Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Алюминий и его сплавы. Алюминий — серебристо-белый, легкоплавкий (температура плавления — 659 °С), легкий (плотность — 2700 кг/м3)

Алюминий и его сплавы. Алюминий — серебристо-белый, легкоплавкий (температура плавления — 659 °С), легкий (плотность — 2700 кг/м3)

Алюминий — серебристо-белый, легкоплавкий (температура плавления — 659 °С), легкий (плотность — 2700 кг/м 3 ). Разрушаю­щее напряжение при растяжении алюминия особой чистоты (т. е. 99,996%) — порядка 6 кг/мм 2 , твердость по Бринеллю (НВ) состав­ляет 17 единиц, относительное удлинение порядка 50%. Обладает высокой электро- и теплопроводностью. Алюминий хорошо обра­батывается давлением в горячем и в холодном состоянии, хорошо полируется. Его отражательная способность близка к серебру (ко­эффициент отражения — порядка 90%). Алюминий имеет высокую коррозионную стойкость, а также стойкость к действию морской и пресной воды, аммиака, практически не взаимодействует с кис­лотами и пищевыми продуктами.

Высокая химическая стойкость алюминия обусловлена образо­ванием на поверхности металла тонкой защитной пленки оксида алюминия (А12О3). Эта пленка предохраняет изделие из алюминия от разрушения и окисления.

Образование защитной оксидной пленки характерно не только для алюминия. Этот процесс можно наблюдать у меди (патина), хрома, титана. При нарушении защитной пленки начинается быст­рое окисление поверхностного слоя металла, пленка образуется вновь, но металл становится чуть тоньше.

Для производства алюминия требуется высокая культура про­изводства. Алюминий выпускается:

особой чистоты, марка А999, т. е. чистого алюминия в металле
содержится 99,999% (остальное примеси);

высокой чистоты, марки А995 — А95, где содержание алюми­
ния от 99,995% до 99,95%.

технической чистоты, марки А8, А7, А5 (содержание чистого
алюминия — от 99,8 до 99,5%).

Для перечисленных выше марок алюминия примеси нежела­тельны, их содержание нормируется соответственно в десятых, сотых и тысячных долях процента.

Примеси железа сильно снижают коррозионную стойкость алюминия, препятствуя образованию оксидной пленки.

Металпохозяйственные товары

Кремний уменьшает пластичность алюминия.

Магний снижает электропроводность, алюминия. Так, содер­жание в алюминии примеси магния более 5% снижает электро­проводность вдвое.

Промышленность выпускает алюминий перечисленных марок в виде листов, фольги, прутков, проволоки и сортовых профилей (уголок, тавр, полутавр, швеллер). •

Чистый алюминий применяют в производстве зеркал и отра­жателей.

Чистый алюминий также используют при изготовлении элек­трических конденсаторов, выпрямителей, полупроводниковых приборов, электрических проводов и шнуров. В последнее время алюминий все больше вытесняет дефицитную и более дорогую медь. Между тем алюминий может заменить медь только в прово­дах и шнурах-, используемых стационарно. Шнуры бытовых элект­роприборов, испытывающих значительные деформации (например, шнур от фена), не допускают замены меди на алюминий. Медь бо­лее пластична и более стойка к деформациям кручения и изгиба.

Еще одним недостатком алюминия является его малая проч­ность, поэтому для производства бытовых металлотоваров приме­няют алюминиевые сплавы.

Все алюминиевые сплавы по способу переработки их в изделия подразделяют на деформируемые (подвергаемые обработке дав­лением) и литейные (для получения деталей и изделий методом литья).

Деформируемые алюминиевые сплавы подразделяются на упрочняемые и неупрочняемые.

К неупрочняемым относят сплавы алюминия с магнием и мар­ганцем. Марки АМГ-2 и АМГ-4. Эти сплавы имеют высокую кор­розионную стойкость, относительно пластичны. Используются для изготовления металлической посуды: миски, сковороды (магний и марганец снижают теплопроводность алюминиевых сплавов).

Из деформируемых упрочняемых сплавов наиболее распро­странены сплавы алюминия с медью — дюралюмины ("дюр" — от фр. "твердый", т. е. твердый алюминий).

Сплав маркируется буквой Д и цифрой, указывающей номер сплава: Д1, Д6, Д18. Состав дюралюмина следующий: медь — от 3,8 до 4,8%, магний — от 0,4 до 2,3%, марганец — от 0,4 до 0,8%, ос­тальное — алюминий.

Прочность и твердость дюралюмина более чем вдвое превосхо­дит прочность и твердость чистого алюминия. Так, сплав Д1 (после отжига) имеет прочность порядка 21 кгс/мм 2 и твердость — НВ45. За счет меди значительно повышается пластичность сплава.

Существенным недостатком дюралюминов является их низкая коррозионная стойкость, поэтому для изделий из дюралюминов проводят операцию плакирования, т. е. сплав покрывают тонким слоем алюминия высокой чистоты и нагревают. В результате этого на поверхности сплава образуется тонкий слой (3-5% общей тол­щины) коррозионно-стойкого чистого алюминия.

Деформируемые алюминиевые сплавы являются наряду со сталью основным конструкционным материалом, их используют в машино- и самолетостроении, для изготовления оборудования и аппаратов пищевой промышленности, в строительстве, в из­готовлении металлической мебели, а также столовых приборов: алюминиевые ложки и вилки, ручки ножей и очень редко клинки (например, кабинетный нож для вскрывания конвертов).

Литейные алюминиевые сплавы используются для фасон­ного литья. Они обладают хорошей жидкотекучестью, высокой прочностью и малой усадкой.

Литейные алюминиевые сплавы делят на пять групп. В состав всех пяти групп, кроме алюминия, входит кремний и могут входить медь, цинк, магний, в различных сочетаниях. Медь увеличивает пластичность, цинк и магний — прочность. Маркируются литейные сплавы буквами АЛ (алюминий литейный) и порядковым номером, например АЛ 5.

Для изготовления бытовых металлотоваров из литейных спла­вов наибольшее применение нашел сплав, называемый силумином (от "силициум" — кремний), содержащий в своем составе кремний в количестве от 4 до 13%. Прочность силуминов немного ниже, чем у дюралюминов, но значительно больше, чем у алюминия.

Металлохозяйственные товары

Сплав обладает хорошей жидкотекучестью, не дает трещин при остывании, имеет достаточную коррозионную стойкость.

Силумин применяется для изготовления посуды (казаны, утят­ницы), приборов для окон и дверей (петли), деталей бытовых ма­шин и холодильников, велосипедов, мотоциклов, автомобилей.

После цифр в литейном сплаве может стоять буква В (напри­мер, АЛ 17В). Это означает, что используется вторичный сплав, т. е. этот сплав получен из металлолома. По составу и свойствам вторичные сплавы близки к первичным, но содержат большее ко­личество примесей.

Если к маркировке алюминиевого сплава добавлена буква "П", значит, сплав достаточно безопасный и может быть использован для изготовления изделий, контактирующих с пищей.

Безопасность и безвредность для сплавов не являются тождест­венными понятиями. Безопасными считаются сплавы, в которых содержание мышьяка не более 0,015%, свинца не более 0,15%, цинка не более 0,3%.

Медь и ее сплавы

Медь — металл красно-бурого цвета, легкоплавкий (темпера­тура плавления — 1083 °С), тяжелый (плотность — 8940 кг/мм 3 ), разрушающее напряжение при растяжении — 22-24 кгс/мм 2 , твер­дость — НВ45. По электро- и теплопроводности медь уступает толь­ко серебру, но она значительно дешевле серебра. Очень пластична (уступает только золоту и серебру).

Читайте так же:
Чертежи для чпу плазменной резки

На воздухе (особенно если в атмосфере присутствуют сернис­тые соединения) на поверхности меди появляется тонкая пленка сульфита меди (Си8О3) и поверхность изделия приобретает черный оттенок (патина). Окисляясь на воздухе, сульфит меди переходит в сульфат (Си8О4) и патина приобретает зеленоватый оттенок.

При взаимодействии с пищевыми кислотами медь образует ток­сичные соединения, поэтому посуду из чистой меди изготавливать нельзя. Однако в ассортименте товаров имеются медные тазы для варенья. Это связано с тем, что сахар тормозит процесс окисле­ния меди и препятствует образованию токсичных веществ. Кроме

того, традиционно восточные турки для варки кофе изготовляют из меди. Такая посуда безвредна только в течение определенного срока эксплуатации (пока не образуется патина).

Свойства меди сильно изменяются даже при наличии неболь­шого количества примесей. Основные примеси: свинец, мышь­як, фосфор, железо, серебро, цинк. Все эти примеси значительно снижают электропроводность. Например, содержание фосфора в количестве 0,5% снижает электропроводность в пять раз.

Промышленностью выпускается медь 10 марок. Маркировки: МОО (99,99% меди), М4 (99% меди).

Большую часть всей добываемой меди потребляет электронная и радиотехническая промышленность. Также медь используется как гальваническое покрытие в порошковой металлургии, при про­изводстве отдельных деталей велосипедов, машин, мотоциклов. В велосипедах: руль и ручки педалей изготовляются из конструк­ционной стали и хромируются (характерный цвет и блеск). Но железо и хром взаимно не растворяются, поэтому между ними наносят слой меди, с которым хорошо взаимодействуют оба ме­талла. Медь в данном случае является скрепляющим элементом (своего рода клеем). При длительной эксплуатации таких изделий хромированное покрытие может стираться, и тогда на поверхности становится видна медь.

Медь широко используется при получении латуней, бронз и медно-никелевых сплавов.

Латунь сплав меди с цинком, с содержанием последнего от 4 до 40%. Если латунь состоит только из меди и цинка, она называется двухкомпонентной. Латуни могут легироваться таки­ми элементами, как марганец, железо, никель, кремний, свинец. Легированные латуни называют многокомпонентными.

При введении в медь до 39% цинка повышается прочность и значительно увеличивается пластичность. При содержании цинка более 40% свойства латуни изменяются — резко возрастает хруп­кость и снижается прочность. Поэтому латунь не содержит более 40% цинка. Максимальная пластичность латуней достигается при содержании цинка в количестве 32%.

Металлохозяйственные товары

Цинк также оказывает влияние на цвет латуни. При содержании цинка до 20% латунь имеет желто-красный цвет, при 20-30% -буро-желтый, выше 30% — светло-желтый.

Двухкомпонентные латуни обозначают буквой Л и цифрой, указывающей на среднее содержание меди в сплаве (например: Л70 — латунь, содержащая 70% меди и 30% цинка). В многоком­понентных (легированных) латунях после буквы Л перечисля­ются буквы русского алфавита, соответствующие компонентам, затем цифра, обозначающая содержание меди, а затем цифры, указывающие концентрацию легирующих элементов (например, ЛАЖ60-1-1 — латунь, содержащая 60% меди, 1% — алюминия, 1% — железа и 38% цинка).

Латунь применяют при изготовлении изделий сложных форм: духовых музыкальных инструментов, самоваров, а также посу­ды, галантерейных изделий, гильз для охотничьих патронов, для рыболовных блесен. Кроме того, латунь может применяться для изготовления изделий станковой скульптуры. Хотя для станковой скульптуры традиционно предпочтительнее бронзовое литье.

Бронза сплав меди с оловом. По цвету бронза напоминает латунь с небольшим содержанием цинка. Бронзы имеют малую усадку и хорошую жидкотекучесть, высокую усталостную проч­ность и коррозионную стойкость.

Маркируют бронзы буквами Бр и О, после чего могут стоять буквы основных легирующих элементов и цифры, показывающие содержание этих элементов в процентах. Например, БрОЦ 4-3 -бронза, содержащая 4% олова, 3% цинка и 93% меди. Обратите внимание: маркировка латуни — медь плюс все остальное, марки­ровка бронзы — все элементы плюс медь (остальное).

Из бронзы изготовляют станковую скульптуру и литые изделия сложных конфигураций: барельефы, подсвечники, канделябры, люстры, корпуса настольных часов, колокола и колокольчики.

По содержанию олова бронзы делят на пять групп:

1. Скульптурная или монетная (медные пятикопеечные монеты
советского времени) бронза. Содержание олова — 4-5%.

2. Машинная бронза: в основном подшипники и вкладыши.
Содержание олова — до 10%.

3. Колокольная бронза. Содержание олова-до 25%. Чем боль­
ше содержание олова, тем громче и чище колокольный звон, однако
чрезмерное увеличение содержания олова повышает хрупкость
бронзы.

4. Курантная бронза. Содержание олова — до 35%. Использу­
ется для колоколов с так называемым "дозированным ударом":
католические храмы и башенные часы.

5. Зеркальная бронза. Содержание олова — до 40%. Эта брон­
за имеет уже белый цвет и может использоваться для зеркал как
заменитель серебра.

Кроме оловянистых, т. е. истинных бронз, существует понятие безоловянных бронз, хотя к бронзам данные сплавы могут быть отнесены чисто условно.

В таких сплавах олово заменяется каким-либо другим эле­ментом: алюминием, кремнием, бериллием. Они обладают широ­ким спектром свойств (в зависимости от легирующего элемента), и соответственно, разнообразным применением. Название такие сплавы получают по основному легирующему компоненту. Напри­мер, алюминиевую бронзу БрА5 применяют для чеканки монет, бериллиевую бронзу БрБ2 для изготовления ответственных деталей в приборостроении (прочность до 150 кгс/мм 2 ) и т. д.

Мельхиор сплав меди с никелем, с содержанием последнего 18-20%. Имеет серебристый цвет. Маркируется буквами МП (медь и никель) и цифрами, означающими процентное содержание ни­келя. Например, МН19 — мельхиор с содержанием никеля порядка 19%.

Применяется для изготовления чайной посуды, предметов для сервировки стола и медицинских инструментов. Столовые прибо­ры из мельхиора часто золотят или серебрят (покрывают тонкой пленкой из драгоценного металла). Постепенно мельхиор вытес­няется столовыми приборами из нержавеющей стали.

Мельхиор — любимый недрагоценный сплав ювелиров, по­скольку прочен, пластичен, хорошо вытягивается в нити. Он по­зволяет изготовлять сканные изделия, мельхиоровая скань хорошо сочетается с ростовской эмалью. Применяется для предметов ук­рашения одежды: брошей, булавок и т. п.

Металлохозяйственные товары

Нейзильбер сплав меди, никеля и цинка (никель — 13-17%, цинк — 18-22%). Имеет серебристый цвет с синеватым отливом, высокую плотность, прочность, твердость, коррозионную стой­кость. Маркируется буквами МНЦ (медь, никель, цинк) и цифрами, означающими процентное содержание никеля и цинка. Например: МНЦ15-20, нейзильбер с процентным содержанием меди — 65%, никеля — 15, цинка — 20%. Внешне изделия из нейзильбера очень похожи на серебряные.

Читайте так же:
Пила чемпион регулировка карбюратора

Сплав применяется для производства так называемой посереб­ренной посуды и столовых приборов, "серебряных" монет, метал-логалантереи, сувениров, медицинских инструментов и т. д.

Материалы, используемые в кабельной промышленности (алюминий)

Алюминий — химический элемент III группы периодической системыМенделеева (атомный номер 13, атомная масса 26,98154). В большинствесоединений алюминий трехвалентен, но при высоких температурах онспособен проявлять и степень окисления +1. Из соединений этого металласамое важное — оксид Al2O3.

Алюминий — серебристый-белый металл, легкий (плотность 2,7 г/см 3 ), пластичный, хороший проводник электричества и тепла, температура плавления 660 o C.Он легко вытягивается в проволоку и прокатывается в тонкие листы.Алюминий химически активен (на воздухе покрывается защитной оксиднойпленкой — оксидом алюминия. Оксид алюминия (Al2O3)надежно предохраняет металл от дальнейшего окисления. Но если порошокалюминия или алюминиевую фольгу сильно нагреть, то металл сгораетослепительным пламенем, превращаясь в оксид алюминия. Алюминийрастворяется даже в разбавленных соляной и серной кислотах, особеннопри нагревании. А вот в сильно разбавленной и концентрированнойхолодной азотной кислоте алюминий не растворяется. При действии наалюминий водных растворов щелочей слой оксида растворяется, причемобразуются алюминаты — соли, содержащие алюминий в составе аниона:

Алюминий, лишенный защитной пленки, взаимодействуют с водой, вытесняя из нее водород:

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Суммарное уравнение растворения алюминия в водном растворе щелочи имеет следующий вид:

Алюминий активно взаимодействует и с галогенами. Гидроксид алюминия Al(OH)3 — белое, полупрозрачное, студенистое вещество.

В земной коре содержится 8,8% алюминия. Это третий пораспространенности в природе элемент после кислорода и кремния и первый- среди металлов. Он входит в состав глин, полевых шпатов, слюд.Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алунитыи другие). Важнейший минерал алюминия — боксит содержит 28-60%глинозема — оксида алюминия Al2O3.

В чистом виде алюминий впервые был получен датским физиком Х.Эрстедом в 1825 году, хотя и является самым распространенным металлом вприроде.

Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950oC.

Алюминий применяется в авиации, строительстве, преимущественно ввиде сплавов алюминия с другими металлами, электротехнике (заменительмеди при изготовлении кабелей и т.д.), пищевой промышленности (фольга),металлургии (легирующая добавка), алюмотермии и т.д.

Характеристики алюминия

  • Плотность алюминия — 2,7*10 3 кг/м 3 ;
  • Удельный вес алюминия — 2,7 г/cм 3 ;
  • Удельная теплоемкость алюминия при 20 o C — 0,21 кал/град;
  • Температура плавления алюминия — 658,7 o C ;
  • Удельная теплоемкость плавления алюминия — 76,8 кал/град;
  • Температура кипения алюминия — 2000 o C ;
  • Относительное изменение объема при плавлении (дельтаV/V) — 6,6%;
  • Коэффициент линейного расширения алюминия (при температуре около 20 o C) : — 22,9 *106(1/град);
  • Коэффициент теплопроводности алюминия — 180ккал/м*час*град;

Оксид алюминия Al2O3

Оксид алюминия Al2O3, называемый такжеглиноземом, встречается в природе в кристаллическом виде, образуяминерал корунд. Корунд обладает очень высокой твердостью. Егопрозрачные кристаллы, окрашенные в красный или синий цвет, представляютсобой драгоценные камни — рубин и сапфир. В настоящее время рубиныполучают искусственно, сплавляя с глиноземом в электрической печи. Онииспользуются не столько для украшений, сколько для технических целей,например, для изготовления деталей точных приборов, камней в часах ит.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов — лазеров, создающих направленный пучек монохроматического излучения.

Корунд и его мелкозернистая разновидность, содержащая большоеколичество примесей — наждак, применяются как абразивные материалы.

Производство алюминия

Основным сырьем для производства алюминия служат бокситы, содержащие 32-60% глинозема Al2O3. К важнейшим алюминиевым рудам относятся также алунит и нефелин.Россия располагает значительными запасами алюминиевых руд. Кромебокситов, большие месторождения которых находятся на Урале и вБашкирии, богатым источником алюминия является нефелин, добываемый наКольском полуострове. Много алюминия находится и в месторожденияхСибири.

Алюминий получают из оксида алюминия Al2O3электролитическим методом. Используемый для этого оксид алюминия долженбыть достаточно чистым, поскольку из выплавленного алюминия примесиудаляются с большим трудом. Очищенный Al2O3 получают переработкой природного боксита.

Основное исходное вещество для производства алюминия — оксидалюминия. Он не проводит электрический ток и имеет очень высокуютемпературу плавления (около 2050 o C), поэтому требуется слишком много энергии.

Необходимо снизить температуру плавления оксида алюминия хотя бы до 1000 o C.Такой способ параллельно нашли француз П. Эру и американец Ч. Холл. Ониобнаружили, что глинозем хорошо растворяется в раплавленном криолите -минерале состава AlF3 .3NaF. Этот расплав и подвергают элктролизу при температуре всего около 950 o Cна алюминиевых производствах. Запасы криолита в природе незначительны,поэтому был создан синтетический криолит, что существенно удешевилопроизводство алюминия.

Гидролизу подвергают расплавленную смесь криолита Na3 [AlF6 ] и оксида алюминия. Смесь, содержащая около 10 весовых процентов Al2O3 , плавится при 960 o Cи обладает электропроводностью, плотностью и вязкостью, наиболееблагоприятствующими проведению процесса. Для дополнительного улучшенияэтих характеристик в состав смеси вводят добавки AlF3, CaF2 и MgF2. Благодаря этому проведение электролиза оказывается возможным при 950 o C.

Эликтролизер для выплавки алюминия представляет собой железныйкожух, выложенный изнутри огнеупорным кирпичем. Его дно (под),собранное из блоков спресованного угля, служит катодом. Аноды (один илинесколько) располагаются сверху: это — алюминиевые каркасы, заполненныеугольными брикетами. На современных заводах электролизерыустанавливаются сериями; каждая серия состоит из 150 и большего числаэлектролизеров.

При электролизе на катоде выделяется алюминий, а на аноде -кислород. Алюминий, обладающий большей плотностью, чем исходныйрасплав, собирается на дне эликтролизера, откуда его периодическивыпускают. По мере выделения металла, в расплав добавляют новые порцииоксида алюминия. Выделяющийся при электролизе кислород взаимодействуетс углеродом анода, который выгорает, образуя CO и CO2.

Первый алюминиевый завод в России был построен в 1932 году в Волхове.

Сплавы алюминия

Сплавы, повышающие прочность и другие свойства алюминия, получаютвведением в него легирующих добавок, таких, как медь, кремний, магний,цинк, марганец.

Дуралюмин (дюраль, дюралюминий, от названиянемецкого города, где было начато промышленное производство сплава).Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%)марганцем(Mn: 0,2-1%). Подвергается закалке и старению, частоплакируется алюминием. Является конструкционным материалом длаавиационного и транспортного машиностроения.

Силумин — легкие литейные сплавы алюминия (основа)с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами:Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации,главным образом в авто- и авиастроении.

Читайте так же:
Пайка труб из полипропилена цена

Магналии — сплавы алюминия (основа) с магнием (Mg:1-13%) и другими элементами, обладающие высокой коррозийной стойкостью,хорошей свариаемостью, высокой пластичностью. Изготавливают фасонныеотливки (литейные магналии), листы, проволоку, заклепки и т.д.(деформируемые магналии).

Основные достоинства всех сплавов алюминия состоит в их малойплотностью (2,5-2,8 г/см3), высокая прочность (в расчете на единицувеса), удовлетворительная стойкость против атмосферной коррозии,сравнительная дешевизна и простота получения и обработка.

Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-,судо- и приборостроении, в производстве посуды, спорттоваров, мебели,рекламе и других отраслях промышленности.

По широте применения сплавы алюминия занимают второе место послестали и чугуна. Алюминий — одна из наиболее распространенных добавок всплавах на основе меди, магния, титана, никеля, цинка, железа. Алюминийприменяется и для алитирования (алюминирования) — насыщения поверхностистальных или чугунных изделий алюминием с целью защиты основногоматериала от окисления при сильном нагревании, т.е. повышенияжароупорности (до 1100 oC) и сопротивления атмосферной коррозии.

АЛЮМИНИЙ СВОЙСТВА НАХОЖДЕНИЕ В ПРИРОДЕ

Алюминий свойстваЧто такое алюминий — это элемент третьего периода. Заряд ядра атома +13. Электроны располагаются на трех энергетических уровнях: 2, 8, 3. Электронная конфигурация атома алюминия (1s 2 2s 2 2p 6 3s 2 3р 1 ):

Алюминий принадлежит к семейству р-элементов.

Валентные электроны алюминия располагаются на s-оболочке и р-оболочке внешнего электронного слоя. Этих электронов три, поэтому алюминий может образовывать три валентных связи, что для него наиболее типично.

Единственная степень окисления алюминия, которую он может проявлять, не считая нейтрального состояния, равна +3. Таким образом, в окислительно-восстановительных процессах алюминий ведет себя как восстановитель.

■ 73. Почему алюминий относится к р -элементам? (См. Ответ)
74. Какие степени окисления возможны для алюминия?
75. Начертите схему строения Аl +3 .
76. Каково поведение алюминия в окислительно-восстановительных реакциях?(См. Ответ)

Алюминий Al — это серебристо-белый металл. Его атомный вес 26,98. Плотность алюминия 2,7, температура плавления 660°, температура кипения 2060°. Алюминий принадлежит к группе легких металлов. Алюминий обладает высокой электропроводностью, равной 0,6 электропроводности меди, поэтому при большем сечении алюминиевых проводов электропроводность их равна медным, а вес гораздо меньше.

alt=»Алюминий электронная конфигурация атома» width=»200″ height=»55″ />Впервые алюминий был получен в 1827 г. Велером и стоил весьма дорого, так как методы его получения еще не были разработаны и уровень развития электротехники был еще слишком низок для массового получения этого металла. В настоящее время это один из самых дешевых и широко распространенных металлов.

Химические свойства

По химическим свойствам алюминий принадлежит к числу весьма активных металлов, обладающих амфотерными свойствами. В ряду активности он занимает место за щелочноземельными металлами. Но в чистом виде как на воздухе, так и в воде он может храниться очень долго, так как его поверхность со временем покрывается тонким и очень прочным слоем окиси, которая предохраняет его от окисления.

Для того чтобы наблюдать окисление алюминия на воздухе, необходимо сначала освободиться от защитной пленки.

Для этого алюминий сначала протирают наждачной шкуркой, а затем кипятят в щелочи. Окись алюминия, как и сам металл, проявляет амфотерные свойства, а потому растворяется в щелочи. После этого алюминий опускают в раствор какой-либо соли ртути, например нитрата ртути Hg(NO3)2. Алюминий как более активный металл вытесняет ртуть из ее соли:

Ртуть отлагается на поверхности алюминия, образуя сплав алюминия с ртутью — алюминиевую «амальгаму» (сплавы ртути с металлами называются амальгамами). Такой сплав не способен образовывать защитную пленку окиси, а алюминий в амальгаме постепенно окисляется до окиси алюминия по уравнению:

Но поскольку амальгама покрывает алюминий неравномерно, окисление идет местами и окись алюминия заметна на поверхности металла в виде пушистой щетки (рис. 3).

Интересно взаимодействие алюминия с галогенами — с бромом и йодом. Для реакции используются порошкообразный алюминий и жидкий бром, а для реакции с йодом— смесь порошка йода с алюминием.

Во всех случаях алюминий ведет себя как восстановитель.

Рис. 3. Образование окиси алюминия на амальгированной поверхности металл.

При высокой температуре алюминий вытесняет некоторые металлы из их окислов. Это свойство нашло применение. Если смешать окись железа с алюминиевым порошком и поджечь с помощью магниевой вспышки, то произойдет реакция:

которая сопровождается выделением большого количества тепла. За счет этого тепла образующееся свободное железо плавится и может быть выпущено из тигля, в котором происходит реакция, через находящееся внизу отверстие. Такая выплавка металлов называется алюминотермией; в технике она применяется очень широко. Некоторые металлы можно получить только алюминотермическим путем. Этот процесс был впервые осуществлен Н. Н. Бекетовым.

Алюминий является амфотерным металлом. В различных условиях он ведет себя по-разному. В растворе щелочи алюминий вытесняет из воды водород, образуя соль алюминиевой кислоты — алюминат натрия (или калия), в котором он играет роль кислотообразующего элемента:

Из кислоты алюминий вытесняет водород:

2Аl + 6НСl = 2АlСl3 + 3H2↑

В этом случае он проявляет металлические свойства.
Концентрированные азотная и серная кислоты на алюминий не действуют, так как на его поверхности образуется защитная пленка, предохраняющая металл от дальнейшего окисления. В разбавленном виде азотная кислота на алюминий также не действует, а серная действует в слабой степени.

■ 77. Перечислите химические свойства алюминия и обоснуйте свой ответ уравнениями реакций. (См. Ответ)
78. Почему ртуть называют «алюминиевым ядом»?
79. Почему бытовые изделия из алюминия служат длительное время и не подвергаются окислению?
80. Что такое алюминотермия?
81. Сухая смесь состоит из порошков алюминий, железа и угля. При обработке 6 г этой смеси соляной кислотой выделилось 4,48 л водорода, а при обработке того же количества смеси раствором едкого кали — 3,36 л водорода. Определите состав смеси в граммах.
82. Имеется 200 г пиролюзита, содержащего 87% двуокиси марганца. Сколько алюминия потребуется для восстановления из него марганца алюминотермическим путем.
83. Как следует обработать алюминий, чтобы он окислялся на воздухе?
84. В трех пробирках находятся разбавленные кислоты — соляная, серная и азотная. Как, имея кусочки алюминия, определить, в какой пробирке какая кислота?
85. Сколько алюмината натрия получится при взаимодействии со щелочью 27 г алюминия? (См. Ответ)

Соединения алюминия Алюминий в природе

Окись и гидроокись алюминия являются ярко выраженными амфотерными соединениями. Они легко вступают во взаимодействие как со щелочами, так и с кислотами. Молекулу гидроокиси алюминия можно представить в двух формах — в форме основания Аl(ОН)3 и в форме кислоты Н3АlO3. В тех случаях, когда гидроокись алюминия попадает в кислоту, она ведет себя как основание:

Читайте так же:
Термообработка стали 20х13 твёрдость

Аl(ОН)3 + 3HCl = АlСl3 + 3Н2O

При взаимодействии с сильными щелочами гидроокись алюминия реагирует как кислота:

Н3АlO3 + 3NaOH = Na3AlO3 + 3Н2O

• Оба уравнения напишите в ионной форме

Получается соль трехосновной ортоалюминиевой кислоты, называемая ортоалюминатом натрия. Но такой состав у солей бывает редко. Чаще всего ортоалюминиевая кислота в щелочной среде распадается по уравнению:

Н3АlO3 = Н2O + НАlO2

образуя одноосновную метаалюминиевую кислоту НАlO3. Соли этой кислоты называются метаалюминатами, или просто алюминатами. Реакция между метаалюминиевой кислотой и щелочью выражается следующим уравнением:

НАlO2 + NaOH = NaAlO2 + Н2О

Совершенно так же ведет себя окись алюминия. В кислотах как основной окисел она образует соли алюминия:

Аl2O3 + 6НСl = 2АlСl3 + 3Н2O

в щелочах же — как кислотный окисел и образует алюминаты щелочных металлов:

Аl2O3 + 2NaOH = 2NaAlO2 + Н2O

Алюминат натрия, попадая в кислую среду, претерпевает немедленное превращение:

2NaAlO2 + H2SO4 = Na2SO4 + 2НАlO2

НАlO2 + Н2О = Аl(ОН)3

2Аl(ОН)3 + 3H2SO4 = Al2(SO4)3 + 6Н2O

Таким образом, в конечном итоге получаются следующие продукты:

2NaAlO2 + 4H2SO4 = Na2SO4 + Al2(SO4)3 + 4H2O

• Напишите приведенные уравнения реакций в ионной форме.

■ 86. Напишите уравнения реакций, с помощью которых можно осуществить превращения:
Аl → АlСl3 → Аl(ОН)3 → NaAlO2 → Al2(SO4)3 (См. Ответ)
(все уравнения записывайте в полной и сокращенной ионной форме).
87 Имеются алюминий, соляная кислота, едкий натр. Как можно получить гидроокись алюминия?
88. Какова нормальность раствора едкого натра, если на растворение 39 г гидроокиси алюминия израсходовано 200 мл этого раствора?
89. Докажите при помощи уравнений реакций, что окись и гидроокись алюминия — амфотерные соединения.
90. Получится ли алюминат натрия, и если да, то в каком количестве, если на 15 г сульфата алюминия подействовать 50 г едкого натра? (См. Ответ)

Среди соединений алюминия выделяются лишь некоторые его соли. Особенно важен хлорид алюминия АlCl3, незаменимый в промышленности органического синтеза, где он играет роль катализатора во многих процессах. Сульфат алюминия Al(SO4)3 · 18Н2О применяется как коагулянт при очистке водопроводной воды, а также в производстве бумаги. Двойная соль алюминия и калия — алюмокалиевые квасцы KAl(SO4)2 · 12Н2O обладает высокими вяжущими свойствами и применяется при дублении кожи, а также в медицинской практике как кровоостанавливающее средство.

В природе алюминий встречается очень широко и по распространенности элементов стоит на третьем месте. Вследствие высокой химической активности алюминий в природе встречается только в виде соединений. Он входит в состав алюмосиликатов — глины, слюды, полевого шпата, каолина и др. Главной алюминиевой рудой является боксит АlO3 · nН2O, из которого получают алюминий при участии другого соединения алюминия — криолита AlF3 · 3NaF.

Твердая кристаллическая окись алюминия, окрашенная примесью окиси железа в желто-бурый цвет, называется корундом. Корунд обладает высокой твердостью, поэтому применяется для изготовления шлифовальных кругов, брусков и т. д. Прозрачные кристаллы корунда, окрашенные незначительными примесями, представляют собой драгоценные камни: рубин — красного, сапфир — синего цвета.

Производство и применение алюминия

Металлический алюминий получают электролизом раствора окиси алюминия, называемой глиноземом, в расплавленном криолите. Окись алюминия добывают из боксита путем длительной очистки, а криолит получают либо из природного минерала, либо искусственным путем, причем последний способ в настоящее время даже дешевле. Процесс ведут в электрических печах при температуре около 1000°, силе тока около 50 000 а и напряжении 4—5 в (рис. 81).

Применяется алюминий главным образом в виде сплавов с другими металлами, так как он слишком мягок. Наиболее распространенными сплавами являются силумин — сплав алюминия с кремнием, дюралюминий, в состав которого, помимо алюминия, входят небольшие количества магния, железа, меди, марганца, магналий — сплав алюминия с магнием. Все эти сплавы легкие и прочные. Силумин применяется главным образом для литья, дюралюминий и магналий — в самолетостроении, машиностроении, судостроении, для изготовления посуды.

Алюминием покрывают поверхность стальных и железных изделий, что предохраняет их от коррозии. Для этого стальное изделие выдерживают некоторое время в расплавленном алюминии или нагревают в порошке алюминия, который образует на поверхности сплав с металлом.

Получения алюминия электролизом

Такие изделия не окисляются даже при высокой температуре. Этот способ предохранения металлов от окисления называется алитированием.

Рис. 81. Схема промышленной установки для получения алюминия
электролизом.
1 — крепление для анода; 2— штырь для подключения к сети угольного анода; 3 —корка застывшего электролита; 4 — наружный кожух; 5 — кирпичные стенки; 6 —графитовая обкладка; 7, 8 —катод; 9 — расплавленный алюминий; 10 — расплавленный электролит.

Алюминий широко применяется для изготовления проводов в электротехнике и алюминиевых выпрямителей, алюминиевая пыль — как краска для имитации под серебро, алюминиевый порошок —при алюминотермической сварке металлов.

■ 91. Глинозем содержит 91,8% окиси алюминия. Сколько можно получить алюминия из 2 т глинозема, если выход алюминия составляет 80% теоретического?
92. Используя материал § 104 и 106, составьте и заполните таблицу. (См. Ответ)

Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Свойства алюминиевых сплавов

Теплофизические свойства алюминиевых сплавов АМц, АМг, Д16, АК и др.

В таблице представлены состав и теплофизические свойства алюминиевых сплавов для нагартованного, закаленного и отожженого состояний сплава:

    , кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·град);
  • коэффициент линейного теплового расширения, 1/град;
  • удельное электрическое сопротивление, Ом·м.

Теплофизические свойства представлены для следующих сплавов алюминия: А, АМц, АМг, Амг1, АМг5, АВ, Д18, Д1, Д16, АК8, АК4, 32S, В95. Свойства сплавов даны при комнатной температуре, за исключением коэффициента теплового расширения (КТР), который указан для интервалов температуры 20-100, 20-200 и 20-300°С.

Теплофизические свойства некоторых алюминиевых сплавов, таблица 1

Теплопроводность алюминиевых сплавов

Представлена сводная таблица теплопроводности алюминиевых сплавов. В ней приведены значения теплопроводности распространенных алюминиевых сплавов (сплавы алюминия с кремнием, медью, магнием и цинком, литейные сплавы, дюралюминий) при различной температуре в диапазоне от 4 до 700К.

По данным таблицы видно, что теплопроводность алюминиевых сплавов в основном увеличивается с ростом температуры. Наибольшей теплопроводностью при комнатной температуре обладает такой сплав, как АД1 — его теплопроводность при этой температуре равна 210 Вт/(м·град). Более низкая теплопроводность свойственна в основном литейным алюминиевым сплавам, например АК4, АЛ1, АЛ8 и другим.

Читайте так же:
Топ бензиновых генераторов для дома

Температура в таблице в градусах Кельвина !

Таблица теплопроводности сплавов алюминия

Алюминиевый сплавТемпература, KТеплопроводность алюминиевого
сплава, Вт/(м·град)
АВ298…373…473…573176…180…184…189
АД1 нагартованный4…10…20…40…80…150…30050…130…260…400…250…220…210
АД31 закаленный, состаренный4…10…20…40…80…200…300…60035…87…170…270…230…200…190…190
АД33300…373…473…573140…151…163…172
АД35298…373…473…573170…174…178…182
АК4300…500…600…700145…160…170…170
АК6 закаленный, состаренный20…77…223…293…373…473…573…67335…90…192…176…180…184…184…189
АК8 закаленный, состаренный20…40…80…150…300…573…67350…72…100…125…160…180…180
АЛ1300…400…600130…140…150
АЛ220…77…29310…18…160
АЛ4300…473…673150…160…155
АЛ5300…473…573160…170…180
АЛ8300…473…67392…100…110
АМг1298…373…473…573…673184…188…192…188…188
АМг24…10…20…40…80…150…300…373…473…573…6734,6…12…25…49…77…100…155…159…163…164…167
АМг320…77…90…203…29341…86…89…123…132
АМг5 отожженный10…20…40…80…150…300…473…67310…20…40…66…92…130…130…150
АМг620…77…173…29313…43…75…92
АМц нагартованный4…10…20…40…80…150…300…473…573…67311…28…58…110…140…150…180…180…184…188
В93300…473…673160…170…160
В95300…473…673155…160…160
ВАД120…80…30030…61…160
ВАЛ1300…473…673130…150…160
ВАЛ5300…573…673150…160…160
ВД17300…673130…170
Д1298…373…473…573…673117…130…150…172…176
Д16 закаленный, состаренный10…20…40…80…150…300…373…473…5739…19…37…61…90…120…130…146…163
Д20 закаленный, состаренный20…40…80…150…300…373…473…573…67327…38…61…85…140…142…147…155…160
Д21298…373…473…573130…138…151…168

Свойства сплавов алюминия с кремнием, медью, магнием и цинком

В таблице представлены состав и следующие теплофизические свойства алюминиевых сплавов:

  • плотность сплавов, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·°С);
  • коэффициент линейного теплового расширения, 1/град;
  • коррозионная устойчивость в воде и на воздухе;
  • температура изменения прочности.

Плотность, теплопроводность и коэффициент линейного теплового расширения сплавов представлены в зависимости от температуры в интервале от 500 до 660°С. Плотность алюминиевых сплавов с кремнием и цинком наиболее высока. Из легких сплавов можно отметить сплавы, содержащие магний.

Следует отметить, что наибольшей коррозионной устойчивостью в воде и на воздухе обладают алюминиевые сплавы с высоким содержанием меди — они устойчивы к коррозии до температуры 200…250°С. Такие сплавы также обладают высокими прочностными характеристиками.

Свойства сплавов алюминия с кремнием, медью, магнием и цинком, таблица 3

Теплопроводность алюминиевых сплавов в зависимости от температуры

В таблице представлены состав алюминиевых сплавов и коэффициент их теплопроводности в диапазоне температуры от 173 (-100°С) до 773К (500°С). По данным таблицы видно, что чем больше содержится алюминия в сплаве, тем выше его теплопроводность. При нагревании алюминиевых сплавов, их теплопроводность, как правило, увеличивается.

Теплопроводность алюминиевых сплавов в зависимости от температуры, таблица 4

Теплопроводность сплава алюминия с литием

Даны значения коэффициента теплопроводности сплава алюминия с литием при комнатной температуре. Теплопроводность указана в зависимости от содержания лития в сплаве по массе (от 0 до 11%). Необходимо отметить, что увеличение процентного содержания лития приводит к уменьшению теплопроводности сплава.

Теплопроводность сплава алюминия с литием, таблица 5

Плотность, теплопроводность, теплоемкость алюминиевых сплавов Амц, Амг1, Амг2, Д1, Д16

Представлены значения плотности (при температуре 293К), коэффициента теплопроводности, Вт/(м·°С), и удельной (массовой) теплоемкости, кДж/(кг·°С) некоторых алюминиевых сплавов в зависимости от температуры (свойства даны при температурах 25, 100 , 200, 300, 400 °С).

В таблице указана плотность, теплопроводность, теплоемкость следующих сплавов алюминия: Амц, Амг1, Амг2, Д1, Д16. Следует отметить, что плотность алюминиевых сплавов примерно одинаковая, но немного выделяется такой сплав алюминия, как Д-1 — его плотность равна 2800 кг/м 3 .

Плотность, теплопроводность, теплоемкость некоторых алюминиевых сплавов, таблица 6

Теплопроводность, теплоемкость и удельное сопротивление сплава 1151Т

В таблице представлены значения коэффициента теплопроводности, Вт/(м·град), удельной (массовой) теплоемкости, кДж/(г·град)
и удельного сопротивления алюминиевого сплава 1151Т.

Свойства алюминиевого сплава 1151Т даны в зависимости от температуры (в интервале от 0 до 400 °С). По данным таблицы видно, что теплопроводность этого сплава увеличивается при нагревании, однако в районе температуры 200°С имеет место некоторое ее снижение с последующим ростом. Такой же характер изменения свойственен и удельной теплоемкости сплава 1151Т. Удельное электрическое сопротивление рассматриваемого сплава увеличивается по мере роста его температуры.

Теплопроводность, теплоемкость и удельное сопротивление сплава 1151Т, таблица 7

Температурные коэффициенты линейного расширения (КТР) сплава 1151Т

В таблице представлены значения температурных коэффициентов линейного расширения (КТР) алюминиевого сплава 1151Т.
Коэффициенты линейного расширения алюминиевого сплава 1151Т даны в зависимости от температуры (в интервале от 0 до 500 °С). При высоких температурах КТР сплава 1151Т увеличивается.

Температурные коэффициенты линейного расширения сплава 1151Т, таблица 8

Теплофизические свойства алюминиевых сплавов системы Al-Cu-Mn

В таблице представлены теплофизические свойства алюминиевых сплавов, содержащих медь и марганец. рассмотрены такие сплавы, как сплав 01205, 1201, Д21, Д20. Свойства сплавов представлены в зависимости от температуры в диапазоне от 25 до 400°С. Из рассмотренных сплавов наиболее теплопроводным является сплав Д20, с теплопроводностью 138 Вт/(м·град) при температуре 25°С.

Даны следующие теплофизические свойства сплавов:

  • коэффициент теплопроводности, Вт/(м·град);
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент линейного теплового расширения, 1/град.

Теплофизические свойства сплавов системы Al-Cu-Mn, таблица 9

Теплофизические свойства алюминиевых сплавов системы Al-Mg-Si

В таблице представлены следующие теплофизические свойства сплавов алюминия с магнием и кремнием:

  • плотность, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·°С);
  • удельная теплоемкость, кДж/(кг·°С).

Свойства представлены в зависимости от температуры в интервале от 25 до 400°С. Даны свойства следующих сплавов: АД31, АД33, АД35, АВ. Следует отметить, что удельная теплоемкость сплавов увеличивается при нагревании.

Теплофизические свойства сплавов системы Al-Mg-Si, таблица 10

Удельная теплоемкость высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др.

Указана массовая теплоемкость кДж/(кг·°С) при температуре от 20 до 400°С следующих сплавов: В93, В93пч, сплав 1933, В95, В95пч, В95оч, сплав 1973, В96Ц, В96Ц-3. С ростом температуры сплава его теплоемкость увеличивается.

Удельная теплоемкость высокопрочных сплавов алюминия, таблица 11

Теплопроводность высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др.

В таблице приведены значения теплопроводности в размерности Вт/(м·град) в зависимости от температуры (интервал от 25 до 400°С) следующих алюминиевых сплавов: В93, В93пч, сплав 1933, В95, В95пч, В95оч, сплав 1973, В96Ц, В96Ц-3. Наиболее теплопроводными, по данным таблицы, являются сплавы В93, В93пч, сплав 1933, имеющие значение теплопроводности 163 Вт/(м·град) при температуре 25°С.

Теплопроводность высокопрочных сплавов алюминия, таблица 12

Источники:
1. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.
2. Чиркин В.С. Теплофизические свойства материалов ядерной техники.
3. В.М. Белецкий, Г.А. Кривов. Алюминиевые сплавы (состав, свойства, технология, применение). Справочник. Под общей ред. академика РАН И.Н. Фридляндера — К.: «Коминтех», 2005. — 365 с.
4. Богданов С.Н., Бурцев С.И., Иванов О.П., Куприянова А.В. Холодильная теника. Кондиционирование воздуха. Свойства веществ: Справ./ Под ред. С.Н. Богданова. 4-е изд., перераб. и доп. — СПб.: СПбГАХПТ, 1999.- 320 с.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector