Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсные блоки питания. Виды и работа. Особенности и применение

Импульсные блоки питания. Виды и работа. Особенности и применение

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Impulsnye bloki pitaniia ustroistvo

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

Impulsnye bloki pitaniia skhema 1

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

Impulsnye bloki pitaniia skhema 2

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Читайте так же:
Ручной клепальник для вытяжных заклепок
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Схема лабораторного импульсного блока питания на микросхеме IR2153
с регулировкой уровня выходного напряжения 1,5-50В (3А), устройством мягкого пуска и защитой от токовых перегрузок и КЗ.

Продолжим работу с картиной неизвестного художника «Девочка с персиками и импульсным блоком питания».
Ощущение свежести, молодости, радостно-спокойного настроения создаётся, прежде всего, когда мы рассматриваем девочку, которая, слегка вскинув брови и излучая тихий свет, ласково поглаживает металлический кожух лабораторного ИБП, расположившегося на белоснежной скатерти большого деревянного стола.
С удовольствием позируя художнику, сомкнув губы и пристально всматриваясь в нас, она задумалась о чем-то.

А задумалась она, скорее всего, о том, что импульсный блок питания и лабораторный блок питания — это несколько разные вещи, где-то даже, не вполне совместимые.
Профессиональный мощный лабораторный источник питания с регулируемым выходным напряжением — это здоровый и тяжёлый металлический ящик, с могучими силовыми 50-ти герцовыми трансформаторами, классическими аналоговыми стабилизаторами, и не подвластный ни современным схемотехническим изыскам, ни транспортировке посредством неокрепших девичьих рук.
Зато такую вещь не стыдно подключить к любой самой чувствительной схеме с обострённой реакцией на различные типы наводок по питающим цепям.

Так вот! Такие лабораторные БП мы на этой странице рассматривать не будем!
Для большинства радиолюбительских поделок сгодится и импульсный агрегат. О том, чтобы он не сильно плевался импульсными помехами, как в бытовую электросеть, так и в нагрузку — внимательно позаботимся в рамках данной передовицы.

Читайте так же:
Сделать станок для блоков своими руками

И, как водится, начнём с жизненно важной схемы (Рис.1), обеспечивающей плавный пуск ИБП и осуществляющей защиту всего устройства от токовых перегрузок и КЗ.

Обстоятельный «разбор полётов» данного узла мы провели на странице Ссылка на страницу, для желающих ознакомиться — добро пожаловать по ссылке.

Далее приведём схему собственно импульсного понижающего преобразователя с регулируемым импульсным стабилизатором напряжения на борту.

Технические характеристики блока питания с импульсным стабилизатором напряжения:

Входное переменное напряжение 180. 240 В,
Регулируемое выходное напряжение 1,5. 50 В,
Выходной ток во всем диапазоне напряжений, не более 3 А,
Срабатывание защиты по выходному току 3 А,
Срабатывание защиты по входному току 1,5 А,
Уровень пульсаций выходного напряжения, не более 15 мВ.

По большому счёту, всё нарисованное на схеме (Рис.2) мы уже так же подробно обсудили на различных страницах сайта. Поэтому, чтобы не повторяться, приведу ссылки на эти материалы:

Основная часть импульсного блока питания, выполненная на DA1, T1, T2, Tr1, описана на прошлой странице Ссылка на страницу.
Импульсный регулируемый стабилизатор напряжения на микросхеме LM2576HV-ADJ с картинками — на странице Ссылка на страницу

Импульсный трансформатор намотан на низкочастотном ферритовом кольце EPCOS N87 с габаритной мощностью 265 Вт и размерами R 30,5×20,0×12,5.
Первичная обмотка содержит 63 витка обмоточного провода диаметром 0,7мм,
Вторичная — 23 витка провода диаметром 1,2мм.

Как правильно мотать эти обмотки, и что делать, если под рукой не оказалось сердечника приведённого типоразмера, опять же, подробно и, опять-таки, с картинками расписано на странице Ссылка на страницу

Поскольку устройство работает в импульсном режиме с достаточно высоким КПД, полупроводники не нуждаются в больших теплоотводах. В нашем случае, для рассевания тепла транзисторов Т1, Т2 достаточно теплоотвода суммарной площадью 100 см2. Такие же радиаторы вполне сгодятся и для выходного выпрямительного моста, и для интегрального стабилизатора DA2.

Если работа источника питания предполагается с нагрузками, не критичными к пульсациям выходного напряжения, вполне допустимо отпочковать от схемы (Рис.2) элементы L2, С9, С10. Уровень пульсаций выходного напряжения в этом случае возрастёт до величины 120-200 мВ.

Как работает импульсный блок питания

Многих радиолюбителей интересует, как работает и на каких механизмах базируется импульсный блок питания. Подробно рассмотрим на примере блока от двд плейера BBK DV811X. Данный блок был выбран потому, что все компоненты схемы здесь стоят свободно, понятно и не залиты клеем. Это очень поможет новичкам разобраться с принципом их работы. Для сравнения типичный блок питания от ноутбука. Сложно сразу понять, что здесь и где.
Для четкого разъяснения всех моментов построим принципиальную схему. Максимально просто расскажем о каждом элементе, зачем он тут стоит и какую функцию выполняет.

Купить импульсные источники питания в этом китайском магазине.

Рассмотрим общие принципы работы блоков питания.
Для начала линейный.

1

В нем сетевое напряжение подается на трансформатор, понижающий его после чего стоит выпрямитель, фильтр и стабилизатор. Трансформаторы в таких блоках обладают большими габаритами и чаще всего находят свое применение в лабораторных источниках питания и аудио усилителях.

Теперь импульсные блоки питания. 220 вольт выпрямляется, после чего постоянное напряжение преобразуется в импульсы с большей частотой, которые подаются на высокочастотный трансформатор. С выходных обмоток снимается напряжение и выпрямляется. Далее подается через цепь обратной связи в формирователь импульсов для поддержания стабильного напряжение на выходе путем регулирования длительности или скважности импульсов. Выпрямленное фильтруется для получения стабильного значения.
Объяснение схемы
Клеммы — питание от сети 220 вольт и сетевое кнопка, и видим предохранитель. При превышении тока, проходящего через предохранитель, его номинального порога, он сгорает, размыкая блок питания с сетью. Дальше мы видим сетевой фильтр.

2

3

Он состоит из двух конденсаторов и дросселя подавления электромагнитных помех.
Посмотрим на типовую схему этого фильтра. Таким фильтром оснащено большинство современных устройств. Он состоит из 2 X-конденсаторов и дросселя подавления электромагнитных помех. Это конденсаторы, которые были специально разработаны для применения сетевых фильтров. Они выдерживают всплески напряжения до нескольких киловольт и сделаны из негорючих материалов. Для противофазных помех, которые возникают между фазой и нейтралью, является кратчайшим путем следования, а значит они не дают помехам сети попасть в блок питания и, соответственно, шумам блока питания в сеть.
Что касается дросселей подавления электромагнитных помех, существует множество видов, но в целом, это катушки, намотанные на ферритовый сердечник. Помехи наводят ток разных знаков, компенсируя друг друга. Стоит добавить еще про синфазные помехи — между фазой и корпусом или между нейтралью и корпусом. Для компенсации таких помех часто применяют так называемые Y-конденсаторы. В случае перегорания они точно будут разомкнуты. Они также выдерживают всплески напряжения. Пару таких конденсаторов подключают между проводами сети и корпусом. А корпус в свою очередь подключается к заземлению.

Читайте так же:
Утюг перестал выпускать пар

Если в вашей розетке не будет заземления, то корпус устройства будет кусаться около 110 Вольт с очень маленьким током. В данном блоке питания предусмотрены посадочные места под эти конденсаторы.

Но производитель вывел сетевой провод без заземления. Поэтому нет никакого смысла в данных конденсаторах в данном случае. После сетевого фильтра стоит диодный мост, выполненный на 4 диодах 1n 4007. Выпрямленное напряжение подается на конденсатор. Он сглаживает его форму. Конденсатор в данном случае на 22 микрофарада, 400 вольт. Напряжение на конденсаторе должно быть около 290-300 вольт. Теперь нам надо преобразовать его в высокочастотную последовательность импульсов. Для начала посмотрим, что это за микросхема. Маркировка dh321. Рассмотрим, как В целом устроены подобные преобразователи.

Принципиальная схема импульсного блока питания

Импульсные источники питания (ИИП) обычно являются достаточно сложными устройствами, из-за чего начинающие радиолюбители стремятся их избегать. Тем не менее, благодаря распространению специализированных интегральных ШИМ-контроллеров, есть возможность конструировать достаточно простые для понимания и повторения конструкции, обладающие высокими показателями мощности и КПД. Предлагаемый блок питания имеет пиковую мощность около 100 Вт и построен по топологии flyback (обратноходовой преобразователь), а управляющим элементом является микросхема CR6842S (совместимые по выводам аналоги: SG6842J, LD7552 и OB2269).

Внимание! В некоторых случаях для отладки схемы может понадобится осциллограф!

Технические характеристики

Размеры блока: 107х57х30 мм (размеры готового блока с Алиэкспресс, возможны отклонения).
Выходное напряжение: версии на 24 В (3-4 А) и на 12 В (6-8 А).
Мощность: 100 Вт.
Уровень пульсаций: не более 200 мВ.

На Али легко найти множество вариантов готовых блоков по этой схеме, например, по запросам вида «Artillery power supply 24V 3A», «Блок питания XK-2412-24», «Eyewink 24V switching power supply» и тому подобным. На радиолюбительских порталах данную модель уже окрестили «народной», ввиду простоты и надёжности. Схемотехнически варианты 12В и 24В различаются незначительно и имеют идентичную топологию.

Подробно методология проектирования ИИП вообще, и конкретно этой топологии в частности, тут рассматриваться не будет, ввиду слишком большого объёма информации — см. отдельные статьи.

Далее подробно разберём назначение элементов в схеме.

Импульсный блок питания мощностью 100Вт на контроллере CR6842S.

Назначение элементов входной цепи

Рассматривать схему блока будем слева-направо:

F1Обычный плавкий предохранитель.
5D-9Терморезистор, ограничивает бросок тока при включении блока питания в сеть. При комнатной температуре имеет небольшое сопротивление, ограничивающее броски тока, при протекании тока разогревается, что вызывает снижение сопротивления, поэтому в дальнейшем не влияет на работу устройства.
C1Входной конденсатор, для подавления несимметричной помехи. Ёмкость допустимо немного увеличить, желательно чтобы он был помехоподавляющим конденсатором типа X2 или имел большой (10-20 раз) запас по рабочему напряжению. Для надёжного подавления помех должен иметь низкие ESR И ESL.
L1Синфазный фильтр, для подавления симметричной помехи. Состоит из двух катушек индуктивности с одинаковым числом витков, намотанных на общем сердечнике и включенных синфазно.
KBP307Выпрямительный диодный мост.
R5, R9Цепочка, необходимая для запуска CR6842. Через неё осуществляется первичный заряд конденсатора C4 до 16.5В. Цепь должна обеспечивать ток запуска не менее 30 мкА (максимум, согласно даташиту) во всём диапазоне входных напряжений. Также, в процессе работы посредством этой цепочки осуществляется контроль входного напряжения и компенсация напряжения при котором закрывается ключ — увеличение тока, втекающего в третий пин, вызывает понижение порогового напряжения закрытия ключа.
R10Времязадающий резистор для ШИМ. Увеличение номинала данного резистора уменьшит частоту переключения. Номинал должен лежать в пределах 16-36 кОм.
C2Сглаживающий конденсатор.
R3, C7, VD2Снабберная цепь, защищающая ключевой транзистор от обратных выбросов с первичной обмотки трансформатора. R3 желательно использовать мощностью не менее 1Вт.
C3Конденсатор, шунтирующий межобмоточную ёмкость. В идеале должен быть Y-типа, либо же должен иметь большой запас (15-20 раз) по рабочему (сетевому!) напряжению. Служит для уменьшения помех. Номинал зависит от параметров трансформатора, делать слишком большим нежелательно.
R6, VD1, C4Данная цепь, запитываясь от вспомогательной обмотки трансформатора образует цепь питания контроллера. Также данная цепь влияет на цикл работы ключа. Работает это следующим образом: для корректной работы напряжение на седьмом выводе контроллера должно находиться в пределах 12.5 — 16.5 В. Напряжение 16.5В на этом выводе является порогом, при котором происходит открытие ключевого транзистора и энергия начинает запасаться в сердечнике трансформатора (в это время микросхема питается от C4). При понижении ниже 12.5В микросхема отключается, таким образом конденсатор C4 должен обеспечивать питание контроллера пока из вспомогательной обмотки не поступает энергии, поэтому его номинала должно быть достаточно чтобы удерживать напряжение выше 12.5В пока ключ открыт. Нижний предел номинала C4 следует рассчитывать исходя из потребления контроллера около 5 мА. От времени заряда данного конденсатора до 16.5В зависит время закрытого ключа и определяется оно током, который может отдать вспомогательная обмотка, при этом ток ограничивается резистором R6. Кроме всего прочего, посредством данной цепи в контроллере предусмотрена защита от перенапряжения в случае выхода из строя цепей обратной связи — при превышении напряжения выше 25В контроллер отключится и не начнёт работать пока питание с седьмого пина не будет снято.
R13Ограничивает ток заряда затвора ключевого транзистора, а также обеспечивает его плавное открытие.
VD3Защита затвора транзистора.
R8Подтяжка затвора к земле, выполняет несколько функций. Например, в случае отключения контроллера и повреждения внутренней подтяжки данный резистор обеспечит быстрый разряд затвора транзистора. Также, при корректной разводке платы обеспечит более короткий путь тока разряда затвора на землю, что должно положительно сказаться на помехозащищённости.
BT1Ключевой транзистор. Устанавливается на радиатор через изолирующую прокладку.
R7, C6Цепь служит для сглаживания колебаний напряжения на токоизмерительном резисторе.
R1Токоизмерительный резистор. Когда напряжение на нём превышает 0.8В контроллер закрывает ключевой транзистор, таким образом регулируется время открытого ключа. Кроме того, как уже говорилось выше, напряжение при котором будет закрыт транзистор также зависит от входного напряжения.
C8Фильтрующий конденсатор оптопары обратной связи. Допустимо немного увеличить номинал.
PC817Опторазвязка цепи обратной связи. Если транзистор оптопары закроется это вызовет повышение напряжения на втором выводе контроллера. Если напряжение на втором выводе будет превышать 5.2В дольше 56 мс, это вызовет закрытие ключевого транзистора. Таким образом реализована защита от перегрузки и короткого замыкания.
Читайте так же:
Минимальный диаметр шкива клиноременной передачи

В данной схеме 5-й вывод контроллера не используется. Однако, согласно даташиту на контроллер, на него можно повесить NTC-термистор, который обеспечит отключение контроллера в случае перегрева. Стабилизированный выходной ток данного вывода — 70 мкА. Напряжение срабатывания температурной защиты 1.05В (защита включится при достижении сопротивления 15 кОм). Рекомендуемый номинал термистора 26 кОм (при 27°C).

Параметры импульсного трансформатора

Поскольку импульсный трансформатор это один из самых сложных в проектировании элементов импульсного блока, расчёт трансформатора для каждой конкретной топологии блока требует отдельной статьи, поэтому подробного описания методологии тут не будет, тем не менее для повторения описываемой конструкции следует указать основные параметры используемого трансформатора.

Следует помнить, что одно из важнейших правил при проектировании — соответствие габаритной мощности трансформатора и выходной мощности блока питания, поэтому первым делом, в любом случае, выбирайте подходящие вашей задаче сердечники.

Чаще всего данная конструкция поставляется с трансформаторами, выполненными на сердечниках типа EE25 или EE16, либо аналогичных. Собрать достаточно информации по количеству витков в данной модели ИИП не удалось, поскольку в разных модификациях, несмотря на схожие схемы, используются различные сердечники.

Увеличение разницы в количестве витков ведёт к уменьшению потерь на переключение ключевого транзистора, но повышает требования к его нагрузочной способности по максимальному напряжению сток-исток (VDS).

Для примера, будем ориентироваться на стандартные сердечники типа EE25 и значение максимальной индукции Bmax = 300 мТ. В этом случае соотношение витков первой-второй-третьей обмотки будет равно 90:15:12.

Следует помнить, что указанное соотношение витков не является оптимальным и возможно потребуется корректировка соотношений по результатам испытаний.

Первичную обмотку следует наматывать проводником не тоньше 0.3мм в диаметре. Вторичную обмотку желательно выполнять сдвоенным проводом диаметром 1мм. Через вспомогательную третью обмотку течёт малый ток, поэтому провода диаметром 0.2мм будет вполне достаточно.

Читайте так же:
Чем отличается биполярный транзистор от полевого

Описание элементов выходной цепи

Далее кратко рассмотрим выходную цепь источника питания. Она, в общем-то, совершенно стандартна, от сотен других отличается минимально. Интересна может быть лишь цепочка обратной связи на TL431, но её мы тут подробно рассматривать не будем, потому что про цепи обратной связи есть отдельная статья.

VD4Сдвоенный выпрямительный диод. В идеале подбирать с запасом по напряжениютоку и с минимальным падением. Устанавливается на радиатор через изолирующую прокладку.
R2, C12Снабберная цепь для облегчения режима работы диода. R2 желательно использовать мощностью не менее 1Вт.
C13, L2, C14Выходной фильтр.
C20Керамический конденсатор, шунтирующий выходной конденсатор C14 по ВЧ.
R17Нагрузочный резистор, обеспечивающий нагрузку для холостого хода. Также через него разряжаются выходные конденсаторы в случае запуска и последующего отключения без нагрузки.
R16Токоограничивающий резистор для светодиода.
C9, R20, R18, R19, TLE431, PC817Цепь обратной связи на прецизионном источнике питания. Резисторы задают режим работы TLE431, а PC817 обеспечивает гальваническую развязку.

Что можно улучшить

Вышеописанная схема обычно поставляется в готовом виде, но, если собирать схему самому, ничто не мешает немного улучшить конструкцию. Модифицировать можно как входные, так и выходные цепи.

Если в ваших розетках земляной провод имеет соединение с качественной землёй (а не просто ни к чему не подключен, как это часто бывает), можно добавить два дополнительных Y-конденсатора, соединённых каждый со своим сетевым проводом и землёй, между L1 и входным конденсатором C1. Это обеспечит симметрирование потенциалов сетевых проводов относительно корпуса и лучшее подавление синфазной составляющей помехи. Вместе с входным конденсатором два дополнительных конденсатора образуют т.н. «защитный треугольник».

После L1 также стоит добавить ещё один конденсатор X-типа, с той же ёмкостью что у C1.

Для защиты от импульсных бросков напряжения большой амплитуды целесообразно параллельно входу подключать варистор (например 14D471K). Также, если у вас есть земля, для защиты в случае аварии на линии электроснабжения, при которой вместо фазы и нуля фаза попадаётся на оба провода, желательно составить защитный треугольник из таких же варисторов.

Защитный треугольник на варисторах

При повышении напряжения выше рабочего, варистор снижает своё сопротивление и ток течёт через него. Однако, ввиду относительно низкого быстродействия варисторов, они не способны шунтировать скачки напряжения с быстро нарастающим фронтом, поэтому для дополнительной фильтрации быстрых скачков напряжения желательно параллельно входу подключать также двунаправленный TVS-супрессор (например, 1.5KE400CA).

Опять же, при наличии земляного провода, желательно добавить на выход блока ещё два Y-конденсатора небольшой ёмкости, включенных по схеме «защитного треугольника» параллельно с C14.

Для быстрой разрядки конденсаторов при отключении устройства параллельно входным цепям целесообразно добавить мегаомный резистор.

Каждый электролитический конденсатор желательно зашунтировать по ВЧ керамикой малой ёмкости, расположенной максимально близко к выводам конденсатора.

Ограничительный TVS-диод будет не лишним поставить также и на выход — для защиты нагрузки от возможных перенапряжений в случае проблем с блоком. Для 24В версии подойдёт, например 1.5KE24A.

Заключение

Схема достаточно проста для повторения и стабильна. Если добавить все, описанные в разделе «Что можно улучшить», компоненты, получится весьма надёжный и малошумящий блок питания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector