Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Медь и её сплавы. Определение, назначение, маркировка

Медь и её сплавы. Определение, назначение, маркировка.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Чистую медь применяют для электротехнических целей и поставляют в виде полуфабрикатов — проволоки, прутков лент листов, полос и труб. Из-за малой механической прочности чистую медь не используют как конструкционный материал, а применяют ее сплавы с цинком, оловом, алюминием, кремнием, марганцем, свинцом Леги­рование меди обеспечивает повышение ее механических, технологичес­ких и эксплуатационных свойств. Различают три группы медных спла­вов: латуни, бронзы, сплавы меди с никелем. Латуни. Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк. При введении других элементов (кроме цинка) латуни называют специальными по наименованию элементов, например железофосфорномарганцевая латунь и т.п. В сравнении с медью латуни обладают большей прочностью коррози­онной стойкостью и лучшей обрабатываемостью (резанием литьем давлением). Латуни содержат до 40-45% цинка. При большем содержании цинка снижается прочность латуни и увеличивается ее хрупкость Содержание легирующих элементов в специальных латунях не превы­шает 7-9%. Сплав обозначают начальной буквой Л — латунь. Затем следуют пер­вые буквы основных элементов образующих сплавов: Ц-цинк 0-олово, Мц — марганец, Ж — железо, Ф — фосфор, Б — бериллий и т.д. Бронзы. Сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием называют бронзами. В зависимости от введенного элемента бронзы называют оловянными, алюминиевыми и т.д. Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатыва­емостью резанием. Для повышения механических характеристик и при­дания особых свойств бронзы легируют железом, никелем, титаном, цин­ком, фосфором. Сплавы меди с никелем. Медноникелевые сплавы — это сплавы на ос­нове меди, в которых основным легирующим компонентом является никель. По назначению их подразделяют на конструкционные и элект­ротехнические сплавы.

Куниалu (медь -никель -алюминий) содержат 6—13% никеля, 1,5-3% алюминия, остальное — медь. Куниали подвергают термической обработ­ке (закалка — старение). Куниали служат для изготовления деталей повы­шенной прочности, пружин и ряда электромеханических изделий.

Нейзильберы (медь — никель — цинк) содержат 15% никеля, 20% цинка, остальное — медь. Нейзильберы имеют приятный белый цвет, близкий кцвету серебра. Они хорошо сопротивляются атмосферной коррозии; при­меняют в приборостроении и производстве часов.

Мельхиоры (медь — никель и небольшие добавки железа и марганца до 1 %) обладают высокой коррозионной стойкостью, в частности в морской воде. Их применяют для изготовления теплообменных аппаратов, штам­пованных и чеканных изделий.

Капель (медь — никель 43% — марганец 0,5%) — специальный сплав с высоким удельным электросопротивлением, используемый в электротех­нике для изготовления электронагревательных элементов.

Константан (медь — никель 40% — марганец 1,5%) имеет такое же на­значение, как и манганин.

24.Алюминий и его сплавы. Определение, назаначенеи, маркировка. Алюминий — легкий металл серебристо-белого цвета с высокой элект­ро- и теплопроводностью; плотность его 2700кг/м^3, температура плавле­ния в зависимости от чистоты колеблется в пределах 660—667°С. В ото­жженном состоянии алюминий имеет малую прочность (σв=80—100 МПа), низкую твердость (НВ 20-40), но обладает высокой пластич­ностью (β=35-40%). Первичный алюминий делят натри группы: алюминий особой чис­тоты (маркаА999), высокой чистоты (четыре марки) и технической чис­тоты. Предусмотрено восемь марок, допускающих содержание приме­сей 0,15-1%. Название марки указывает ее чистоту. Например, марка А8 обозначает, что в металле содержится 99,8% алюминия, а в марке А99—99,99% алюминия. Алюминий технической чистоты получают в электролизных ваннах. Путем электролитического рафинирования алю­миния-сырца получают алюминий марок высокой чистоты. Алюминий хорошо обрабатывается давлением, сваривается, но плохо поддается резанию. Имеет высокую стойкость против атмосферной кор­розии и в пресной воде. На воздухе алюминий быстро окисляется, по­крываясь тонкой плотной пленкой окиси, которая не пропускает кисло­род в толщу металла, что и обеспечивает его защиту от коррозии. В качестве конструкционных материалов алюминий широко приме­няют в виде сплавов с другими металлами и неметаллами (медь, марга­нец, магний, кремний, железо, никель, титан, бериллий и др.). Алюми­ниевые сплавы сочетают в себе лучшие свойства чистого алюминия и . повышенные прочностные характеристики легирующих добавок. Так, железо, никель, титан повышают жаропрочность алюминиевых сплавов. Медь, марганец, магний обеспечивают упрочняющую термообработку алюминиевых сплавов. В результате легирования и термической обра­ботки удается в несколько раз повысить прочность (σВ с 100 до 500 МПа) и твердость (НВ с 20 до 150) алюминия. Все сплавы алюминия подразде­ляют на деформируемые и литейные. Деформируемые алюминиевые сплавы. Деформируемые алюминиевые сплавы применяют для получения листов, ленты, фасонных профилей, проволоки и различных деталей штамповкой, прессованием, ковкой. В зависимости от химического состава деформируемые алюминиевые сплавы делят на 7 групп; содержат 2—3 и более легирующих компонента в количестве 0,2—4% каждого. Например, сплавы алюминия с магнием и марганцем; алюминия с медью, магнием, марганцем и др.

Читайте так же:
Техника безопасности при работе с паяльником

Деформируемые сплавы разделяют на сплавы, упрочняемые и не уп­рочняемые термической обработкой. Деформируемые сплавы, подверга­емые механической и термической обработке, имеют буквенные обозна­чения, указывающие на характер обработки (см. примечания к табл. 9).

Термически не упрочняемые сплавы — это сплавы алюминия с марган­цем (Амц) и алюминия с магнием и марганцем (Амг). Он и обладают уме­ренной прочностью, высокой коррозионной стойкостью, хорошей сва­риваемостью и пластичностью (табл. 9).

Термически упрочняемые сплавы (см. табл. 9) приобретают высокие механические свойства и хорошую сопротивляемость коррозии только в результате термической обработки. Наиболее распространены сплавы алюминия с медью, магнием, марганцем (дюралюмины) и алюминия с медью, магнием, марганцем и цинком (сплавы высокой прочности).

Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном или искусственном старении. Для закалки сплавы нагревают до 500°С и охлаждают в воде. Естественное ста­рение производят при комнатной температуре в течение 5—7 сут.

25. Термопластические и термореактивные полимерные материалы. Среди термореактивных полимеров фенолформальдегидные являются наиболее распространенными. Исходными продуктами для получения этого вида полимеров являются фенол и формальдегид, которые подвергаются процессу поликонденсации. Отличительной чертой фенолформальдегидных полимеров является их коричневый цвет. Эти полимеры обладают набором превосходных свойств: хорошая адгезия ко многим материалам (ткани, дерево), превосходная сочетаемость с наполнителями и добавками. До отверждения они легко растворяются в ацетоне, спирте и иных растворителях, а после отверждения они обладают повышенной степенью прочности.
Являясь одной из разновидностей термореактивных полимеров, карбамидные полимеры представляют собой результат поликонденсации мочевины и формальдегида. Они характеризуются бесцветностью, отсутствием запаха, светостойкостью и рядом иных свойств.
Полиэфирные полимеры, в свою очередь, являют собой олигомерный продукт в состоянии вязкой жидкости, который может при включении отвердителей перейти в твердое состояние. Этот вид полимеров представляет собой материал, характеризующийся высокой степенью прочности, устойчивостью к химическому воздействию. Очень часто полиэфирные полимеры армируют стекловолокном, обеспечивающим снижение хрупкости материала.
Кроме того, к термореактивным полимерам относятся и эпоксидные полимеры, обладающие превосходными эксплуатационными свойствами, обеспечившими их широкое применение в самых различных областях.
Полиуретановые полимеры – ещё одна разновидность термореактивных полимеров, они также достаточно распространены, и их производство растет с каждым годом. Они устойчивы к истиранию, характеризуются высокими показателями прочности, что позволяет использовать их для изготовления подошв для обуви, шин и иной продукции. Кроме того, из полиуретановых полимеров получают пенопласты, поролон и ряд иных полимерных материалов.

Термопла́сты — полимерные материалы, способные обратимо переходить при нагревании в высокоэластичное либо вязкотекучее состояние. При обычной температуре термопласты находятся в твёрдом состоянии. При повышении температуры они переходят в высокоэластичное и далее — в вязкотекучее состояние, что обеспечивает возможность формования их различными методами. Эти переходы обратимы и могут повторяться многократно, что позволяет, в частности, производить переработку бытовых и производственных отходов из термопластов в новые изделия. Переработка термопластов в изделия не сопровождается необратимой химической реакцией. Пригодны к повторной обработке (формованию).

26.Модельный комплект для литья в песчано-глинистые формы. Литье в песчано-глинистые формы находит широкое применение при производстве крупногабаритных заготовок преимущественно из чугуна и стали. Для его технологического обеспечения изготавливается модельный комплект — набор приспособлений и инструментов, необходимых для изготовления формы. В этот набор входят:

• модель отливки — деревянное изделие, полностью соответствующее по форме и размерам будущей отливке и предназначенное для получения в песчано-глинистой смеси соответствующей полости;

• стержневые ящики — для изготовления стержней, которые устанавливаются в форму с целью создания внутренних полостей или отверстий в отливке;

• модель литниковой системы — деревянное приспособление, предназначенное для образования в песчано-глинистой смеси системы каналов, подводящих расплав в полость формы и отводящих газы;

• опока — приспособление в виде жесткой рамы (открытого ящика), служащее для удержания в нем формовочной смеси при изготовлении форм, транспортирования и заливки металлом;

• подмодельная плита — приспособление, на котором монтируются рассмотренные выше элементы.

Операции могут выполняться вручную, механизированными и автоматизированными способами.

Модельная оснастка изготавливается из дерева, металла, пластмасс, гипса и др. материалов. Выбор материала оснастки зависит от применяемой технологии литья и серийности производства отливок.

Читайте так же:
Пусковое реле для электродвигателя 220 вольт

Приготовление формовочных и стержневых смесей состоит в подготовке и смешивании формовочных материалов, к которым относятся огнеупоры (кварцевый песок, шамот — огнеупорный кирпич); связующие — для придания смеси прочности (глина, смолы, жидкое стекло).

4.2.3. Сплавы меди с никелем и другими металла­ми

Сплавы меди с никелем и другими металла­ми однофазны, со структурой твердых растворов, поставля­ются они в виде полуфабрикатов – листов, полос, проволоки.

Мельхиор – МН19 (19 – 20 % никеля) и нейзиль­бер – МНЦ15-20 (15 % никеля, 20 % цинка) обладают вы­сокой коррозионной стойкостью во многих агрессивных сре­дах. Применяются в приборостроении, для бытовых изделий, посуды и украшений. Для изделий высокой прочности и кор­розионной стойкости (кроме азотной кислоты) используется сплав монель, содержащий кроме меди и никеля железо и марганец – МНЖМц68-2,5-1,5 (68 % никеля; 2,5 % железа; 1,5 % марганца).

Сплавы меди с никелем и марганцем применяются как реостатные. В измерительных схемах и для прецизионных сопротивлений с рабочей температурой до 200°С используется манганин – МНМц3-12 (3 % никеля, 12 % марганца). Сплавы константан – МНМц40-1,5 (40 % никеля; 1,5 % марганца) – и копель – МНМц45-0,5 (45 % никеля; 0,5 % марганца) – обла­дают максимальным электросопротивлением и термоЭДС. Они используются в основном для термопар с рабочей температурой до 500°С.

5. Антифрикционные (подшипниковые) сплавы

Опорами вращающегося вала являются подшип­ники. Несмотря на широкое применение подшипников каче­ния (шариковых, роликовых, игольчатых) подшипники тре­ния скольжения часто используются в узлах трения. Подшип­ник может быть цельный (втулочный) или из двух поло­вин – вкладышей.

Сплавы, из которых изготавливают вкладыши (или только их рабочую часть), называются подшипниковыми. Антифрикционными называют сплавы, обеспечивающие ми­нимальный коэффициент трения между поверхностью вкла­дыша подшипника и шейкой стального вала.

Основные требования к подшипниковым сплавам:

низкий коэффициент трения при работе в паре с валом;

гетерогенная (неоднородная) структура, «мягкая» основа и «твердые» включения;

хорошая прирабатываемость к шейке вала;

низкая стоимость (вкладыш заменить легче, чем из­готовить вал);

высокая теплопроводность для отвода теплоты из зоны контакта трущихся поверхностей.

Подшипниковые (антифрикционные) сплавы можно раз­делить на группы: черные, желтые, белые, композиционные.

Черные – антифрикционные чугуны, которые в свою очередь делятся на серые (АЧС-1; АЧС-2), ковкие (АЧК-1; АЧК-2) и высокопрочные (АЧВ-1; АЧВ-2). Они имеют низкую стоимость, выдерживают большие удельные давления, изно­состойкие. Их основной недостаток – высокий коэффициент трения. Рекомендуются для изготовления подшипников с малыми скоростями вращения вала.

Желтые – подшипниковые сплавы – бронзы. Они при­меняются в ответственных подшипниках, работающих с большими удельными давлениями, с ударными нагрузками, при больших скоростях. Их основной недостаток – высокая стоимость. В качестве подшипниковой в основном использу­ется свинцовая бронза, содержащая 30 % свинца (БрС30).

Белые – антифрикционные сплавы на основе олова и свинца, называются баббиты. Применение мягких легкоплав­ких подшипниковых сплавов обеспечивает лучшую сохран­ность шейки вала. Они имеют минимальный коэффициент трения со сталью и хорошо удерживают смазку. Баббиты, ввиду низкой прочности, наносят заливкой на рабочую по­верхность стального или бронзового вкладыша.

Оловянный баббит Б83 – сплав системы «олово – сурьма – медь» (табл. 5). С целью упрочнения слишком мягкого (НВ5) и пластичного ( = 40 %) олова в сплав добавляют сурьму (11%), и структура его становится гетерогенной.

Одна фаза – «мягкая» основа баббита – твердый раст­вор сурьмы (и частично меди) – в олове обладает большей твердостью и прочностью при сохранении высокой пластич­ности. Другая фаза – химическое соединение олова и сурь­мы – SnSb. Крупные кристаллы этого соединения – «твер­дые» включения – обладают высокой твердостью. Таким образом, сурьма упрочняет «мягкую» основу баббита и спо­собствует образованию «твердых» включений.

Характеристика подшипниковых сплавов

Среднее содержание элементов, %

Pb – 97; Ca – 1,15; Na – 0,9; Al – 0,2;

Сплавы «олово – сурьма» склонны к неоднородности (ликвации по удельному весу). Для предупреждения ее вводится медь, которая, практически не растворяясь в олове, образует кристаллы Cu3Sn (Cu6Sn5). Эти кристаллы иголь­чатой формы, зарождаясь первыми при кристаллизации, создают как бы «скелет» сплава и препятствуют его расслое­нию. Кроме того, в структуре баббита они выполняют роль «твердых» включений. Баббит Б83 обладает наилучшим сочетанием антифрикционных и механических свойств, высо­кой коррозионной стойкостью. Из-за дефицитности олова он используется только в особо ответственных скоростных узлах трения для вкладышей тяжелонагруженных подшипников (мощные паровые турбины, турбокомпрессоры и т. п.).

Для подшипников более широкого применения (в про­катных станах, автотракторных двигателях – машинах сред­ней нагруженности) основным компонентом в баббите явля­ется свинец.

Читайте так же:
Удг 250 таблица деления

Свинцово-оловянно-сурьмяный баббит Б16 – сплав си­стемы «свинец – олово – сурьма – медь» (см. табл. 5). Олово частично раст­воряется в свинце. Свинец (точнее, твердый раствор) и сурьма образуют эвтектику (НВ18). Олово с сурьмой, как и в Б83, образуют кристаллы SnSb, а медь с сурьмой – химическое соединение Cu2Sb. Это соединение играет ту же роль, что и Cu3Sn в оловянном баббите, т. е. предупреждает ликвацию по удельному весу.

«Мягкую» основу структуры сплава составляет эвтекти­ка: кристаллы свинца (точнее, твердого раствора) и кристал­лы твердого раствора олова и свинца в сурьме. Крупные кристаллы SnSb и кристаллы Cu2Sb – «твердые» включения. Баббит Б16 отличается пониженной пластичностью, так как «мягкая» основа структуры – эвтектика.

На железнодорожном транспорте сплав Б16 исполь­зуется для заливки вкладышей моторно-осевых подшипников тяговых двигателей локомотивов.

Наиболее дешевый – свинцовый баббит, который часто называют по второму компоненту кальциевым, БКА – сплав системы «свинец – кальций – натрий – алюминий – цинк» (см. табл. 5). Кальций прак­тически не растворяется в свинце и образует с ним химиче­ское соединение Pb3Са. Натрий (до 0,4 %), весь алюминий и цинк, растворяясь в слишком мягком (НВ4) и пластичном ( = 45 %) свинце, повышают его твердость и прочность, тем самым улучшают механические и антифрикционные свойства сплава. Нерастворившаяся часть натрия образует со свин­цом химическое соединение Pb3Na. Структура кальциевого баббита: «мягкая» основа – твердый раствор натрия, алюми­ния и цинка в свинце, «твердые» включения – Pb3Са, Pb3Na.

Свинцовые баббиты дешевле, так как не содержат дефи­цитных элементов. Сплав БКА быстрее прирабатывается к шейке оси и не требует тщательной пригонки «по месту», имеет более высокие, чем оловянный, твердость и прочность. Ис­пользуется в тяжелонагруженных узлах трения (вагоно­-, судо-, дизелестроение и т. п.).

К белым антифрикционным сплавам также относятся сплавы «ЦАМ» системы «цинк – алюминий – медь» (см. табл. 5). «Мягкая» основа структуры этих сплавов – эвтектика [Zn + Al + CuZn3], а «твердые» включения – кристаллы химического соединения CuZn3. Сплавы ЦАМ10-5 и ЦАМ5-10 уступают баббитам на оловянной основе по пластичности, коэффициентам трения и линейного расширения. Эти сплавы примерно равно­ценны свинцовым баббитам, но в три раза превосходят их по прочности.

Металлокерамические композиционные подшипниковые сплавы получают прессованием и спеканием порошков, например порошка бронзы или железа с графи­том (1 – 4 %). Пористость сплава после спекания составляет 15 – 30 %. Сплавы пропитывают смазочными материалами, что способствует снижению коэффициента трения и износа подшипникового узла.

Гуляев А. П. Металловедение / А. П.Гуляев. М.: Металлургия, 1977.

БерлинВ. И. Транспортное материаловедение / В. И.Берлин, Б. В.Захаров, П. А.Мельниченко. М.: Транспорт, 1982.

Материаловедение / Под ред. Б. Н. Арзамасова. М.: Машиностроение, 1986.

ЛахтинЮ. М. Материаловедение / Ю. М.Лахтин. М.: Машиностроение, 1984.

ТравинО. В. Материаловедение / О. В.Травин, Н. Т.Травина. М.: Металлургия, 1989.

МозбергР. К. Материаловедение / Р. К.Мозберг. М.: Высшая школа, 1991.

ЛахтинЮ. М. Материаловедение / Ю. М.Лахтин, В. Л.Леонтьева. М.: Машиностроение, 1990.

Конструкционные материалы: Справочник / Под ред. Б. Н. Арзамасова. М.: Машиностроение, 1990.

Материаловедение и технология металлов: Учебник для вузов / Г. П. Фе-тисов, М. Г.Кариман, В. М.Матюнин и др. М.: Высшая школа, 2002.

Материаловедение и технология конструкционных материалов для железнодорожной техники / Под ред. Н. Н. Воронина. М.: Маршрут, 2004.

Сплавы меди

Спла́вы ме́ди — сплавы, основным компонентом (или одним из компонентов) которых является медь.

Исключениями являются сплавы серебра, золота и меди (нaпp. Сибуити), которые, даже если они содержат только 10 % одного из них, уже называются сплавами этих металлов, хотя они содержат в основном медь (Биллонные монеты ).

Содержание

Общие особенности [ править | править код ]

В зависимости от вида легирующих компонентов медные сплавы могут иметь высокие электро- и теплопроводность, пластичность и прочность при высоких температурах, могут быть устойчивыми к износу и агрессивным средам, а также высокоупругими. Сплавы меди с другими металлами обычно содержат не более 10 % основного легирующих элемента, а остальные компоненты (в сложных сплавах) — в ещё меньших количествах. Исключением является лишь латуни, содержащие цинк в значительно больших пропорциях. В присутствии больших количеств легирующих элемента сплавы становятся хрупкими.

Добавки к двойным медно-цинковым сплавам в незначительных количествах олова, алюминия, никеля, кремния, марганца, железа, свинца повышают прочность, твёрдость, обрабатываемость резанием, предоставляют хорошие литейные свойства.

Читайте так же:
Сделать изделия на продажу

Медные сплавы получают сплавлением меди с другими химическими элементами или их сплавами (лигатурами) в пламенных или электрических (дуговых, индукционных, высокочастотных, печах сопротивления) печах. При плавке для защиты от окисления используют древесный уголь, флюс или плавку проводят в вакууме. Некоторые медные сплавы получают путём электролиза комплексных водных растворов или диффузии в поверхностные слои металлических изделий. Однофазные низколегированные сплавы легче деформируются при комнатной температуре, чем высоколегированные — с двухфазной структурой. При высоких температурах двухфазные сплавы деформируются легче однофазных.

Термическая обработка (закалка и старение) медных сплавов в ряде случаев повышает прочность, увеличивает пластичность (закалка), уменьшает внутренние напряжения (отжиг).

Различают медные сплавы:

  • литейные, которым свойственны значительная жидкотекучесть и небольшая усадка;
  • деформируемыe, которые обрабатывают давлением в горячем или холодном состоянии;
  • порошковые.

Медные сплавы используют преимущественно в качестве антифрикционных, как электротехнические, жаропрочные, конструкционные, коррозионностойкие и пружинные материалы. Применяют их в машино-, авиа-, приборо- и судостроении, в электротехнической промышленности, при изготовлении пароводяной арматуры, художественных изделий, посуды и т. п.

Наиболее известные сплавы меди [ править | править код ]

     — с оловом или другими элементами:

      ; ; ; ; ; ;

    К медным сплавам относятся:

    • бронзы куда входят: оловянные (оловянистые) бронзы или просто бронзы — сплавы меди с оловом, которые делятся на бронзы оловянные, обрабатываемых давлением по ГОСТ 5017-74 (например, БрО6,5Ф0,4; БрО4Ц3; БрО7Ф0, 2 и т. д.) и бронзы оловянные литейные по ГОСТ 613-79 (например, БрО3Ц7С5Н1; БрО5Ц5С5, БрО10Ц2 и т. п.). усадка бронзы очень мала при литье, менее 1 %, в то время как усадка латуни и чугуна составляет около 1,5 %, а стали более 2 %.;
    • бронзы безоловянные, обрабатываемые давлением по ГОСТ 18175-78, в числе которых:
    • алюминиевая бронза (напр. БрА7) (напр. БрК3Мц1) (напр. БрК1Н3)
    • Кадмиевая и магниевая бронзы (напр. БрКд1 (CuCd1), БрМг0,3)
    • бериллиевая бронзa (напр. Брб2)
      • бронзы безоловянные литейные по ГОСТ 493-79 (например, БрА10Ж3Мц2, БрС30, БрС30Н2 и т. п.);

      Медно-серебряные сплавы [ править | править код ]

      Для повышения прочности за счёт образования твёрдого раствора в медь добавляют от 0,03 до 0,12 % серебра. Достижимые значения прочности на разрыв составляют максимум 270 Н / мм². Эти сплавы используются в электротехнике для коллекторных колец, контактов и коммутационных шин.

      Медно-магниевые сплавы [ править | править код ]

      Содержание магния составляет от 0,2 % до 0,8 %. Эти сплавы используются для силовых кабелей в телекоммуникациях. Кроме того, холоднотянутые воздушные провода используются в воздушных контактных линиях.

      Проводниковые материалы в электроустановках

      В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

      Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

      Для изготовления электрических проводников применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

      медьЭлектропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. Удельное сопротивление меди при 20° С составляет 0,0172—0,018 ом х мм2/м.

      Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

      Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

      Латуни — сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. Удельное сопротивление латуни 0,031 — 0,079 ом х мм2/м. Различают латунь — томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

      контакт из латуни

      Бронзы — сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. бронза в электротехникиУдельное сопротивление бронзы 0,021 — 0,052 ом х мм 2 /м.

      Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

      Алюминий — по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° — 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 — 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

      Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 — 0,029 ом х мм 2 /м.

      При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

      При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

      алюминий в электротехникеДля изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

      Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины — сплав алюминия с медью и марганцем.

      Силумин — легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

      Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

      Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

      Алюминиевый деформируемый сплав марки АД , имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

      Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

      Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 — 98,15 и прочих примесей 1,85 -2,65.

      Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

      Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

      алюминий

      Железо — температура плавления 1539°С. Плотность железа — 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

      В электротехнике применяют стали различных марок, например:

      Углеродистые стали — ковкие сплавы железа с углеродом и с другими металлургическими примесями.

      Удельное сопротивление углеродистых сталей 0,103 — 0,204 ом х мм 2 /м.

      Легированные стали — сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

      В качестве добавок в сплавы, а также для изготовления припоев и осуществления защитных покрытий токопроводящих металлов широко применяют:

      кадмийКадмий — ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

      Никель — температура плавления 1455°С. Удельное сопротивление никеля 0,068 — 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

      Олово — температура плавления 231,9°С. Удельное сопротивление олова 0,124 — 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

      Свинец — температура плавления 327,4°С. Удельное сопротивление 0,217 — 0,227 ом х мм 2 /м. Свинец применяется в сплавах с другими металлами как кислотоупорный материал. Добавляется в паяльные сплавы (припои).

      Серебро — очень ковкий, тягучий металл. Температура плавления серебра 960,5°С. Серебро — лучший проводник тепла и электрического тока. Удельное сопротивление серебра 0,015 — 0,016 ом х мм 2 /м. Серебро применяется для защитного покрытия (серебрения) поверхности металлов.

      Сурьма — блестящий хрупкий металл, температура плавления 631°С. Сурьма применяется в виде добавок в паяльные сплавы (припои).

      Хром — твердый, блестящий металл. Температура плавления 1830°С. На воздухе при обычной температуре не изменяется. Удельное сопротивление хрома 0,026 ом х мм 2 /м. Хром применяется в сплавах и для защитного покрытия (хромирования) металлических поверхностей.

      Цинк — температура плавления 419,4°С. Удельное сопротивление цинка 0,053 — 0,062 ом х мм 2 /м. Во влажном воздухе цинк окисляется, покрываясь слоем окиси, являющимся защитным по отношению к последующим химическим воздействиям. В электротехнике цинк применяется в качестве добавок в сплавы и припои, а также для защитного покрытия (цинкования) поверхностей металлических деталей.

      Проводниковые материалы в электротехнике

      Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

      голоса
      Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector