и m кодов и команд в чпу:

Основные (называемые в стандарте подготовительными) команды языка начинаются с буквы G:

  • Перемещение рабочих органов оборудования с заданной скоростью (линейное и круговое)
  • Выполнение типовых последовательностей (таких, как обработка отверстий и резьба)
  • Управление параметрами инструмента, системами координат, и рабочих плоскостей

Подготовительные (основные) команды

КодыОписание
G00-G03Позиционирование инструмента
G17-G19Переключение рабочих плоскостей (XY, ZX, YZ)
G20-G21Не стандартизовано
G40-G44Компенсация размера различных частей инструмента (длина, диаметр)
G53-G59Переключение систем координат
G80-G85Циклы сверления, растачивания, нарезания резьбы
G90-G91Переключение систем координат (абсолютная, относительная)

Таблица основных команд

КомандаОписаниеПример
G00Ускоренное перемещение инструмента (холостой ход)G0 X0 Y0 Z100;
G01Линейная интерполяцияG01 X0. Y0. Z100 F200;
G02Круговая интерполяция по часовой стрелкеG02 X15. Y15. R5 F200;
G03Круговая интерполяция против часовой стрелкиG03 X15. Y15. R5 F200;
G04Задержка выполнения программы, способ задания величины задержки зависит от реализации системы управленияG04 P500;
G10Задать новые координаты для начала координатG10 X10 Y10 Z10;
G15Отмена полярной системы координатG15 X15. Y22.5; G15;
G16Полярная система координат (X радиус Y угол)G16 X15. Y22.5
G17Выбор рабочей плоскости X-Y
G18Выбор рабочей плоскости Z-X
G19Выбор рабочей плоскости Y-Z
G20Режим работы в дюймовой системеG90 G20;
G21Режим работы в метрической системеG90 G21;
G22Активировать установленный предел перемещений (Станок не выйдет за их предел)G22 G01 X15 Y25;
G28Вернуться на референтную точкуG29 G91 Z0 Y0;
G30Поднятие по оси Z на точку смены инструментаG30 G91 Z0;
G40Отмена компенсации радиуса инструментаG1 G40 X0. Y0. F200
G41Компенсировать радиус инструмента слева от траекторииG41 X15. Y15. D1 F100
G42Компенсировать радиус инструмента справа от траекторииG42 X15. Y15. D1 F100
G43Компенсировать длину инструмента положительноG43 X15. Y15. Z100. H1 S1000 M3
G44Компенсировать длину инструмента отрицательноG44 X15. Y15. Z4. H1 S1000 M3
G49Отмена компенсации длины инструментаG49 Z100
G53Отключить смещение начала системы координат станкаG53 G0 X0. Y0. Z0.
G54-G59Переключиться на заданную оператором систему координатG54 G0 X0. Y0. Z100.
G68Поворот координат на нужный уголG68 X0 Y0 R45;
G70Цикл продольного чистового точенияG70 P10 Q15
G71Цикл многопроходного продольного чернового точенияG71 P10 Q15 D0.5 UO.2 W0.5
G80Отмена циклов сверления, растачивания, нарезания резьбы метчиком и т. д.G80
G81Цикл сверленияG81 X0 Y0. Z-10. R3 F100
G82Цикл сверления с задержкойG82 X0. Y0. Z-10. R3 P100 F100
G83Цикл прерывистого сверления (с полным выводом сверла)G83 X0. Y0. Z-10. R3 Q8 F100
G84Цикл нарезания резьбыG95 G84 M29 X0. Y0. Z-10. R3 F1.411
G90Задание абсолютных координат опорных точек траекторииG90 G1 X0.5. Y0.5. F10
G91Задание координат инкрементально последней введённой опорной точкиG91 G1 X4. Y5. F100
G94F (подача) — в формате мм/мин.G94 G80 Z100
G95F (подача) — в формате мм/об.G95 G84 X0. Y0. Z-10. R3 F1.411
G99После каждого цикла не отходить на «проходную точку»G99 G91 X10 K4;
Читайте так же:
Схема подключения дхо без реле

максимум 4 команды в кадре

Таблица технологических кодов

Технологические команды языка начинаются с буквы М. Включают такие действия, как:

  • Сменить инструмент
  • Включить/выключить шпиндель
  • Включить/выключить охлаждение
  • Работа с подпрограммами

Вспомогательные (технологические) команды

КодОписаниеПример
M00Приостановить работу станка до нажатия кнопки «старт» на пульте управления, так называемый «безусловный технологический останов»G0 X0 Y0 Z100 M0
M01Приостановить работу станка до нажатия кнопки «старт», если включён режим подтверждения остановаG0 X0 Y0 Z100 M1
M02Конец программы, без сброса модальных функцийM02
M03Начать вращение шпинделя по часовой стрелкеM3 S2000
M04Начать вращение шпинделя против часовой стрелкиM4 S2000
M05Остановить вращение шпинделяM5
M06Сменить инструментT15 M6
M07Включить дополнительное охлаждениеM3 S2000 M7
M08Включить основное охлаждение. Иногда использование более одного M-кода в одной строке (как в примере) недопустимо, для этого используются M13 и M14M3 S2000 M8
M09Выключить охлаждениеG0 X0 Y0 Z100 M5 M9
M13Включить охлаждение и вращение шпинделя по часовой стрелкеS2000 M13
M14Включить охлаждение и вращение шпинделя против часовой стрелкиS2000 M14
M17Конец подпрограммыM17
M25Замена инструмента вручнуюM25
M97Запуск подпрограммы, находящейся в той же программе (где P — номер кадра, в случае примера переход осуществится к строке N25), действует не везде, предположительно — только на станках HAASM97 P25
M98Запуск подпрограммы, находящейся отдельно от основной программы (где P — номер подпрограммы, в случае примера переход осуществится к программе O1015)M98 P1015
M99Конец подпрограммыM99
M30Конец программы, со сбросом модальных функцийM30

не больше одного кода в кадре

Параметры команд

Параметры команд задаются буквами латинского алфавита

Для фрезерных станков это дюймы в минуту (IPM) или миллиметры в минуту (mm/min),

Для токарных станков это дюймы за оборот (IPR) или миллиметры за оборот (mm/rev).

Система координат станка ЧПУ и Калибровка

Использование станков ЧПУ в производстве МДФ фасадов rover k

Работа на станках и обрабатывающих центрах ЧПУ тесно связана с системами координат, которые определяют положение основных частей станка и заготовок обрабатываемых деталей относительно друг друга.

Производители станков ЧПУ, в целях упрощения понимания устройства и работы своего оборудования, в качестве единой системы координат применяют стандартную декартову систему, которая используется в геометрии для описания позиции точки на плоскости или в пространстве. В качестве системы отсчета на станках ЧПУ используются оси X, Y, Z, которые определяют линейные перемещения основных узлов и агрегатов станка ЧПУ.

Читайте так же:
Термообработка титана вт1 0

оси станка чпуКруговые движения узлов и агрегатов станка ЧПУ, а также заготовок, закрепленных на вращающихся рабочих столах, обозначаются осями A (при вращении вокруг оси X), B (при вращении вокруг оси Y), C (при вращении вокруг оси Z).

В терминологии конструкция станка ЧПУ определяется возможностями обрабатывающего инструмента перемещаться в направлении осей координат. При возможном перемещении инструмента только по осям X, Y, Z станок ЧПУ определяется как 3-х осевой. При добавлении устройств позиционирования инструмента или заготовки на оси A, B, C, по отдельности или в группе по два, по три, станок ЧПУ будет определяться соответственно как 4-х, 5-ти или 6-ти осевой.

В устройстве станков ЧПУ также могут присутствовать вспомогательные оси. Они непосредственно не задействованы в обработке деталей и используются для перемещения вспомогательных устройств, например цепных или револьверных магазинов инструмента.

Калибровка станка ЧПУ

датчик калибровки 1Чтобы определить местоположение какого-либо элемента на станке, предварительно необходимо найти и выставить в базе данных станка начальную точку (или «абсолютный ноль») от которой производится отчет. Для этого перед началом работы выполняют калибровку (обнуление) основных и вспомогательных осей станка.

Калибровка станка ЧПУ, в зависимости от конструкции, может выполняться как вручную, так и в автоматическом режиме. Ручная калибровка производится на простейших 3-х осевых станках ЧПУ совмещением нулевой точки осей X, Y рабочего стола и оси вращения фрезерного шпинделя. Обнуление оси Z на таких станках может выполняться совмещением нижнего кончика инструмента и верхней плоскости рабочего стола или заготовки детали. Калибровка инструмента по координатной оси Z также может производиться в рабочем процессе при смене инструмента с использованием специального датчика калибровки и измерения инструмента.

Для калибровки станков ЧПУ с более сложным оборудованием запускается специальная программа, которая приводит в движение механизмы устройств и агрегатов, движущихся вдоль или вокруг основных координатных осей станка. «Абсолютный ноль» станка здесь определяется посредством срабатывания концевиков и датчиков расположенных на пути их движения.

База данных станка ЧПУ

база данных

Параметрические данные и координаты инструментов, агрегатов, линий упоров, магазинов инструмента и прочих рабочих элементов, как правило, должны быть прописаны в базе данных станка ЧПУ. База данных предназначена для хранения сведений об инструментах, агрегатах и управлении ими. Вся информация в ней прописана в виде числовых значений декартовых координат с поправкой на смещение относительно абсолютной начальной точки.

При программировании процессов обработки, база данных станка ЧПУ служит для составления управляющих программ, алгоритмов взаимодействия рабочих инструментов с заготовками деталей и их безопасного перемещения относительно других элементов станка.

Начальные точки станка ЧПУ

Для позиционирования деталей заготовок на рабочем столе станка ЧПУ используют начальные точки.

Начальная точка – это предварительно определенная в системе координат станка ЧПУ точка («ноль»), от которой производится отсчет положения какого-либо элемента на станке. Кроме абсолютной начальной точки, которая определяется способом калибровки осей станка и его устройств, на станке есть «нули рабочего стола». Это программируемые начальные точки рабочих зон станка ЧПУ, от которых производится отсчет программы обработки.

начальные точки чпу

Использование начальных точек рабочего стола особенно актуально на станках и обрабатывающих центрах ЧПУ имеющих несколько линий упоров и позволяющих производить обработку одновременно нескольких заготовок деталей. В этом случае системе координат рабочего стола станков ЧПУ различают следующие типы начальных точек:

  • Прямые начальные точки. В качестве точки отсчета используется угол детали, расположенный на точке пересечения линий упоров осей X, Y, соответствующей «абсолютному нолю» системы координат рабочего стола.
  • Зеркальные (симметричные) начальные точки. Отсчет и позиционирование заготовок производится от линии упоров оси Y рабочего стола противоположной линии упоров абсолютной начальной точки. Используются для реализации левых и правых симметричных частей мебели.
  • Смещенные прямые и зеркальные начальные точки. Детали располагаются на линиях упоров противоположных нулевым линиям упоров. Отсчет производится из расчета смещения на величину размера рабочего стола за вычетом размера детали.
Читайте так же:
Почему мигает неоновая лампа

Таким образом, без дополнительной подготовки можно точно позиционировать несколько заготовок на рабочем столе станка ЧПУ и по единой программе изготавливать симметричные детали мебельных корпусов, фасадов и т.д.

Привязка инструмента на станках с ЧПУ

Управляющая программа создана, инструмент выбран и установлен в револьверную головку. Однако система координат станка пока не понимает, в каких точках пространства находятся режущие кромки фрезы или резца. Чтобы программа отработала корректно, нужно выполнить следующий этап наладки — привязку инструмента. Последняя заключается в определении вылетов фрезы, сверла или резца по осям и занесении полученных значений в УП.

При выполнении операции необходимо учитывать следующие нюансы:

  • какую поверхность будет обрабатывать инструмент — внутреннюю или наружную;
  • направление вращения шпинделя;
  • радиус режущей кромки.

Привязка инструмента на станках с ЧПУ выполняется со стойки, поэтому наладчик должен хорошо знать систему и команды, которые используются для установки каждого вида корректоров.

Привязка инструмента на станках с ЧПУ

Зачем выполнять привязку?

Для понимания важности операции предлагаем рассмотреть один из наиболее простых частных случаев — установку корректора на длину сверла.

В токарном станке ось вращения заготовки (шпинделя) совпадает с осью любого инструмента, который зажимают в патрон задней бабки, и значение имеет только его длина. В результате неправильной или неточной привязки инструмента к ЧПУ глубина отверстия окажется больше или меньше, чем нужно.

Ошибки в установке корректоров приводят к тому, что инструмент врезается в шпиндель, стол, заготовку на рабочем или холостом ходу. В лучшем случае вы потеряете фрезу, а в худшем — станок придется остановить на длительный и дорогой ремонт.

Когда привязка необходима?

На любом станке ЧПУ привязку инструмента делают перед тем, как выставить ноль детали. Вылеты инструментов определяют в следующих случаях:

  • Если у вас многошпиндельный станок или установлена револьверная головка, нужно сделать привязку для каждого инструмента перед началом обработки. Система станка запомнит все значения.
  • Если у вас простой станок с одним шпинделем, привязываться нужно каждый раз после смены фрезы или резца.
  • После переточки инструмента. Чтобы задать уменьшение длины сверла или изменение размера напайки резца, можно воспользоваться корректорами износа, которые есть в большинстве систем. Однако, если вы только начинаете осваивать станок, лучше определять вылет инструмента каждый раз после переточки, чтобы не ошибиться.

После замены твердосплавной пластины на резцах привязка к ЧПУ станка чаще всего не требуется. Достаточно сделать контрольный замер обработанной им поверхности.

Без корректоров инструмент врезается в шпиндель, стол, заготовку

Способы привязки

Способ привязки инструмента к детали и станку выбирают в зависимости от вида обработки и требований к точности. Принципы определения координат режущих кромок одинаковы для всех станков, но таблицы корректоров, команды и клавиатура на стойках могут различаться. Поэтому мы остановимся только на перемещениях инструмента и измерении.

Привязка инструмента на токарно-фрезерных станках, как и другие операции по отладке управляющих программ, выполняется в режиме ручного ввода данных (MDI). Наладчик должен точно знать, какой именно код он прописывает, поскольку его исполнение происходит сразу же после ввода.

Торцевание

Для определения координаты резца по оси Z его аккуратно подгоняют к заготовке и обрабатывают ее торец. Не нужно снимать много материала — достаточно только «забелить» поверхность и совместить текущее положение инструмента с нулем станка. Перед остановкой шпинделя резец нужно вывести по оси X без изменения его положения по Z.

Точение по наружному диаметру и расточка

Для определения координаты по оси X резец подводят к боковой поверхности детали и протачивают ее с минимальным съемом материала до получения чистой поверхности. Необходимо обработать участок, достаточный для измерения диаметра. Именно этот размер нужно внести в таблицу, чтобы система рассчитала и запомнила координату. В этом случае резец отводят от детали по оси Z.

Читайте так же:
Подключение шуруповерта к зарядному устройству напрямую

Определение координаты расточного, резьбового или любого другого резца для внутренней обработки несколько отличается. Сначала необходимо привязать сверло и просверлить отверстие в заготовке, после чего выполнить его расточку. Обратите внимание, что напайка внутреннего резца «смотрит» в обратную сторону (т. е. находится с другой стороны от оси), поэтому в таблицу инструмента значение диаметра нужно вносить со знаком «минус», иначе координата будет определена неправильно.

Обкатка индикатором

Этот способ привязки инструмента на токарно-фрезерном ЧПУ с револьверной головкой напоминает центровку электродвигателя. К нему прибегают, когда необходимо совместить ось вращения шпинделя со сверлом или центровкой. Для работы понадобится механический индикатор часового типа и штатив с магнитным основанием. В патрон на револьверной головке устанавливают калиброванный цилиндрический пруток или сам инструмент, если гладкая часть его хвостовика выступает из зажимных кулачков.

На шпинделе закрепляют штатив с индикатором так, чтобы измерительный наконечник опирался на цилиндрическую поверхность хвостовика. Шпиндель проворачивают вручную и смотрят на показания индикатора. Передвижением револьверной головки по X и Y добиваются такого положения, в котором стрелка будет оставаться неподвижной в любом положении шпинделя, и его принимают за ноль.

Щупы или концевые меры

Если поверхность заготовки нельзя обрабатывать, для определения координат по Z и X можно использовать мерные плитки или щупы с известными размерами. Резец подводят к детали с зазором: так, чтобы концевая мера не проходила. На минимальной подаче отводят резец, пока она не войдет. Толщину плитки нужно добавить в корректоры.

Бумага

Этот способ подойдет, когда к обработке не предъявляют высоких требований по точности: раскрой листовых материалов, обработка фасадов. Вместо концевой меры используют бумагу, а фрезу приближают к заготовке до тех пор, пока лист не зажмет между ними.

Электронные датчики

Многие станки комплектуются электронными датчиками привязки инструмента, которые также называют tool setter. Работать с ними удобно и быстро, определение координат выполняется в автоматическом режиме, что исключает вероятность ошибки. Tool setter вызывается командой со стойки. Инструмент подводится вручную на расстояние около 3 мм от датчика, после чего подается команда на определение координаты. В автоматическом режиме резец касается поверхности, а система станка сама делает расчет и вносит корректор в таблицу инструментов.

Также существуют датчики и комплектные измерительные системы, которые можно приобрести отдельно. Один из наиболее известных производителей такого оборудования — Renishaw. Компания изготавливает контактные датчики для привязки инструмента, деталей, проведения высокоточных технических измерений.

Определение координат инструмента на станках Multicut

Компания Multicut — один из ведущих российских производителей фрезерно-гравировальных станков с ЧПУ. Мы предлагаем высоконадежное оборудование для обработки различных материалов, в том числе дерева, пластиков и композитов. В нашем ассортименте представлены одно-, двух- и трехшпиндельные серии агрегатов, а также станки с ЧПУ с автоматической сменой режущего инструмента.

Наше оборудование совместимо со стандартными фрезами и граверами. Их преимущество состоит в том, что данные для привязки уже определены производителем. Их можно копировать из технической документации (паспортов) и вносить в таблицу станка. Если вы собираетесь использовать другой режущий инструмент, мы подберем и включим в комплект поставки подходящие электронные датчики.

Чтобы посмотреть видео о нашем оборудовании, подпишитесь на YouTube канал компании Multicut.

Для получения технической помощи и консультаций свяжитесь с сервисной службой в Москве или Новосибирске по контактным телефонам.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector