Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как провести переделку сварочного аппарата с переменного тока на постоянный

Как провести переделку сварочного аппарата с переменного тока на постоянный

сварочный аппарат

Как выбрать качественное оборудование? Как не ошибиться при покупке? Эти и другие вопросы мучают каждого сварщика, которому известно о сложности выбора сварочного аппарата. О них мы и поговорим в этой статье.

Есть 2 вида современных сварочных механизмов:

  • Агрегаты переменного тока (трансформаторы для сварки);
  • Механизмы постоянного тока (выпрямители, инверторы).

Первые сегодня применяют гораздо реже. Хотя четверть века назад такие аппараты были на пике своей популярности. Это происходило из-за того, что альтернативы просто не существовало.

Актуальность вопроса

переменный и постоянный ток

Главным вопросом сварщиков считается такой: какой ток должен быть у аппарата, чтобы он работал долго и качественно – неустойчивый или статичный? Раньше было гораздо проще, потому что все аппараты работали на переменке.

Не стоял трудный выбор, который возник буквально 25 лет назад. Обычному мастеру сегодня крайне сложно определить, что будет работать лучше – инверторы, трансформаторы или выпрямители. Стоит остановиться на этом вопросе подробнее.

Что же собой представляет переменный ток? Это стандартный электрический импульс, который выходит из розеток.

Аппараты старого образца работали именно по такому принципу: они подключали механизм и на выходе получали пару сотен Ампер сварочного тока. Этого хватало для успешной работы.

Сегодня технологии прогрессируют, и появляются аппараты, способные менять ток с переменного на постоянный. Но вот в чем подвох: инвертор переменного тока на самом деле меняет его на статичный. А это понятно далеко не всем.

Наша цель в этой статье – рассказать, что собой представляют и те, и другие аппараты. Кроме этого, мы попытаемся обосновать важность переделки сварочного оборудования с переменного тока на постоянный.

Что происходит на самом деле?

Многие сварщики были в недоумении, когда на рынке появились аппараты нового образца. Трансформаторы оказались не так просты, как их предшественники.

Причиной этому стали особенности переменного тока. Нестабильное горение дуги приводило к тому, что швы получались кривыми. Особенно это касалось труда новичков.

Среди недостатков таких механизмов выделяли:

  • Сильный шум при работе;
  • Неаккуратность сварки, разбрызгивание металла;
  • Сложность работы с аппаратом.

Возникает вполне логичный вопрос: «Не лучше ли пользоваться старым оборудованием, которое генерирует переменный ток?». Над этим неоднозначным вопросом думают многие мастера – как с большим, так и маленьким опытом.

Что уж говорить о новичках! Попытаемся разобраться в этом вопросе.

Начнем с достоинств трансформатора. Их основные преимущества, которые перекрывают недостатки:

  • Невысокая стоимость аппарата;
  • Хорошая работа с металлом, имеющим окисную пленку – нержавейкой и алюминием;
  • Могут работать с грязными деталями, если нет возможности их очистки;
  • Не имеют особых условий использования и хранения;
  • Неприхотливы к месту выполнения работ;
  • Обладают хорошей мощностью и могут варить даже толстый металл.

Как видим, плюсов гораздо больше. А значит – такая техника заслуживает внимания.

Сварочная дуга: что это?

схема сварочного аппарата

Мы говорили ранее, что во время работы дуга может гореть неустойчиво. Процесс часто заметен невооруженным глазом: сварщик выполняет свою работу, а дуга при этом отклоняется от заданной оси. Как итог – шов получается неровным.

Новички часто делают много ошибок, потому что не знают всех нюансов. Это чревато быстрому погасанию дуги и некорректной работе.

Такие моменты наталкивают на мысль о ненужности покупки трансформаторов мастерам без опыта. Но всё обстоит несколько иначе: если вы научитесь работать с таким сложным механизмом, то в будущем у вас не возникнет трудностей с любым другим аппаратом.

Если вы твердо решили отказаться от агрегатов с переменным током — мы посоветуем, что предпринять. Мы подскажем, что делать, когда вы уже купили трансформатор, но пожалели об этом. Наша цель – рассказать, как правильно переделать такой механизм.

Для чего необходимы изменения?

сварка

Как вы уже поняли, нельзя однозначно сказать, какой же из аппаратов лучше – работающий на постоянном, либо на переменном токе. Это два разных устройства со своими достоинствами и недостатками, которые стоит учитывать при работе.

Наш совет однозначный: покупайте универсальное оборудование с двумя модификациями.

На рынке есть такие устройства. Но они достаточно дорогие, поэтому не каждый может их купить. Опытные мастера могут смело брать такой агрегат. Ну а если вы новичок и не планируете проводить работы слишком часто – купите трансформатор и переделайте его.

Последний работает очень слаженно. Немного изменив его, вы получите хороший аппарат, способный переключаться с переменного на постоянный ток. Это устройство станет надежным помощником в любом сварочном деле.

Как переделать механизм в домашних условиях

схема аппарата

Процесс кажется очень сложным, но это не совсем так. У вас все получится, если вы уже имеете небольшой опыт в сварке. Преимуществом переделки будет то, что не нужно покупать еще один аппарат с постоянным током.

Вы соберете его своими руками: он будет выглядеть как дополнение к трансформатору. Принцип работы аппарата достаточно простой. Для этого вы подключаете его к трансформатору, и он меняет переменный ток на постоянный.

Читайте так же:
Чем оттереть супер клей с пальцев рук

Предлагаем несложную схему данной конструкции.

Объясним, что же обозначает наш рисунок. Сборка небольшого выпрямителя происходит на диодах (VD1-VD4). L1 – это дроссель. При помощи последней дуга легко воспламенится и работает гораздо эффективнее.

Этот аксессуар не будет вмонтирован в ваш трансформатор. Он представляет собой отдельное устройство. Чтобы последний заработал, необходимо его подключить переменному трансформатору при помощи проводов.

Важные моменты, которые нужно учитывать при работе:

  • Выбирайте диоды моделей Д161-320, Д161-250 либо B200. Их нужно аккуратно прикрепить к радиаторам.
  • Собирайте дроссель на сердечнике, что относится к трансформатору ТС-270. Он приобретается у других сварщиков либо берется с лампового телевизора.
  • Устраняйте все существующие обмотки и меняйте их на более новые. Оптимальное количество витков – до 30.
  • В работе применяйте провода, изготовленные из меди. В идеале площадь сечения должна быть от 16 до 22 квадратных миллиметров.
  • Прокладки из текстолита размещайте между частями сердечника. Оптимальная толщина первых – от 0.3 до 0.5 миллиметров.

Вот так несложно можно улучшить аппарат и сделать его работающим как на постоянном, так и на переменном токе.

Подведем итоги

Каждый человек, занимающийся сварочными работами, мечтает об универсальном механизме, работающем на постоянном и переменном токе. Но может ли хороший аппарат быть недорогим? Последнее условие выполнить практически нереально, ведь готовый механизм стоит немаленьких денег.

Конечно, если вы опытный сварщик, у которого много заказов каждый день – это хороший вариант. Но что делать новичку? Ведь он зачастую не готов к большим растратам.

В этом случае на помощь придут золотые руки и пара часов свободного времени. Выберите недорогой трансформатор, вооружитесь поддержкой опытного товарища – и у вас получится создать уникальное устройство.

Аппарат в итоге сможет варить на постоянном токе, а вы будете довольны его работой. Даже если дополнение вам не пригодится, его всегда удобно иметь под рукой. Все детали для такой конструкции легко приобрести. А, может, они и вовсе пылятся у вас в гараже.

Сварочный инвертор

Один из способов создания неразъемных соединений из металла – это электродуговая сварка. В течение множества лет для выполнения этой операции применяли генераторы трансформаторного типа. Главный их недостаток – габаритно-весовые характеристики. Например, агрегат марки ВД 306 весит порядка 150 кг.
С развитием полупроводникового оборудования и появление таких элементов, как тиристоры привело к созданию устройств, которые обладают всеми характеристиками, как и трансформаторы, но весят в разы меньше, всего несколько килограмм, например, Ресанта САИ 250 весит всего 5 кг, — сварочного инвертора или инверторного сварочного аппарата.

Электродуговая сварка

Устройство и основные характеристики инверторов

Инверторные устройства имеют совершенно другую электрическую схему, основанную на использовании полупроводниковых приборов диодов, тиристоров, транзисторов.

Принцип работы инвертора

Как уже отмечалось, инверторы вошли в практику сварных работ не так давно, на исходе ХХ столетия. В основе работы аппаратов этого типа лежит принцип сдвига напряжения. Такое решение позволяет поднять силу и частоту тока. Надо отметить, что устройство инвертора, применяемого для работ – содержит довольно сложную схему, внутри которой реализуются нижеприведенные процессы:

Инверторные сварочные аппараты

Инверторные сварочные аппараты

  1. Переменный ток, подаваемый на инвертор, преобразуют в постоянный. Изменение параметров тока происходит в устройстве, который собирают с применением диодного моста.
  2. Полученный ток передается на инвертор, который играет роль генератора высокочастотных импульсов. В транзисторном блоке, происходит обратное преобразование постоянного тока в переменный. Но получаемый ток, обладает существенно большей частотой, чем тот, который поступает из сети питания.
  3. Ток высокой частоты поступает на трансформатор. Это устройство снижает напряжение и одновременно повышает силу тока. Так как трансформатор, который используют для работы с токами высокой частоты, имеет небольшие габариты, все это сказывается на габаритно-весовых характеристиках инвертора.
  4. После прохождения трансформатора, переменный ток, с новыми параметрами поступает на выпрямитель, где он снова трансформируется в постоянный, который и используют для сварки.

Сварка инвертором для начинающих

Сварка инвертором для начинающих

Надо отметить, что инверторные устройства, в отличие от устройств трансформаторного типа потребляет в два раза меньшее количество энергии. Кроме этого, параметры тока, который поступает из устройства, гарантируют то, что сварочная дуга будет иметь стабильный розжиг и горение во время сварки.

Технические параметры устройств

Сварочные инверторы имеют ряд определенных характеристик, по которым можно судить о его технологических свойствах. К ним относят следующие параметры:

Конструкция сварочного инвертора

Конструкция сварочного инвертора

  1. Вид тока, который формируется на выходе из выпрямителя.
  2. Размер напряжения, которое используется для электроснабжения. Производители выпускают изделия, которые работают от 380 и от 220 в. Первые применяют для профессиональной сварки, вторые для работы в домашних условиях.
  3. Размер тока, этот параметр оказывает прямое влияние на размер электрода, который будет использоваться для выполнения сварки.
Читайте так же:
Микросхема cva2422tl для чего нужна

Технические параметры сварочного инвертора

Технические параметры сварочного инвертора

  1. Мощность агрегата, этот параметр дает информацию о том, ток, какой силы будет формировать сварочную дугу.
  2. Напряжение на холостом ходу, этот параметр показывает, как быстро будет получена сварочная дуга.
  3. Диапазон размеров электродов, которые будут использованы для производства сварки.
  4. Габаритно-весовые характеристики инверторного сварочного аппарата и размер сварочного тока на выходе. Чем ниже последний показатель, тем меньше аппарат, но и соответственно такое устройство обладает меньшими эксплуатационными характеристиками.

Плюсы и минусы инверторной сварки

Инверторные устройства показывают КПД в пределах 85 – 95%, надо сказать, что это высокий показатель среди электронной аппаратуры. Используемая схема позволяет выполнять регулировку уровня сварочного тока от нескольких ампер, до сотен, а то и тысяч.

Например, инвертор марки ММА, он составляет 20 – 220 А. Инверторы могут работать длительное время. Управление источником питания можно выполнять дистанционно. К несомненным преимуществам инверторов можно отнести их малые габаритно-весовые характеристики, позволяющие перемещать устройство на месте выполнения сварки. В конструкции аппаратов использована двойная изоляция, обеспечивающая электрическую безопасность.

Технологические достоинства

Применение инверторов позволяет использовать электроды любой марки, которые работают и с постоянным и переменным током. Устройства этого типа могут быть использованы для сварки с неплавящимся электродом в среде защитного газа. Кроме того, конструкция этого оборудования позволяет легко автоматизировать сварочные процессы.

Вольфрамовые электроды для аргонодуговой сварки Вольфрамовые электроды для аргонодуговой сварки Электроды для контактной сварки Электроды для контактной сварки

Сварка может быть выполнена с применением короткой дуги, таким образом, снижаются энергопотери и повышается качество сварного шва, в частности, на поверхности свариваемых деталей практически не образуются брызги от выполнения сварки. Кстати, применение инверторов позволяет получать швы в любой пространственной конфигурации.

Микропроцессор

В управлении современными сварочными инверторами применяют микропроцессоры, и это обеспечивает стабильную связь между напряжением, током.

Минусы, которым обладают инверторы

Инверторы ремонтировать несколько сложнее, чем традиционные трансформаторные агрегаты. Если из строя выйдут некоторые элементы управления, размещенные на плате, то ремонт может встать примерно в треть от стоимости нового сварочного инвертора.

Инверторы, в отличие от оборудованиях других типов, очень боится пыли. То есть такие аппараты должны чаще обслуживаться. Работа инверторным сварочным аппаратом ограничена и низкими температурами. Кроме того, существуют некоторые ограничения на хранение инвертора при минусовых температурах. Это чревато образованием конденсата, который может привести к короткому замыканию на плате.

Как выбрать сварочный аппарат для дома и дачи на 220 В

При подборе сварочного оборудования потребитель должен определиться для решения, каких задач он будет необходим.

Если он будет использоваться для ремонта кузовных деталей, то у него должны быть одни параметры, а если для работы по изготовлению металлоконструкций то другими. Но в любом случае, устройства должны отвечать ряду требований, в частности, в домашнем аппарате должны быть реализованы такие функции, как горячий старт, антизалипание и некоторые другие. Именно этим инверторы отличаются от традиционных аппаратов.

В конструкции аппарата этого типа должен быть установлен вентилятор. Кроме того, схема должны быть защищена от скачков напряжения в питающей сети. В принципе устройство, обладающее такими параметрами, могут работать и в условиях домашней мастерской, и в условиях промышленного производства.

Какой сварочный аппарат лучше

Выбор аппарата – это по большей части дело сугубо индивидуальное. И каждый выбирает аппарат по своим потребностям, но, можно сказать, что устройства с диапазоном сварочного тока в пределах 200 – 250 А, позволяет выполнять самые сложны работы и обрабатывать детали разной толщины.

Классификация инверторов

Сварочные инверторы можно классифицировать по размеру сварочного тока. Производители выпускают три типа устройств:

  • 100-160 А – маломощные;
  • 160-200 А — средние;
  • 200-250 А — мощные.

Существует зависимость, между размером силы тока и габаритами аппарата. При выборе аппарата для использования в домашних условиях следует руководствоваться теми задачами, которые предстоит им решать.

Самые слабые аппараты можно отнести к устройствам самого низкого уровня, многие их используют для получения навыков работы. Аппараты, которые относят к среднему классу относят к самым популярным и позволяют выполнять самые разнообразные работы начиная от сборки забора и изготовления довольно сложных металлоконструкций. Самые мощные аппараты по большей части применяют в производственных целях. Их применяют для работы с металлопрокатом большой толщины.

Электроды для ручной дуговой сварки

Электроды для ручной дуговой сварки

Большая часть инверторов предназначена для работы с электродами, покрытыми обмазкой. Но их можно использовать и для работы со сварочной проволокой. Для этого, на устройство устанавливают приспособление которое подает проволоку в сварочную зону. Проволока подается через сварочный пистолет, через него же подается и газовая смесь, защищающая рабочую зону от воздействия атмосферного воздуха.

Дополнительные функции в инверторах

В современных инверторных устройствах реализованы некоторые опции, которые заметно облегчают работу сварщика:

  1. Горячий старт – зачастую у начинающих сварщиков, да и не только у них, возникают сложности с розжигом и поддержанием дуги в рабочем состоянии. В момент розжига, ток вырастает до необходимого уровня и сразу после розжига возвращается к рабочим параметрам. Процесс изменения тока происходит полностью автоматически, без участия сварщика.
  2. Еще одна проблема, которая преследует новичков – залипание электрода. Причин тому несколько, но решение у нее одно – снижение уровня сварочного тока. Эта операция так же выполняется автоматически.
Читайте так же:
Схема подключения сварочного аппарата 220

  1. Форсаж дуги позволяет выполнять швы в разных пространственных положениях.
  2. Снижение напряжения холостого хода до безопасного для рабочего и его окружающих людей уровня.

Определяемся с характеристиками

Как и любое техническое оборудование, сварочные инверторы обладают рядом технических параметров, которые определяют их возможности.

Сварочный ток

Инверторные сварочные аппараты обеспечивают генерацию сварочного тока в диапазонах от 100 до 250 А.

Напряжение холостого хода

После преобразования тока, подаваемого из электрической сети в 220 В, на выходе из аппарата получается ток с напряжением в 50 – 90 В и рабочей частотой в 20 – 50 кГц. Для розжига дуги необходимо использовать максимальное напряжение, но оно создает угрозу безопасности сварщика и окружающих людей. Поэтому после окончания работы, напряжение падает до безопасного уровня.

Режим работы на максимальном токе

Важный показатель работы любого сварочного аппарата это показатель длительности работы. Его могут называть ПН или ПВ. Этот показатель говорит о том, какое количество времени будет работать аппарат при десятиминутном сварочном цикле, до отключения.

Другими словами, если ПВ составляет 50% — это значит что время эффективной работы, составит 5 минут, если показатель составляет 70%, то время составит 7 минут. Этот показатель должен быть отражен в технической документации, входящей в состав поставки сварочного аппарата.

Рекомендации по эксплуатации бытовых инверторов

Инвертор, предназначенный для сварки – это сложное инженерное устройство, которое оснащено множеством уровней защиты.

Аппаратура этого класса показывает стабильность в работе и между тем требует к себе бережного отношения и своевременного обслуживания.

Перед приобретением аппарата целесообразно тщательно изучить руководство по эксплуатации.

Инструкция сварочного инвертора

Инструкция сварочного инвертора

При работе с инвертором необходимо соблюдать несколько простых правил безопасности:

Способы регулировки сварочного тока

Качество сварного шва в значительной мере зависит от характеристик электрической дуги. Для каждой толщины металла, в зависимости от его вида требуется определенной силы сварочный ток.

Кроме этого, важна вольтамперная характеристика аппарата для сварки, от этого зависит качество электрической дуги. Для резки металла тоже требуются свои значения электротока. То есть любой сварочный аппарат должен обладать регулятором, управляющим мощностью сварки.

Способы регулирования

Управлять током можно по-разному. Основные способы регулирования такие:

  • введение резистивной или индуктивной нагрузки во вторичную обмотку сварочного аппарата;
  • изменение количества витков во вторичной обмотке;
  • изменение магнитного потока аппарата для сварки;
  • использование полупроводниковых приборов.

Схематических реализаций этих способов множество. При изготовлении аппарата для сварки своими руками каждый может выбрать себе регулятор по вкусу и возможностям.

Резистор или индуктивность

Регулировка сварочного тока с использованием сопротивления или катушки индуктивности является самой простой и надежной. К держателю сварочных электродов последовательно подключают мощный резистор или дроссель. За счет этого меняется активное или индуктивное сопротивление нагрузки, что приводит к падению напряжения и изменению сварочного тока.

Регуляторы в виде резисторов применяют для улучшения вольтамперной характеристики сварочного аппарата. Используется набор мощных проволочных сопротивлений или один резистор, выполненный из толстой нихромовой проволоки в виде спирали.

Для изменения сопротивления специальным зажимом их подключают к определенному витку провода. Резистор выполняется в виде спирали для уменьшения габаритов и удобства использования. Номинал резистора не должен превышать 1 Ом.

Переменный ток в определенные моменты времени имеет нулевые или близкие к нему значения. В это время получается кратковременное гашение дуги. При изменении промежутка между электродом и деталью может произойти прилипание или полное ее гашение.

Для смягчения режима сваривания и соответственно получения качественного шва применяют регулятор в виде дросселя, который включается последовательно с держаком в выходной цепи аппарата.

Дополнительная индуктивность вызывает сдвиг фаз между выходным током и напряжением. При нулевых или близких к нему значениях переменного тока напряжение имеет максимальную амплитуду и наоборот. Это позволяет поддерживать стабильную дугу и обеспечивает надежное ее зажигание.

Дроссель можно изготовить из старого трансформатор. Используется только его магнитопровод, все обмотки удаляются. Вместо них наматывают 25-40 витков толстого медного провода.

Данный регулятор был широко распространен при использовании трансформаторных аппаратов переменного тока благодаря своей простоте и наличию комплектующих. Недостатками дроссельного регулятора сварочного тока являются небольшой диапазон управления.

Изменение количества витков

При этом методе регулировка характеристик дуги осуществляется благодаря изменению коэффициента трансформации. Коэффициент трансформации позволяют изменить дополнительные отводы из вторичной катушки. Переключаясь с одного отвода на другой можно менять напряжение в выходной цепи аппарата, что приводит к изменению мощности дуги.

Регулятор должен выдерживать большой сварочный ток. Недостатком является трудность нахождения коммутатора с такими характеристиками, небольшой диапазон регулировок и дискретность коэффициента трансформации.

Читайте так же:
Проволока катанка гост 30136 95

Изменение магнитного потока

Данный способ управления используется в трансформаторных аппаратах сварки. Изменяя магнитный поток, меняют коэффициент полезного действия трансформатора, это в свою очередь меняет величину сварочного тока.

Регулятор работает за счет изменения зазора магнитопровода, введения магнитного шунта или подвижности обмоток. Изменяя расстояние между обмотками, меняют магнитный поток, что соответственно сказывается на параметрах электрической дуги.

На старых сварочных аппаратах на крышке находилась рукоятка. При ее вращении вторичная обмотка поднималась или опускалась за счет червячной передачи. Этот способ практически изжил себя, он использовался до распространения полупроводников.

Полупроводниковые приборы

Создание мощных полупроводниковых приборов, способных работать с большими токами и напряжениями, позволило разработать сварочные аппараты нового типа.

Они стали способны менять не только сопротивление вторичной цепи и фазы, но и изменять частоту тока, его форму, что также влияет на характеристики сварочной дуги. В традиционном трансформаторном сварочном аппарате используется регулятор сварочного тока на базе тиристорной схемы.

Регулировка в инверторах

Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.

В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.

Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.

При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.

Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки.

Применение тиристорной и симисторной схемы

После создания мощных тиристоров и симисторов их стали использовать в регуляторах силы выходного тока в сварочных аппаратах. Они могут устанавливаться в первичной обмотке трансформатора или во вторичной. Суть их работы заключается в следующем.

На управляющий контакт тиристора со схемы регулятора поступает сигнал, открывающий полупроводник. Длительность сигнала может изменяться в больших пределах, от 0 до длительности полупериода тока протекающего через тиристор.

Управляющий сигнал синхронизирован с регулируемым током. Изменение длительности сигнала вызывает обрезание начала каждого полупериода синусоиды сварочного тока. Увеличивается скважность, в результате средний ток уменьшается. Трансформаторы очень чувствительны к такому управлению.

Такой регулятор имеет существенный недостаток. Время нулевых значений увеличивается, что приводит к неравномерности дуги и ее несанкционированному гашению.

Для уменьшения негативного эффекта дополнительно приходится вводить дроссели, которые вызывают фазовый сдвиг между током и напряжением. В современных аппаратах данный метод практически не используются.

Схема. Инвертор на гибридном тиристоре.

Инверторы на основе тиристорных преобразователей ранее разрабатывались для формирования высокого напряжения на кинескопе в телевизорах отечественной промышленности. Небольшая частота преобразования, простота схемы, отсутствие высоковольтных оксидных конденсаторов большой емкости и т.п. позволяют использовать такие схемы с небольшими изменениями в источниках питания.

Наличие в продаже мощных высоковольтных тиристоров дает возможность разработать компактный источник питания с низкими потерями энергии. Такой источник подойдет для питания радиоаппаратуры, энергосберегающих ламп, зарядки аккумуляторов автомобилей и питания электродвигателей постоянного тока. Недостатком подобных устройств является повышенный по сравнению с транзисторными инверторами уровень импульсных помех. Но они, в принципе, устраняются несложными сетевыми и выходными фильтрами.

Основными функциональными частями схемы инвертора (рис.1) являются:
— помехоподавляющие входные фильтры;
— сетевой выпрямитель;
— тактовый генератор;
— предварительный усилитель тактового сигнала;
— выпрямитель выходного напряжения;
— цепи стабилизации выходного напряжения;
— фильтр выходных помех;
— индикаторы работы инвертора.

В схеме происходит тройное преобразование напряжения: переменное напряжение электросети после выпрямления преобразуется инвертором в импульсное напряжение прямоугольной формы с частотой, определяемой частотой генератора. Пониженное высокочастотным трансформатором импульсное выходное напряжение выпрямляется и поступает на нагрузку.

Сетевой фильтр коммутационных помех C12-L2, C13-L3 препятствует проникновению помех преобразования в электросеть. Коммутационные помехи в импульсных источниках питания возникают вследствие переключающего режима работы мощных регулирующих элементов [1].
Обмотки дросселей сетевого фильтра обычно размещаются на общем ферритовом сердечнике для взаимной компенсации помех. Снижение импульсных помех преобразования в низковольтных цепях нагрузки обеспечивает выходной фильтр C8-L1-C11 [2].

С входного фильтра напряжение сети подается на выпрямитель на диодной сборке VD8. Выпрямленное напряжение сети фильтруется конденсатором С10 и поступает через резистор R17 на трансформатор Т1 импульсного инвертора, а также используется для питания гибридного тиристора DA3. Напряжение питания (примерно 100 В) подается на DA3 с параметрического стабилизатора R10-VD2.

Питание на тактовый генератор на однопереходном транзисторе, входящем в состав DA3, и цепи регулирования скважности импульсов поступает со стабилизатора R9-VD1. Стабилизация питания гибридного тиристора позволяет защитить микросхему от повышенного напряжения и обеспечить устойчивую работу инвертора. Однопереходной транзистор в DA3 имеет максимальное напряжение питания 30 В и максимальный импульсный ток 200 мА. Время включения гибридного тиристора — 3 мкс, выключения — 25 мкс. Минимальное время включения силового тиристора VS1, которым управляет DA3,—0,5 мкс. Отпирающее импульсное напряжение на управляющем электроде — 5 В.

Читайте так же:
Схема подключения старого счетчика

В начале положительного полупериода сетевого напряжения гибридный и силовой тиристоры закрыты. По мере роста напряжения конденсатор С1 заряжается через резисторы R1 и R2. Заряд конденсатора С1 продолжается до тех пор, пока напряжение на нем не достигнет порога открывания од непереходного транзистора в DA3. После его открывания на резисторе R5 появляется напряжение, достаточное для срабатывания гибридного тиристора в DA3. Открывающийся гибридный тиристор включает силовой VS1. Тиристор VS1 остается открытым до конца полупериода. Стабилитрон VD3 в цепи управления VS1 защищает его управляющий электрод от импульсных помех и повышенного напряжения включения.

Протекание тока через VS1 и обмотку I трансформатора Т1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания импульса ток в обмотке прекращается, что вызывает появление во вторичной обмотке напряжения самоиндукции. Через диодную сборку VD7 протекают импульсы тока, которые заряжают конденсатор С7. На нем возникает постоянное напряжение, оно фильтруются цепочкой L1-C8-C11 и с конденсатора С11 поступает в нагрузку. Изменяя резистором R1 время заряда конденсатора С1, можно управлять моментом открывания гибридного тиристора и регулировать напряжение и ток нагрузки.

При больших скоростях нарастания прямого напряжения тиристор может самопроизвольно открыться при отсутствии управляющего сигнала. Для снижения чрезмерной скорости нарастания анодного напряжения используется демпферная RC-цепочка R17-C9. Тиристор VS1 защищен от выбросов напряжения обратного тока трансформатора параллельными цепочками VD4-VD5 и R15-C5, а также VD6-R14-C6.

Стабилизация выходного напряжения выполнена с помощью оптронной развязки с выхода источника на генератор импульсов. При повышении выходного напряжения, например, из-за увеличения сопротивления нагрузки, увеличивается напряжение на управляющем электроде микросхемы DA2. Ее напряжение стабилизации снижается, что приводит к повышению тока через светодиод оптопары DA1. Фототранзистор оптопары сильнее открывается и шунтирует конденсатор С1, меняя скважность импульсов и, тем самым, снижая выходное напряжение. При уменьшении выходного напряжения процесс регулировки происходит в обратную сторону.

Конденсаторы С2…С4 устраняют влияние помех на цепи регулировки. Терморезистор R12 снижает температурную зависимость выходного напряжения при излишнем нагреве силового тиристора VS1. Индикация сетевого и выходного напряжения реализована на светодиодах HL1 и HL2 (красного и зеленого цвета).
Схема инвертора выполнена на печатной плате из одностороннего фольгированного стеклотекстолита. Размеры платы (рис.2) — 116×68 мм. Элементы R1, SA1, FU1, выходные клеммы и светодиоды индикации HL1, HL2 установлены на корпусе устройства.

Возможные замены элементов инвертора представлены в таблице. Выбор силового трансформатора зависит от рабочей частоты инвертора и мощности нагрузки. Выполнить самодельный трансформатор хорошего качества достаточно трудно, поэтому лучше использовать готовый от компьютерных блоков питания или телевизоров. Его первичная обмотка используется без изменений, а вторичная — частично (в зависимости от требуемого напряжения).

Наладку схемы начинают с проверки монтажа. Затем, включив в разрыв одного из сетевых проводов лампу накаливания мощностью 25… 100 Вт (220 В), а на выход — лампу 20…50 Вт (24 или 36 В), подают сетевое напряжение. Если сетевая лампа горит в полный накал, а нагрузочная не светится — в схеме есть ошибки или некачественные элементы. При слабом накале обеих ламп переменным резистором R1 на выходе источника устанавливают напряжение 12 (24) В, а регулятором R13 добиваются максимальной яркости нагрузочной лампы.

После непродолжительной работы схему отключают и проверяют температуру элементов. При чрезмерном нагреве тиристора VS1 сопротивление R17 следует увеличить или взять для тиристора радиатор большей площади. Тиристор на радиаторе крепят с использованием термопасты.
При отсутствии перегрева элементов можно включать устройство без защитной (сетевой) лампы, но обязательно с установленным предохранителем FU1. Окончательно резистором R13 корректируют режим стабилизирующих цепей так, чтобы выходное напряжение с нагрузкой и без нее изменялось не более чем на 20%.

Основные параметры источника

Напряжение питания, В 180-230
Мощность инвертора, Вт 160
Выходное напряжение, В 12-24
Максимальный ток нагрузки, А 20
Частота генератора, кГц 16
КПД,% 92
Коэффициент стабилизации 18-30

Внимание! Ввиду наличия в схеме сетевого напряжения, при наладке необходимо соблюдать правила техники безопасности, а замену деталей производить только в отключенном состоянии.

Литература
1. М.Дорофеев. Снижение помех от импульсных источников питания. — Радио, 2006, №9, С.38.
2. В.Коновалов. Зарядное устройство на импульсном блоке питания. — Радиолюбитель, 2009, №10, С.36.
3. В.Коновалов, М.Мальков. Зарядное устройство на тиристорном инверторе.— Радиолюбитель, 2009, №12. С.46.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector