Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тиристорный регулятор мощности — устройство, области применения, преимущества

Тиристорный регулятор мощности — устройство, области применения, преимущества

Тиристорный регулятор — специальное устройство, которое позволяет осуществлять регулировку и контроль мощности электрической энергии. Применение этого прибора помогает поддерживать необходимое значение электрического тока, которое требуется для достижения заданного уровня мощности и напряжения в оборудовании.

С какими еще задачами справляется регулятор мощности?

Наряду с функцией управления нагрузкой на различные приборы устройство выполняет следующие задачи:

  • Предотвращение перенапряжения, перегрева техники в процессе эксплуатации.
  • Контроль работы тиристоров.
  • Безударный, мягкий запуск оборудования.

Устройство тиристорного регулятора мощности

Тиристор представляет собой управляемый полупроводниковый прибор, посредством которого электроток проводится в одном направлении. Он имеет три вывода: анод, катод и управляющий электрод.

Для прохождения электротока через тиристор важно соблюсти ряд требований. Прибор анодом и катодом должен быть подключен к силовой цепи, а на управляющий электрод- поступать напряжение из цепи управления.

Какие бывают регуляторы мощности?

Различают следующие разновидности таких устройств:

  • Фазовые. Регуляторы мощности этого типа могут использоваться для индуктивной или переменной резистивной нагрузки. В процессе работы данные приборы регулируют напряжение на выходе прибора.
  • Циклические. Подобные регуляторы мощности используются для постоянной резистивной или емкостной нагрузки. Они коммутируют ток нагрузки при переходе через ноль.

Как работает тиристорный регулятор мощности?

В зависимости от вида такие приборы функционируют по-разному. Алгоритм работы регуляторов мощности основывается на методе переключения тиристоров и может быть двух типов:

  • Фазовый. Данный метод зависит от времени и степени открытия тиристоров. Чем дольше они открываются с момента подачи сигнала на управляющий электрод, тем более низкая мощность поступает к оборудованию.
  • Циклический. В основе этого метода лежит принцип включения и выключения тиристоров при переходе сигнала через ноль. На уровень мощности в данном случае оказывает влияние число полупериодов, в течение которых тиристоры оказываются в выключенном положении.

Где используются регуляторы мощности?

Такие устройства имеют широкую область применения. Использование данного оборудования оправданно, если речь идет о поддержании определенных температурных показателей в процессе работы разных типов печей (сушильных, для обжига и проч.), электрических нагревателей и другого аналогичного оборудования. Регуляторы мощности также позволяют контролировать уровень напряжения электроламп.

Такое оборудование применяется в следующих отраслях:

  • нефтегазовая промышленность;
  • производство товаров из пластика;
  • изготовление стеклянно-керамической продукции;
  • производство лакокрасочных изделий;
  • целлюлозно-бумажная, металлургическая промышленность и другие.

Тиристорные регуляторы мощности: основные преимущества

Одними из ключевых достоинств этого оборудования являются простая конструкция и надежная работа. При этом многообразие модификаций таких приборов позволяет подобрать оптимальное решение, которое будет в полной мере соответствовать установленным технологическим требованиям.

Среди других достоинств такого оборудования стоит выделить следующие:

  • Повышенная точность поддержания определенных температурных показателей.
  • Достаточно простой алгоритм функционирования.
  • Отсутствие механических контактов.
  • Наличие функции непрерывного регулирования.
  • Сравнительно небольшие габариты.
Схема тиристорного регулятора

В качестве примера рассмотрим достаточно простую схему регулировки мощности обычного паяльника. В описываемом случае регулируется один полупериод положительного напряжения сети. Отрицательный полупериод проходит к паяльнику через диод. При этом он остается практически в неизменном виде. Положительный полупериод проходит через тиристор, благодаря чему осуществляется процесс регулирования.

Система управления тиристором включает также резисторы и конденсатор. Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. При увеличении уровня напряжения и достижении им определенной отметки осуществляется его открытие. Вследствие этого в нагрузку попадает определенная часть положительного полупериода напряжения. При этом конденсатор разряжается и готовится вступить в следующий цикл. Регулировать скоростные показатели заряда конденсатора позволяет переменный резистор. Чем более оперативно зарядится конденсатор, тем быстрее откроется тиристор.

Компания «ОвенКомплектАвтоматика» предлагает заказать однофазные тиристорные регуляторы мощности разных модификаций. Мы работаем только с сертифицированным оборудованием, которое в полной мере соответствует установленным стандартам качества, надежности и безопасности.

Однофазные регуляторы мощности и другие приборы, которые представлены на сайте компании «ОвенКомплектАвтоматика», подвергаются обязательному тестированию перед поступлением в продажу. Благодаря такому подходу наша организация заручилась доверием заказчиков. В настоящее время оборудование, которое мы реализуем, активно используется по всей России.

Читайте так же:
Самодельный чпу станок из принтеров своими руками

Заказывать продукцию у нас удобно и выгодно. Наша компания сотрудничает с производителями реализуемого оборудования напрямую, т. е. минуя сторонних исполнителей. Это позволяет нам исключать высокие торговые наценки и устанавливать выгодную стоимость на весь ассортимент. Также наши заказчики могут рассчитывать на дополнительные бонусы в виде скидок. Они предоставляются при оптовом заказе и постоянном сотрудничестве.

В компании «ОвенКомплектАвтоматика» действует услуга доставки продукции. Мы привезем оборудование абсолютно бесплатно в любую точку столицы (при заказе изделий общей стоимостью свыше 35 000 рублей) и области (если итоговая сумма чека составит не менее 100 000 рублей). Также мы предлагаем своим клиентам услуги гарантийного и послегарантийного обслуживания приборов.

Вы хотите узнать больше об особенностях однофазных тиристорных регуляторов мощности? Наши специалисты предоставят профессиональную консультацию. Обращайтесь по указанному на странице номеру. Заказать приборы можно в онлайн-режиме на нашем сайте.

Тиристорный регулятор мощности: схема, принцип работы и применение

В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:

  • силовые (ключ) — симистор;
  • создающие управляющие импульсы, база на симметричном динисторе.

07-regulyator-napryazheniya-220v-svoimi-rukami-7.jpg

С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.

  1. В момент достижения напряжения на конденсаторе C1 точки открытия динистора, на симистор (он же является силовым ключом) VS1 поступает импульс для управления — он активируется.
  2. Через симистор начинает протекать ток на подключенный прибор.
  3. Положением регулятора выставляют часть фазы волны, где срабатывает силовой ключ.

Второй вариант

Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.

08-regulyator-napryazheniya-220v-svoimi-rukami-8.jpg

Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.

Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.

Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей

Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:

Графически схема выглядит так:

Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:

Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.

Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.

Конструкция помещается в любую коробочку, пример:

Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.

Простой регулятор напряжения

Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:

  • диод – 4 шт.;
  • транзистор – 1 шт;
  • конденсатор – 2 шт.;
  • резистор – 2 шт.

Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

Читайте так же:
Размеры трубогиба для профильной трубы самодельный

harakteristiki_tiristornyh.jpg

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

princip_tiristornogo_regulyatora.jpg

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Регулятор мощности для электроплиты

Все, кто хоть раз готовил на электроплитах простой конструкции, знает одно их очень неприятное свойство — на «троечке» суп выскакивает из кастрюли, на «двоечке» не кипит. В этой ситуации выручит предлагаемая схема, позволяющая плавно регулировать мощность на нагрузке от 0 до практически 100%. Схема регулятора достаточно проста в сборке даже для начинающего радиолюбителя и, главное, не содержит дорогих и дефицитных деталей. Несмотря на простоту, устройство имеет достаточно высокий КПД (до 98%) и позволяет управлять нагрузкой до 2 кВт, что вполне достаточно для большинства нагревательных элементов электроплит.

Читайте так же:
Преобразователь от аккумулятора на 220 вольт

Регулятор мощности для электроплиты

В качестве управляющих элементов использованы два тиристора VS1, VS2, а поскольку им придется работать с переменным током, один будет управлять положительной полуволной, другой – отрицательной. Именно поэтому тиристоры включены встречно-праллельно. Изменение мощности на нагрузке производится изменением угла открывания тиристоров. За это отвечает узел, собранный на однопереходном транзисторе VT1.

При вращении движка переменного резистора R3 изменяется время зарядки конденсатора С1. Чем быстрее зарядится конденсатор, тем скорее откроется транзистор после начала сетевого периода. Импульсный трансформатор сформирует на своих обмотках II и III импульсы, которые откроют один из тиристоров в зависимости от текущей фазы сетевого напряжения. С этого момента тиристор останется открытым до окончания периода и через нагрузку потечет ток.

Таким образом, изменяя сопротивление резистора R3, мы можем изменять скорость реакции схемы на начало сетевого периода, а значит и среднюю мощность на нагрузке. Питается узел регулировки от собственного низковольтного источника питания, состоящего из выпрямительного моста VD1 и простейшего параметрического стабилизатора, собранного на стабилитронах VD2, VD3. Резистор R1 – токоограничивающий. Сглаживающего конденсатора, как вы заметили, нет – он не нужен.

Несколько слов о деталях. На месте VT1 может работать транзистор КТ117 с буквами А или Б. При необходимости такой транзистор можно собрать самому по схеме, приведенной ниже:

Схема замены однопереходного транзистора КТ117

Аналог однопереходного транзистора

Диодный мост VD1 можно взять типа КЦ402, КЦ405 или вообще собрать мост из четырех диодов типа Д310, Д311, Д226 или Д7. Токоограничивающий резистор R1 должен иметь рассеиваемую мощность не менее 2 Вт. Чтобы установленная мощность не «уплывала» в процессе нагрева элементов схемы, конденсатор С1 лучше использовать с минимальным температурным коэффициентом емкости (ТКЕ). Это могут быть типы К73-17, К73-24 и др.

В качестве импульсного трансформатора можно использовать МИТ-4 или МИТ-10, но, конечно, можно изготовить его и самому. Для этого понадобится ферритовое кольцо типоразмера К20х10х6 (можно и несколько иных размеров) из феррита марки М2000НМ. На него наматываются три обмотки, каждая из которых содержит 40 витков провода ПЭВ-1 0.31. Удобнее мотать сразу три обмотки, сложив провод втрое и сделав намотку равномерно по кольцу. При монтаже их придется сфазировать – подключить начала и концы обмотки согласно схеме, на которой начало каждой из обмоток обозначено точкой. Тиристоры нужно установить каждый на свой радиатор с поверхностью охлаждения не менее 200 см 2 каждый.

Налаживание конструкции сводится к установке максимальной мощности подбором номинала резистора R2. Это удобно делать, подключив в качестве нагрузки лампу накаливания 100-200 Вт. При полностью выведенном в нижнее положение движке резистора R3 (минимальное сопротивление) подбирают R2 таким образом, чтобы лампа светилась в полный накал, но при малейшем увеличении R3 накал начинал уменьшаться.

В заключение замечу, что этот регулятор можно использовать и для регулировки яркости лампы, мощности печи и даже в качестве регулятора температуры жала паяльника. В любом случае нагрузка должна быть активной и не должна превышать 2 кВт.

А.Н. Евсеев «Электронные устройства для дома», 1997 г.

Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!
.

Управление тиристором, принцип действия

Тиристор — устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Читайте так же:
Сверла для стекла трубчатые

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы тиристорного управления

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы тиристорного управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

upravlenie-tiristorom

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Читайте так же:
Самый лучший погружной блендер контрольная закупка

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

upravlenie-tiristorom

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Вам также может понравиться

Инверторный холодильник

Плюсы и минусы инверторного компрессора в холодильнике

Биполярный транзистор

Применение биполярного плоскостного транзистора, немного истории.

Видеонаблюдение для защиты дома

6 thoughts on “ Управление тиристором, принцип действия ”

Здравствуйте.
Очень полезная и интересная статья!
Спасибо Вам за эту информацию.

Еще,например, существует в природе редкий КУ112В с полевым транзистором на управляющем электроде, который закрывается только при приложении обратного напряжения (например, на отрицательном полупериоде на аноде). Прерывание тока через такой тиристор ничего не дает, он остается открытым. Запереть отрицательным напряжением на управляющем электроде так же невозможно, производитель об этом позаботился, непонятно зачем.

Идея написать статью положительная. Ноесли сказал А, то надо бы говорить и Б.
Для амплитудного и фазово-импульсного метода управления надо показать схемы этих методов.
Тиристоры и безопасность.
«…схемы ЦФТП…». КПСС знаю, ВЛКСМ знаю, СССР знаю, РФ знаю, ЕГЭ знаю, ЦФТП… не знаю)))
Не надо лениться в скобочках давать расшифровку сокращениям и аббревиатурам. Или сразу писать выражение полностью и каждое слово с большой буквы. Коммунистическая Партия Советского Союза.
Двухтранзисторная модель тиристора. По словесному описанию такой тиристор собрать и даже представить невозможно. А раз так, то теряется вообще весь смысл этого словесного описания. Да и в самом описании «данные по напряжению пробоя и току удержания зависят» не только «от конкретных качеств использованных транзисторов», но и от обвязки транзисторов.
«…Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети…» — это как?
«…Первая 1/2 положительного полупериода сети»))). А почему нельзя корректировать время открытия во второй половине положительного полупериода? Что этому мешает? Зачем же вводить пользователей в заблуждение?
Очень похоже на то, что статью писал человек, учившийся в современной системе образования ЕГЭ, и статья куплена на какой-то торговой площадке статей, на рынке или базаре и даже не проверены грамматические опечатки. Не говоря уже о смысловой стороне дела.
Мало того, что современное правительство оболванивает народ своей системой образования ЕГЭ, так и сам народ оболванивает себя между собой собой своей собственной безграмотностью и необразованностью.

Здравствуйте. Спасибо за то, что читаете нас. Хорошо написали комментарий, может быть и статьи пишете?

В дополнение. И сам сайт создан безграмотно. На грамотно созданном сайте комментатору даётся возможность предварительного просмотра своего комментария с целью дать возможность устранить опечатки. Или что-то изменить. А тут ничего такого. При этом возможность модерации владельцем сайта и удаления негативных комментариев есть)))

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector