Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Термическая обработка титановых сплавов

Термическая обработка титановых сплавов

Титан и α -сплавы титана не упрочняются термической обработкой, и их подвергают только рекристаллизациоиному отжигу. Температура отжига α + β -сплавов должна быть выше температуры рекристаллизации, но не превышать температуры превращения α + β → β , так как и в β -области происходит сильный рост зерна. Отжиг при температурах, соответствующих β -области, мало влияет на σ в и σ 0,2, но сильно снижает δ и ψ . Вязкость разрушения К возрастает при повышении температуры обработки в α + β -области при сохранении высоких значении δ и ψ . Для обеспечения высокой конструктивной прочности следует применять отжиг на 20–30 °С ниже температуры α + β → β -превращення (псевдо β -отжиг).

В последние годы все шире применяется вакуумный отжиг, который позволяет уменьшить содержание водорода в титановых сплавах, что приводит к существенному повышению вязкости разрушения, уменьшению склонности к замедленному разрушению и коррозионному растрескиванию.

Для снятия внутренних напряжений, возникающих при механической обработке α — и α + β -сплавов, применяют неполный отжиг при 550–600 °С; α + β -сплавы могут быть упрочнены закалкой с последующим старением.

Рассмотрим превращения, которые протекают в α + β -сплавах при закалке. При быстром охлаждении сплавов, нагретых до области β -фазы (рис.1), протекает сдвиговое мартенситное превращение. Как и в стали, мартенситное превращение в титановых сплавах протекает в интервале температур МнМк. Чем выше содержание в сплаве β -стабилизаторов, тем ниже температура мартенситного превращения Мн и Мк (рис.1).

Рис.1. Структура сплавов титана после закалки из β –области (а) и влияние концентрации легирующих элементов (л.э.) на точку Мн (а и б)

После закалки малолегированных сплавов образуется α ′-фаза (рис.1). Мартенситная α ′-фаза представляет собой пересыщенный твердый раствор легирующих элементов в α-титане. Она имеет несколько искаженную гексагональную решетку и характерное для мартенсита игольчатое строение (рис.2а,б).

а)б)
Рис.2. Микроструктуры сплавов титана (×100)
а – α ′-фаза; б – α ′ + β -фазы ( β -фаза – темные участки)

При концентрации легирующего элемента выше точки С (рис.1а) возникает мартенситная α ″-фаза с ромбической решеткой. Появление α ″-фазы вызывает уменьшение твердости и прочности сплавов и увеличение пластичности. После закалки сплавов, имеющих концентрацию β -стабилизатора более Cк, образуются α ″- и β -фазы, а выше Cк – только метастабильная β -фаза. В β -фазе, как это видно из рис.1, может образоваться мартенситная ω -фаза с гексагональной структурой, которая когерентно связана с матрицей и при микроструктурном анализе не выявляется. Возникновение ω -фазы сильно охрупчивает сплав.

Закалку α + β -сплавов во избежание сильного роста зерна производят от температур, соответствующих α + β -области (рис.1). При этом α ′-фаза остается без изменений, а β -фаза претерпевает те же превращения, какие протекают в сплаве того же состава, что и β -фаза, при закалке из β -области. Например, для случая, приведенного на рис.1, при температуре t состав α -фазы определится точкой a, а состав β -фазы — точкой b; β -фаза этого состава при закалке приобретает структуру β ( ω ). Следовательно, структура всех сплавов после закалки с температуры t, отвечающей α + β -фазам, будет состоять из α + β ( ω )-фаз. При закалке с температур выше tк (рис.1) состав β -фазы будет меньше Cк, и при быстром охлаждении она будет полностью или частично испытывать мартенситное превращение. Структура сплавов после закалки будет α + α ″ + β ( ω ), или α + α ″, или α + α ′ (рис.1).

В процессе старения закаленных сплавов происходит их упрочнение, обусловленное распадом α ″-фазы и остаточной β -фазы. Повышение прочности при распаде α ″-фазы невелико. Упрочнение, связанное с образованием ω -фазы, использовать нельзя из-за возникновения высокой хрупкости сплавов. Чтобы избежать хрупкости, связанной с образованием ω -фазы, применяют более высокую температуру старения: 450–600 °С.

Упрочняющая термическая обработка для крупных деталей из титановых сплавов применяется редко. Это объясняется малой прокаливаемостъю титановых сплавов, низким значением вязкости разрушения (К) и короблением деталей. Прокаливаемость возрастает с увеличением содержания β -фазы, усложнением состава сплава (ВТ9, ВТЗ, ВТ22) и применением регламентированной скорости охлаждения при закалке (для сплавов ВТЗ-1, ВТ9 до 20 °С/с).

Читайте так же:
Чем лучше отшлифовать брус

Высокую конструктивную прочность обеспечивает «мягкая закалка», которая сводится к нагреву при температурах α + β -области. охлаждению со скоростью 50–150 °С/ч до 700–600 °С и последующему охлаждению на воздухе или в воде. После мягкой закалки производится старение при 450–500 °С. После такой обработки частицы α ″-фазы в метастабильной β -фазе вместо пластинчатой формы имеют округлую форму, что и повышает надежность деталей в эксплуатации.

Типовые сплавы имеют низкие антифрикционные свойства, и при использовании в узлах трения они подвергаются химикотермической обработке. Для повышения износостойкости титан азотируют при 850–950 °С в течение 30–60 ч в атмосфере азота.

Толщина диффузионного слоя в сплавах титана после азотирования при 950 °С в течение 30 ч 0,05–0,15 мм, HV 750–900.

Сварка титана и его сплавов — технология и особенности

Титан как материал открыли в конце 18 века, к его изучению приступили в начале 19, а интенсивно использовать начали к концу 20 столетия. Способствовало этому появление новых технологий, позволяющих проводить обработку сплавов, таких как литье, прокат, сварка титана. Благодаря низкой плотности, всего 4,51 г/ см³ (при прочности 450-1400 МПа, примерно равной прочности сталей, вес составляет на 60% меньше), стойкости к окислению и инертности ко многим агрессивным растворам титан широко используется в авиа- и автомобилестроении, технике, медицине, высоких технологиях.

Большое количество изделий предполагает необходимость использования такой технологии как сварка титана и его сплавов. Исходя из его свойств, можно сказать, что это целое направление металловедов, поскольку он является одним из самых сложных среди всех металлов.

Процесс сварки титана

Особенности сварки титана и сплавов на его основе

Важно! Защита инертными газами должна проводиться до остывания сварного соединения до 250 °С, по всему шву и околошовной зоне

Возникающие трудности при сварке титана схожи по аналогии с алюминием. Но первый более активный металл и образует нежелательные соединения уже при температурах свыше 250 °С. Проблема состоит в том, что это элементы, составляющие воздух:

  • N2;
  • СО2;
  • О2;
  • Н.

Однако особенности сварки титана имеют и преимущества. Несмотря на t плавления 1470-1825 °С для разогрева требуется меньшее количество тепла.

Чистые металлы никогда не используются — их параметры обладают низкими показателями. А вот добавление в них других элементов позволяет получить сплавы с широким диапазоном свойств. Для структуры чистого титана характерны 2 стабильные фазы, при которых различается кристаллическая решетка:

  1. α-фаза до t 882 °С. В этом периоде t мелкозернистая структура стабильна и нечувствительна к быстрому охлаждению.
  2. β-фаза переход при t 883 °С. Характеризуется крупным зерном и чувствительностью к быстрому охлаждению.

С изменением структуры меняются свойства самого сплава. Обеспечить определенный тип структуры могут присадки следующих элементов:

    • α-фаза — Al, O2, N2;
    • β-фаза — Cr, Mn, V.

    Особенно сложная сварка титана в домашних условиях. Причем обработке подлежит ограниченное количество сплавов. В зависимости от легирующих элементов, сплавы делятся на 3

    1. ВТ1, ВТ5 — нечувствительны к скорости охлаждения. Высокая пластичность, способность к свариванию. Термообработка не проводится.
    2. ОТ4, ВТ3, ВТ4, ВТ6, ВТ8 — возможно упрочнение термообработкой. При небольших добавках не нуждаются в термообработке.
    3. ВТ15, ВТ22 — стали свариваются, но с потерей прочности из-за роста зерна, склонны к трещинообразованию. Необходима термообработка.

    Способы сварки титана и сплавов на его основе

    Разнородная сварка

    Практическое применение находит сварка титана со сталью. При такой сварке важно выбирать материалы и режимы сварки, препятствующие образованию в шве хрупких фаз FeTi и Fe2Ti.

    Сварка титана со сталью проводится в защитном газе аргоне вольфрамовым электродом или через промежуточные вставки. Комбинированные вставки выполняются из тантала и бронзы. При этом бронза сваривается со сталью аргонодуговой сваркой неплавящимся электродом, а тантал с титаном сваривается в камерах с контролируемой атмосферой. Используются также комбинированные вставки из бронзы и ниобия. При этом сварка проводится вольфрамовым электродом в камере с контролируемой атмосферой.

    ГАЗОВАЯ ЗАЩИТА СВАРОЧНОЙ ВАННЫ

    Существуют три варианта защиты:

    • струйная с использованием специальных приспособлений
    • местная в герметичных камерах малого объема
    • общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

    При аргонодуговой сварке титана W-электродом следует применять сварочные горелки с возможно большим газовым соплом, создающим обширную зону защиты. Поток аргона через сопло должен быть ламинарным, что достигается газовыми линзами, установленными внутри сопла. Расход газа в зависимости от режима сварки колеблется от 8 до 20 л/мин. Если сопло горелки не гарантирует надежной защиты, то его дополняют специальной насадкой, коробом или другим приспособлением. Дополнительные защитные устройства изготавливают из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна иметь ширину 40-50 мм и длину от 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

    1- дополнительная насадка; 2 — газовая линза

    Качество защиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует низкое качество шва.

    Как подготавливают детали

    Для сварки титана необходимо полностью изолировать свариваемые поверхности от атмосферы, поэтому, как правило, используют автоматическую или полуавтоматическую сварку.

    Ручная сварка титана возможна, но только если используется специальная сварочная горелка с керамическим соплом, через которую на свариваемые участки подается под давлением инертный газ — аргон, который вытесняет воздух.

    При этом обратная сторона шва должна быть изолирована от атмосферы плотно прилегающими стальными либо медными накладками. Для обеспечения наилучшего качества шва используют перфорированные накладки, в отверстия которых подается аргон.

    В случае полуавтоматической или автоматической сварки она проводится в специальной капсуле, заполненной аргоном либо гелием. Сварка титановых труб может производиться без помещения трубы в защитную газовую среду целиком, но при этом сама труба должна быть герметизирована и заполнена аргоном изнутри.

    Другим важным нюансом является зачистка и обезжиривание свариваемых поверхностей на 20 мм от линии стыка. Необходимо удалить оксидную пленку, которая всегда присутствует на поверхности титанового изделия.

    Работать необходимо в перчатках, поскольку руки, даже чистые, могут оставить на кромке потожировые следы, которые приведут к ухудшению сварного шва.

    Перед сваркой титан дополнительно подвергают травлению с использованием смеси соляной кислоты с водой и фторидом натрия — 350 мл HCl, 650 мл дистиллированной воды, 50 г фторида натрия. Температура травления — 60-65 °C, время — около 10 минут.

    После травления титан подвергают тщательной шлифовке. Для механической обработки используют наждачную бумагу до № 12, проволочные щетки, шаберы. Необходимо удостовериться, что края свариваемых деталей ровные, на них отсутствуют заусенцы и трещины. Точно так же зачищается и присадочная проволока. Только после этого можно приступать к сварке титана.

    ГАЗОВАЯ ЗАЩИТА НАГРЕТЫХ УЧАСТКОВ

    Специальная подкладка для защиты корня шва, нагретого до 250-300°С

    Защитные приспособления из нержавеющей стали для тавровых и угловых соединений

    Титан (элемент)

    Простое вещество титан — это лёгкий прочный переходный металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью.

    Содержание

    История [ править | править код ]

    Открытие диоксида титана (TiO2) сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 году немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз: французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

    Первый образец металлического титана получил в 1825 году швед Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

    Титан не находил промышленного применения, пока люксембуржец Г. Кролл     (англ.)  ( рус. в 1940 году не запатентовал простой магниетермический метод восстановления металлического титана из тетрахлорида; этот метод ( процесс Кролла     (англ.)  ( рус. ) до настоящего времени остаётся одним из основных в промышленном получении титана.

    Происхождение названия [ править | править код ]

    Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

    Нахождение в природе [ править | править код ]

    Титан находится на 9-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л [4] . В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит (сфен) CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые [3] .

    Месторождения [ править | править код ]

    Крупные коренные месторождения титана находятся на территории ЮАР, России, Украины, Канады, США, Китая, Норвегии, Швеции, Египта, Австралии, Индии, Южной Кореи, Казахстана; россыпные месторождения имеются в Бразилии, Индии, США, Сьерра-Леоне, Австралии [3] [5] . В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %) [6] . Крупнейшее месторождение в России — Ярегское.

    Запасы и добыча [ править | править код ]

    По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т, а рутиловых — 49,7—52,7 млн т [7] . Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

    Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 млрд т руды со средним содержанием диоксида титана около 10 % [8] .

    Крупнейший в мире производитель титана — российская компания «ВСМПО-Ависма».

    Физические свойства [ править | править код ]

    Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки [3] . Для технического титана твёрдость по Виккерсу составляет 790—800 МПа, модуль нормальной упругости 103 ГПа, модуль сдвига 39,2 ГПа [9] . У высокочистого предварительно отожжённого в вакууме титана предел текучести 140—170 МПа, относительное удлинение 55—70 %, твёрдость по Бринеллю 175 МПа [3] .

    Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

    При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

    Изотопы [ править | править код ]

    Известны изотопы титана с массовыми числами от 38 до 63 (количество протонов 22, нейтронов от 16 до 41), и 2 ядерных изомера.

    Природный титан состоит из смеси пяти стабильных изотопов: 46 Ti (изотопная распространенность 7,95 %), 47 Ti (7,75 %), 48 Ti (73,45 %), 49 Ti (5,51 %), 50 Ti (5,34 %).

    Среди искусственных изотопов самые долгоживущие 44 Ti (период полураспада 60 лет) и 45 Ti (период полураспада 184 минуты).

    Химические свойства [ править | править код ]

    Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен [3] . Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасна.

    Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора [2] .

    Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6] 2− . Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная плёнка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах [12] .

    При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

    TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

    При нагревании Ti взаимодействует с галогенами (например, с хлором — при 550 °C [2] ). Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4, содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

    Восстановлением TiCl4 водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2.

    С азотом N2 выше 400 °C титан образует нитрид TiNx (x = 0,58—1,00). Титан — единственный элемент, который горит в атмосфере азота [2] .

    При взаимодействии титана с углеродом образуется карбид титана TiCx (x = 0,49—1,00).

    При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHx (x = 2,00—2,98). При нагревании эти гидриды разлагаются с выделением H2.

    Титан образует сплавы и интерметаллические соединения со многими металлами.

    Получение [ править | править код ]

    Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

    Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

    Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает

    1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

    Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

    Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

    Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

    Термическая обработка титановых сплавов, виды термической, термомеханической и химикотермической обработки, сведения о взаимодействии титана с легирующими элементами, принципы классификации титановых сплавов.

    Термическая обработка титановых сплавов, виды термической, термомеханической и химикотермической обработки, сведения о взаимодействии титана с легирующими элементами, принципы классификации титановых сплавовО книге: Справочник. Термическая обработка титановых сплавов, виды термической, термомеханической и химикотермической обработки, сведения о взаимодействии титана с легирующими элементами, принципы классификации титановых сплавов.
    Автор: Вульф Б. К.
    Издание: 1969 года.
    Формат книги: файл pdf в архиве zip
    Страниц: 377
    Язык: Русский
    Размер: 11,4 мб
    Скачать книгу: бесплатно, без ограничений, на нормальной скорости, без SMS, логина и пароля. Файл взят из открытых источников.

    Термическая обработка титановых сплавов, виды термической, термомеханической и химикотермической обработки, сведения о взаимодействии титана с легирующими элементами, принципы классификации титановых сплавов.

    В книге «Термическая обработка титановых сплавов» описаны основные виды термической, термомеханической и химикотермической обработки титановых сплавов. Главное внимание уделено теоретическим вопросам изменения структуры и фазового состава титановых сплавов при различном тепловом воздействии и в связи с изменением их механических свойств.

    Для понимания этих вопросов даны краткие сведения о взаимодействии титана с легирующими элементами и принципах классификации титановых сплавов. На основе теоретических предпосылок описаны практически применяемые режимы термической обработки современных промышленных титановых сплавов различных групп.

    Книга предназначена для широкого круга специалистов, занятых в области разработки, обработки и применения титановых сплавов. Она может быть также полезна в качестве учебного пособия для студентов вузов и аспирантов.

    Оглавление книги «Термическая обработка титановых сплавов».
    Строение и свойства чистого титана.
    Взаимодействие титана с легирующими элементами.

    1. Диаграммы состояния двойных систем.
    2. Диаграммы состояния тройных систем.
    3. Диаграммы состояния многокомпонентных систем.

    Классификация титановых сплавов по структурным диаграммам.
    Виды термической и химико-термической обработки титановых сплавов.

    Отжиг титановых сплавов.

    1. Рекристаллизационный отжиг.
    2. Отжиг с фазовой перекристаллизацией.
    3. Изменение строения и свойств отожженных сплавов при старении.

    Теория закалки титановых сплавов.

    1. Общая теория превращений при закалке.
    2. Характеристика метастабильных фаз, образующихся при термической обработке титановых сплавов.
    3. Метастабильные диаграммы состояния титановых сплавов.
    4. Новые взгляды на превращения, происходящие при закалке титановых сплавов.

    Старение закаленных титановых сплавов.

    1. Устойчивость Р-фазы при старении.
    2. Экспериментальные исследования процессов старения опытных сплавов.
    3. Общие закономерности и теоретические основы процессов старения титановых сплавов.

    Диаграммы изотермического превращения титановых сплавов.

    Исследования термической обработки титановых сплавов.

    1. а-сплавы.
    2. (a+b)-сплавы, содержащие менее 2% b-стабилизаторов.
    3. (a+b)-сплавы, содержащие более 2% b-стабилизаторов.
    4. b-сплавы.

    Термомеханическая обработка титановых сплавов.
    Практические методы и режимы упрочняющей термической обработки промышленных титановых сплавов.

    Химико-термическая обработка титана и его сплавов.

    1. Азотирование.
    2. Цементация (карбидизация).
    3. Цианирование.
    4. Борирование.
    5. Силицирование.
    6. Оксидирование.
    7. Наводороживание.
    8. Бериллирование.
    9. Алитирование.
    10. Насыщение медью.
    11. Латунирование.
    12. Хромирование.
    13. Молибденирование.
    14. Насыщение марганцем.
    15. Никелирование.

    Предупреждение!

    Электронная версия данной книги создана исключительно для ознакомления только на локальном компьютере. Скачав файл, вы берете на себя полную ответственность за его дальнейшее использование и распространение. Начиная загрузку книги, вы подтверждаете свое согласие с данными утверждениями.

    Реализация данной электронной книги с целью получения прибыли незаконна и запрещена. По вопросам приобретения данной книги обращайтесь непосредственно к законным издателям или их представителям.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector