Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние цветовых температур фар на качество освещения дороги

Влияние цветовых температур фар на качество освещения дороги

Каждый автомобилист хорошо знает, насколько важным критерием эффективной работы системы пассивной безопасности пассажиров любого транспортного средства является освещение. Ведь даже в светлое время суток нередко возникает необходимость воспользоваться светотехникой, причиной могут быть погодные условия либо же правила дорожного движения в конкретном регионе, поэтому к состоянию светотехники нужно подходить со всей ответственностью.

Как показывает практика, большинство водителей даже не подозревают о важности выбора качественных ламп для светотехники конкретного транспортного средства. В частности, речь идет о цветовой температуре. Она во многом влияет на уровень освещенности и может сыграть ключевую роль при движении по плохой, неизвестной дороге либо же в случае возникновения непредвиденных обстоятельств на проезжей части.

Предлагаем вам разобраться в этом вопросе, чтобы определить, какая температура пара подходит для того или иного транспортного средства, и на что стоит ориентироваться, выбирая продукцию.

Влияние цветовых температур фар на качество освещения дороги tsvetovaja-temperatura-far-6

Экскурс в историю автомобильных фар

Как только транспортные средства вошли в массовое производство, инженеров сразу обеспокоил недостаточный уровень освещенности в темное время суток. Со временем светотехнику начали совершенствовать. Использовали рассеиватель и прожекторы, а в качестве основного источника освещения выступала обычная вольфрамовая нить. Такая лампочка имела весьма скромные характеристики, при этом в условиях отсутствия альтернативы, такой вариант являлся наиболее предпочтительным по сравнению с полным отсутствием освещения в темное время суток.

Световой поток вольфрамовой лампы достаточно слабый. Из-за частого использования нити истончаются и перегорают, поэтому с каждым разом световой поток такой лампы ухудшался и становился все более желтым. Только во второй половине 20 столетия появились галогенные лампы, колбы которых были заполнены соответствующими газами. Особенностью устройства являлась возможность вернуть улетучившийся вольфрам со стенок колбы обратно на нить, за счёт чего долговечность использования подобной светотехники значительно увеличивалась. Но такая модификация позволила увеличить цветовую температуру до 3000 кельвинов. Естественно, из-за отсутствия вольфрамового нагара и стекло колбы оставалось чистым и прозрачным надолго, что также положительно сказывалось на состоянии светотехники.

В конце прошлого столетия в продажу вышли лампы, которые принято называть ксеноновыми. В них полностью отсутствует нить накаливания, а процесс нагревания газа происходит за счёт использования электрической дуги. В результате цветовая температура таких ламп находилась в диапазоне от 3.5 до 8 тысяч кельвинов. Разумеется, высокий разбег температурных показателей не является подтверждением того, что каждая новая модель имеет большую мощность накаливания газа в колбе. На самом деле производители просто добавляют в составы красители, которые придают световому потоку тот или иной оттенок.

Влияние цветовых температур фар на качество освещения дороги tsvetovaja-temperatura-far-3

Парадоксально, но наиболее удобным для восприятия человеческим глазом остаётся всё тот же ксенон без красителей. Он обеспечивает мягкое распространение светового потока по дорожному полотну, делая всё более четким и разборчивым.

Разбираемся в деталях цветовых температур фар

Цветовая температура действительно является одной из самых главных критериев при рассмотрении светотехники. Эта величина характеризуется физическими свойствами, которые предопределяют характеристики. В частности, за счет цветовой температуры можно установить спектр излучения конкретного осветительного прибора, а также уровень восприятия светового потока человеческим глазом, что так же важно для автомобилистов, которые должны поддерживать друг друга на дороге и управлять транспортным средством, не создавая некомфортных условий для других участников движения.

Влияние цветовых температур фар на качество освещения дороги tsvetovaja-temperatura-far-2

Цветовая температура измеряется в Кельвинах и представлена в диапазоне от 1800 до 6600 единиц. При этом, среди автомобилистов бытует мнение, что чем выше цветовая температура конкретной лампы, тем она будет мощнее и лучше освещать дорогу даже в условиях ужасных погодных условий и сложно-пересечённой местности. Но на самом деле это совершенно неправильное утверждение.

Люксы, люмены, кельвины, ватты — что означают эти термины ?

Люксы, люмены, кельвины, ватты — что означают эти основные технические термины, которые используются в характеристиках светодиодных и других ламп применяемых для освещения?

Знание этих основных технических терминов поможет вам при выборе светодиодных светильников.

Для начала разберемся как работает светодиод, который используется как источник света в светодиодных светильниках.

Привычные нам лампы накаливания светятся потому, что электрический ток, который проходит через тончайшую нить накаливания, сделанную из тугоплавкого металла (как правило, это вольфрам) разогревает ее до такой температуры, что она начинает излучать свет.

Примечание: Вольфрам — самый тугоплавкий металл. Его температура плавления — 3422 °C, кипения — 5555 °C. Примерно такую же температуру имеет фотосфера Солнца.

Свет же, изучаемый светодиодом, — это результат движения электронов в особом полупроводниковом материале. Современные технологии позволяют создавать светодиоды со сроком службы до 20 лет (более 35 000 часов).

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Это область, где соприкасаются полупроводники p и n типа, в результате чего один тип проводимости переходит к другому.

Анод (р-типа) — полупроводник, носитель положительного заряда (дырки)

Катод (n-типа) — отрицательный электрод (n-тип содержит электроны проводимости как носители заряда).

Читайте так же:
Толщина сечения провода в мм

Внешняя поверхность катода и анода содержит контактные металлические площадки с припаянными выводами. Когда к аноду подается положительный заряд электричества, а к катоду отрицательный, то на р-n переходе между кристаллом катодом начинает течь ток.

Если включение прямое, то электроны из n и области и дырки из p-области устремятся навстречу друг другу. В процессе легирования (обмена электронами) на границе дырочно — электронного перехода произойдет их обмен.

Если отрицательное напряжение подается со стороны материала n-типа, то происходит прямое смещение.

При рекомбинации (обмене) выделяется энергия в виде фотонов.

Чтобы поток фотонов преобразовать в видимый свет, материал подбирают так, что длина волны фотонов находится в пределах видимой области цветового спектра длиной волны от 700 до 400 нм.

Определения

Световой поток — количественная характеристика излучения, которая излучается источником света. Единица измерения — люмен (лм, англ. lm)

Световой поток — это полное количество света, которое излучает данный источник света.

Сила света — отношение светового потока, направляемого от источника света в пределах элементарного пространственного угла (1 стерадиан), охватывающего данное направление, к этому углу. Единица измерения — кандела (кд)

Простыми словами: Сила света — это плотность светового потока

Освещенность — поверхностная плотность светового потока, падающего на единицу поверхности. Единица измерения — люкс (лк, англ. lx).

Освещенность прямо пропорциональна силе света. Т.е при удалении от поверхности освещенность уменьшается и наоборот — чем ближе источник света к поверхности (лампочка), тем менее мощной она должна быть. Обычно нормируется горизонтальная освещенность (в горизонтальной плоскости).

Мощность освещения — величина яркости освещения на единицу площади, т.е. принимаемого света. Например, яркость солнечного света достигает 100 000 Люкс, в тени — 10 000 Люкс, в освещенной комнате — около 300 Люкс

Цветовое ощущение — общее, субъективное ощущение, которое человек испытывает, когда смотрит на источник света. Свет может восприниматься как теплый белый, нейтральный белый, холодный белый. Объективное впечатление от цвета источника света определяется цветовой температурой, измеряемой в Кельвинах (К)

Яркость — это отношение интенсивности света, излучаемого объектом в заданном направлении к проекции поверхности этого объекта на плоскость, перпендикулярную к этому направлению. Яркость непосредственно связана с уровнем зрительного ощущения, а распределение яркости в поле зрения (например в интерьере) характеризует качество (или степень комфортности, удобства) освещения. Единица измерения — кд/м 2

Интегрированный драйвер — имеется ввиду, что пуско-регулирующий прибор является неотъемлемой частью электронной схемы светильника (т.е. размещается на одной плате с источником света)

Единицы измерения

Ватт (Вт, англ. W) — количество потребляемой энергии. Единица измерения Вт (W)
Применительно к освещению, количество Ватт, которое указывает производитель на упаковке, характеризуют не яркость устройства, не количество света, которое будет излучать лампочка, а только количество электроэнергии, которое использует источник (лампочка) за один час работы.

Чтобы понять точно, сколько дает света лампочка, правильнее будет обратить внимание на количество люменов или кандел.

При покупке обычных ламп накаливания количество Ватт, указанных на маркировке лампочки, определяет насколько ярко будет она светить. Но у светодиодов, этот показатель имеет совсем другое значение, т.к. они имеют совершенно другой принцип работы.

Но можно все же провести параллель между яркостью ламп накаливания и светодиодными светильниками, ориентируясь только на мощность. Для этого даже существуют специальные сравнительные таблицы.

Самый простой способ перевода мощности в люмены для обычной лампы накаливания:

Количество Ватт умножаем на 10, и получаем приблизительное количество люменов.

Например, если вам нужно столько света, сколько дает обычная 60Вт лампа, ищите лампу примерно 600 люменов. Это может быть светодиодный светильник мощностью приблизительно в 8-12 Ватт.

Это хорошо видно в приведенной сравнительной таблице.

Лампа накаливания,
мощность в Вт

Люминесцентная лампа,
мощность в Вт

Светодиодная лампа,
мощность в Вт

Световой поток, Лм

Люмен (лм, англ. — lm) — единица измерения светового потока источника света. Она определяет количество света, излучаемое источником света.

Один люмен (1 Лм) — это световой поток, который излучается в единичном телесном угле величиной в 1 стерадиан, равнонаправленным точечным источником, расположенным в центре сферы единичного радиуса, и имеющий интенсивность 1 кандела. (1лм = 1кд *ср). Источник света со световым потоком в 1 Лм, равномерно освещающий поверхность 1 кв.м создает освещенность 1 Люкс.

Люмены определяют, сколько света испускает лампа во всех направлениях. Чем больше света, тем больше число люменов. Это следует учесть при выборе светодиодной лампы. Люмен для лампочки аналогичен литру для емкости, килограммам для весовой продукции или метрам для линейной. Т.е. светодиодный светильник с большим количеством люменов даст более яркий свет (как больший объем вместит больше воды). Меньшее количество люменов даст меньше света.

Но яркость и количество люменов может сильно разниться. Следует учитывать также и другие характеристики, такие как температура цвета, яркость, освещенность и сила света.

Читайте так же:
Натуральный и синтетический каучук кратко

Стоит также помнить, что Люмен — это полный световой поток от источника. И это измерение обычно не принимает во внимание сосредотачивающую эффективность отражателя или линзы, а поэтому не является прямым параметром оценки яркости или полезной производительности луча светильника. У широкого светового луча может быть тот же самый показатель люмен, как и у узкосфокусированного.

Люмены не могут использоваться, чтобы определить интенсивность луча, потому что оценка в люменах включает в себя весь рассеянный и бесполезный свет.

Люкс — единица освещенности, используемая в системе СИ. Люкс равен освещенности поверхности площадью 1 кв.м. при световом потоке от источника в 1 лм (Лм/м 2 ).

Если собрать 100 люменов и спроецировать их на площадь в 1 квадратный метр, то показатель освещённости этой области составит 100 люкс. А если аналогичный световой поток в 100 люменов направить на 10 квадратных метров, то освещённость составит всего 10 люкс.

Интересно: Человеческий глаз — очень чувствительный орган, который чувствует освещенность силой в 0,001 люкса. Такую величину можно сравнить с пламенем свечи, которое человеческий глаз может распознать на расстоянии 1 км.

Фот — единица освещенности в системе CГC. Равен 10 000 люксам.

Кандела (кд, cd — от лат. candela — свеча) — единица измерения силы света. Одна кандела (1 кд) равна силе света, который излучает одна свеча.

Канделы используют для измерения света, идущего в одном направлении, например, для зеркальных ламп. Чем больше света, тем больше количество кандел. Кандела соответствует эталону, который входит в Международую систему основных единиц (СИ).

Кельвин — К . Показатель цветовой температуры — характеристики распределения интенсивности излучения источника света как функции длины волны в оптическом диапазоне. Температура абсолютно черного тела, при которой оно дает излучение с той же хроматичностью, что и данное излучение. Цветовая температура характеризует спектральный состав излучения источника света.

Кельвин (К) — это характеристика источников света, которая определяет цветность ламп и цветовую тональность (теплая, нейтральная и холодная) освещаемого лампами пространства. Выражается в температурной шкале Кельвина (К).

Полный спектр освещения излучается Солнцем и состоит из различных длин волн. В комбинации они белые или желтые, в зависимости от времени суток, но по отдельности имеют разные цвета. Эти параметры относятся к цветовому спектру излучения лампы. Цветовая температура света (К) в Кельвинах не указывает на спектральный состав света лампы — она показывает, как воспринимает цвет света от данной лампы человеческий глаз. Это характеристика, связанная именно с восприятием. Чем ниже цветовая температура, тем больше доля красного и меньше доля синего. Чем выше цветовая температура, тем больше доля синего и зеленого.

Белый цвет лежит в диапазоне 5500-6500К. Ниже 5500К свет лампы становится с желтым или оранжевым оттенком. А при значениях выше 6500К — синего цвета.

2700-3000К — теплый свет — излучение преобладает в красной части спектра

4000-4200К — холодный свет — излучение распределено по всему спектру

5200-6500К — дневной свет — излучение преобладает в синей части спектра

8000-25000К — ультрафиолетовое излучение

Кельвин (K) — единица термодинамической температуры, один Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды
Тройная точка воды — температура 273,16 К и давление 61,1657 Па, при которых вода может одновременно и равновесно существовать в виде трех фаз — в твердом, жидком и газообразном состояниях.

Шкала цветовых температур распространенных источников света

800 К — начало видимого темно-красного свечения раскаленных тел;
1800 К — свет пламени свечи;
2000 К — Натриевая лампа высокого давления;
2200 К — лампа накаливания 40 Вт;
2680 К — лампа накаливания 60 Вт;
2800 К — лампа накаливания 100 Вт (вакуумная лампа);
2800 К — газонаполненные лампы накаливания с вольфрамовой спиралью;
3000 К — лампа накаливания 200 Вт, галогенная лампа;
3200 К — типичные киносъемочные лампы;
3400 К — солнце у горизонта;
3800 К — лампы, использующиеся для подсветки мясных продуктов в магазине (имеют повышенное содержание красного цвета в спектре);
4200 К — лампа дневного света;
4400 K — утреннее солнце и солнце в обеденное время;

4800 К — ксеноновая дуговая лампа, электрическая дуга;
5000 К — солнце в полдень;
5500 К — облака в полдень;
5550 К — фотовспышка;
5600 — 7000 К — лампа дневного света;
6200 К — близкий к дневному свет;
6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету;
6500 — 7500 К — облачность;
7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба;
7500 — 8500 К — сумерки;
9500 К — синее безоблачное небо на северной стороне перед восходом Солнца;
10 000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета);
15 000 К — ясное голубое небо в зимнюю пору;
20 000 К — синее небо в полярных широтах;

Читайте так же:
Самодельный снегоход видео чертежи

CRI (англ. — Color Rendering Index ) — индекс передачи цвета. Параметр, который характеризует уровень соотношения естественного цвета тела при освещении его источником света. Единица измерения — Ra.

Индекс передачи цвета (или коэффициент цветопередачи) — это отношение цветов предметов при освещении их данным источником света к цветам этих же предметов, освещаемых источником света, принятым за эталон (чаще всего Солнцем), в строго определенных условиях.

Он говорит о том, насколько близки к "истинным" будут видны цвета объектов, при рассматривании их при свете лампы. Под "истинным" понимают цвет, который рассматривается с использованием тестового источника.

Ra имеет значения от 0 до 100. Ra = 0 — соответствует свету, который не передает цветов вообще, например, черно-белый телевизор. Ra = 100 — соответствует источнику света, который передает цвета также как и тестовый источник (эталон).

Ra 91-100 — соответствует очень хорошей цветопередаче

Ra 81-91 — хорошая цветопередача

Ra 51-80 — средняя цветопередача

Ra < 51 — слабая цветопередача

Защита IP — Код защиты оболочки или код IP (англ. — Ingress Protection Rating) — система классификации степеней защиты корпуса электрооборудования от проникновения твердых предметов, пыли и воды в соответствии c международными стандартами IEC 60529[1] (DIN 40050[2], ГОСТ 14254-96[3]). Все осветительные приборы для улицы или ванной должны быть защищены от повреждения твердыми предметами или водой. В системе IP степень защиты обозначается двумя числами, например IP65. Чем больше эти числа, тем лучше защита.

Подобрать и купить светодиодные светильники вы можете на нашем сайте в разделе

Цветовая температура светодиодных ламп

Цветовая температура (ЦТ) характеризует состав светового спектра, излучаемого источником. ЦТ проще оценивать на том уровне, на котором ее воспринимает человек. Если подключить обычную лампу накаливания через реостат к источнику тока, то хорошо видимое красное свечение спирали начинается при 900 0 С. В связи с тем, что излучение зависит от движения атомов, отсчет начинается с абсолютного нуля по шкале Кельвина, что по Цельсию составляет -273 0 С. Поэтому для оценки цветовой температуры пользуются шкалой Кельвина.

Шкала

Температурная шкала Кельвина

На рисунке изображена температурная шкала Кельвина, по которой видно, какому цвету излучения соответствуют значения цветовой температуры.

Если оценивать начало свечения лампы накаливания по этой шкале, ее цветовая температура составит 1200К. При нагревании до 2000К нить накала станет оранжевого цвета, а при 3000К – желтого. Она перегорит при 3500К из-за расплавления вольфрамовой спирали. Если бы температура плавления была выше, то при 5500К спираль излучала бы белый цвет, а при 6000К – голубоватый. В дальнейшем цвет излучения подошел бы к фиолетовой границе спектра. Эта ЦТ соответствует 18000К.

ЦТ ламп накаливания полностью отображает степень их нагрева. Но цветовая температура светодиодных ламп не зависит от степени нагрева кристаллов. Если температура нити накаливания находится в соответствии с 2700К, то светодиод при таком излучении нагревается только до 80 0 С.

Особенности восприятия цвета

Цвета люди воспринимают строго индивидуально. Каждый индивидуум правильно различает синий, красный и желтый цвета, но оттенки отличаются значительно. Идентификация цвета зависит от возраста. Хрусталик со временем желтеет, но информация по цветовосприятию может искажаться также по другим причинам.

Индекс цветопередачи (CRI)

Цветопередача – это степень соответствия зрительного восприятия цвета объекта при его освещении стандартным источником света (солнечным светом) и исследуемым. Индекс или коэффициент цветопередачи CRI измеряется в числах и его максимальное значение принято за 100. С повышением точности передачи цветов при освещении лампой индекс становится выше и приближается к этому значению. На рисунке изображен один и тот же объект при разном освещении, где с левой стороны цвет передается наиболее точно.

Цветопередача

Вид объекта при разной цветопередаче

Практическое применение находят следующие категории CRI:

  1. 100 – максимум, соответствующий восприятию цвета наблюдаемого объекта при освещении солнечными лучами или лампой накаливания.
  2. 100> CRI >90 – цветопередающие свойства остаются высокими. Применяется там, где имеет большое значение точная передача цвета.
  3. 90> CRI >80 – цветопередача остается хорошей, но высокая ее точность не является главной целью.
  4. 80> CRI – низкое качество цветопередачи (коридоры, бытовые помещения, дороги).

Цвет не искажается при освещении объекта солнечными лучами и некоторыми лампами накаливания. Эти источники являются эталонными. На рисунке приведены коэффициенты цветопередачи различных ламп и показана шкала цветовой температуры, между которыми нет прямой связи. Первая характеристика отражает правильность отображения цветов, а вторая – цветовую температуру.

Шкала

ЦТ и индексы цветопередачи различных источников света

Линии связи от ламп разных типов со шкалой цветовой температуры показывают числовое значение ЦТ, а с индексом CRI – качество цветопередачи. По таким совмещенным характеристикам удобно подбирать лампы для определенного целевого назначения.

Читайте так же:
Типы разъемов для монитора

Выбор оттенков ЦТ

Если для спирали из вольфрама пределом является 3500К, то светодиодный светильник может создавать ЦТ 5500К и выше, вплоть до фиолетовой области спектра. При этом он не будет перегреваться. На рисунке представлена таблица оттенков светодиодных ламп с указанием области их применения.

Таблица

Таблица оттенков ЦТ и области применения светодиодных ламп

Освещение рабочего места

Естественный свет меньше всего утомляет зрение. Дневной свет является наиболее полезным (4200-5500К). Для чтения, работы за компьютером и других занятий за письменным столом подходят настольные лампы F0204 и F3034 на светодиодах, создающие белый свет, оттенок которого может быть холодным или теплым. Такой свет является оптимальным для работы с документацией, чертежами, коллекционными экспонатами, предметами ручной работы.

Светодиодная лампа создает плотный световой поток, экономична, устойчива к внешним воздействиям и долговечна. Важно для успешной работы то, что включение сопровождается постепенным нарастанием яркости, а в светильник встроен сенсорный датчик, позволяющий ее регулировать.

Для кабинетной работы требуется верхняя подсветка. Комфорт создают потолочные источники света на светодиодах. Для дома подходит модель 91854-АС, которую можно монтировать на натяжном и подвесном потолках. Светильник не выделяет много тепла и пожаробезопасен.

В офисах также применяются настольные лампы, но требуется дополнительная подсветка от мощных светодиодных потолочных панелей, например, LP 600×600. Устройство может служить в качестве основного и дополнительного освещения. Светодиоды дают мягкий и равномерный свет, бесшумно работают и не выделяют ультрафиолет. Панели подключаются к сети 220 В.

Освещение комнат дома

  1. Мягкий белый / теплый белый (2700-4200К). Хорошо подходит к спальням и гостиным, создавая ощущение теплоты и уюта. Такой свет можно использовать для освещения обеденной зоны.
  2. Ярко-белый / холодно-белый (5000-6500К). Подходит для мастерской, гаража, кухни, ванной комнаты. Создает энергичное и бодрое настроение, а также ощущение чистоты.
  3. Дневной свет (4000-5000К). Создает максимальный контраст между цветами. Подходит для кухни, ванной, подвала.

Яркость и ЦТ в восприятии света

Голландский физик Крюитоф установил связь между уровнем освещенности и цветовой температурой. Лампочка с ЦТ 2700К и освещенностью 200 Лк создает комфортный свет. Но светильник, мощность которого в 2 раза выше, уже начинает раздражать, а свет кажется слишком желтым.

Исследователи считают утверждение о том, что светодиодный светильник с холодным спектром лучше подходит для офисов, а теплый – для дома, не совсем верным. Для полной оценки здесь важно еще учитывать яркость источника света. Попадая с ярко освещенной улицы в помещение или наоборот, люди видят цвета несколько искаженными, что связано со снижением уровня освещенности в десятки раз, который влияет на чувствительность глаз. Дизайнеры должны учитывать влияние освещения на адаптацию глаза к изменяющимся внешним условиям.

Выбор светодиодной лампы

Полупроводниковый кристалл светодиода покрыт слоем люминофора, создающим видимый свет, цветовая температура которого зависит от его состава. На фото изображена лампа со светодиодами, где желтым цветом выделяется слой люминофора. Количество кристаллов в одной лампе может быть больше сотни. Их формируют в группы на платах и последовательно запитывают.

Лампа

Так выглядит лампа со светодиодами

Исследователи установили важность выбора светодиодного светильника, влияющего на работоспособность людей в освещаемом помещении. Наибольшая производительность достигается при нейтральном белом свете 3500-4500К. Его смещение от естественного природного освещения в «теплую» или «холодную» сторону колориметрической шкалы снижает работоспособность. Желтая область спектра создает комфортную обстановку, но при этом снижает производительность при 3000К до 7%, а при 2500К – до 25%. При повышении ЦТ до «холодного» цвета (6000К) производительность сначала возрастает, а затем падает на 25% из-за высокой утомляемости.

Такая оценка эффективности ЦТ не всегда правильная. Для работников, трудящихся на станках, смещение освещения в холодную область способствует повышению концентрации внимания при работе. Также положительный результат дает самое «холодное» освещение в больницах и лабораториях, где требуется максимально сосредоточиться в течение короткого времени.

Теплый и мягкий свет при сдвиге спектра даже до 2500-2700К предпочтителен в ресторанах, театрах, читальных залах и жилых помещениях. Он снижает утомляемость и располагает к отдыху, хотя концентрация несколько падает.

В кухне и ванной смещение к холодному свету создает ощущение чистоты.

Освещение

Освещение кухни светодиодными светильниками

При оформлении витрин маркетологи создают теплый свет в местах, где продается хлеб, овощи, сыр, фрукты, рыба. А цветы, молочная и мясная продукция должны освещаться в холодном спектре, что дает ощущение свежести.

Бытовая техника с аппаратурой имеют нейтральное освещение или небольшое смещение в холодную сторону спектра. Мебель, косметика и постельные принадлежности продаются лучше, когда их освещает теплый свет. Для подчеркивания функциональности определенного помещения или зоны в нем существуют таблицы, как правильно выбрать освещение.

Выбор температуры. Видео

Как грамотно подобрать цветовую температуру лампы Verbatim, рассказывает видео ниже.

Светодиодный светильник следует подбирать под комфортную цветовую температуру для отдыха или работы. Благоприятным является белый свет, близкий к естественному, а от него делаются смещения в сторону холодного или теплого спектра.

Читайте так же:
Рейтинг алмазных дисков по бетону

Цветовая температура неразрывно связана с яркостью и индексом цветопередачи. Подбирать светильник следует с оптимальным их сочетанием.

Цветовая температура k 3000 что это значит

Цветовая температура характеризует:
— спектральный состав излучения источника света; а также
— объективное впечатление от цвета источника света.
Температура — физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы.

Разные люди воспринимают один и тот же цвет по-разному. Образно говоря, понятие того или иного цвета — это всего лишь результат неписанного соглашения между людьми называть определённое ощущение зрительного нерва конкретным цветом, к примеру, «красным». Более того, в книге Ч.Пэдхема и Дж.Сондерса «Восприятие света и цвета» упомянуто, что «имеются сведения о различиях в пигментации хрусталика у различных рас, что может приводить к различиям в цветовом зрении». Также известно, что с возрастом хрусталик желтеет, что приводит к нарушениям в идентификации цветов. То есть можно сказать, что адекватное цветовое восприятие — это результат скорее психологического процесса, чем физического. Как видите, науке пришлось немало повозиться, что бы систематизировать и строго научно определить характеристики различных цветов спектра!

Если цвет поверхности ненагретого неизлучающего предмета, то есть одну из его отражательных (а значит и фильтрующих) характеристик, можно описать длиной волны или обратной ей величиной — частотой, то с нагретыми и излучающими телами мы поступим по-другому. Представим себе абсолютно чёрное тело, то есть тело, которое не отражает никакие световые лучи. Для примитивного эксперимента пусть это будет спираль из вольфрама в электрической лампочке. Соединим эту несчастную лампочку с электрической цепью через реостат (изменяемое сопротивление), выгоним всех из ванной комнаты, выключим освещение, подадим ток и будем наблюдать за цветом спирали, постепенно понижая сопротивление реостата.

В один прекрасный момент наше абсолютно чёрное тело начнёт светиться еле заметным красным цветом. Если замерить в этот момент его температуру, то окажется, что она будет примерно равна 900 градусам по Цельсию. Поскольку все излучения происходят от скорости движения электронов, которая равна нулю при нуле градусов Кельвина (-273С), то в дальнейшем забудем про шкалу Цельсия, и будем пользоваться шкалой Кельвина. Таким образом, начало видимого излучения абсолютно чёрного тела наблюдается уже при 1200К, и соответствует красной границе спектра. То есть, попросту говоря, красному цвету соответствует цветовая температура 1200К. Продолжая нагревать нашу спираль, замеряя при этом температуру, мы увидим, что при 2000К её цвет станет оранжевым, а затем, при 3000К — жёлтым. При 3500К наша спираль перегорит, так как будет достигнута температура плавления вольфрама. Однако если бы этого не произошло, то мы увидели бы, что при достижении температуры 5500К цвет излучения был бы белым, становясь при 6000К голубоватым, и при д
альнейшем нагревании вплоть до 18000К всё более голубым, что соответствует фиолетовой границе спектра.

Эти цифры и назвали «цветовой температурой» излучения. Каждому цвету соответствует его цветовая температура. Психологически трудно привыкнуть к тому, что цветовая температура пламени свечи (1200К) в десять раз ниже (холоднее) цветовой температуры морозного зимнего неба (12000К). Тем не менее это так, цветовая температура отличается от обычной температуры.

800 К — начало темно-красного свечения раскаленных тел
2000 К — свет пламени свечи,
2360 К — лампа накаливания вакуумная,
2800—2854 К — газонаполненные (газополные) лампы накаливания с вольфрамовой спиралью,
3200—3250 К — типичные киносъемочные лампы,
5500 К — дневной свет, прямой солнечный,
6500 К — стандартный источник дневного белого света, он близок к среднедневному солнечному свету,
7500 К — дневной свет, с большой долей рассеянного от неба,
100000 К — цвет источника с «бесконечной температурой»

Ксеноновые лампы имеют температуру от 4050К и выше. Максимальная яркость дистигается только на температуре 4300К и с ростом или уменьшением температуры яркость падет. Однако 4300К многим не нравится из-за цвета — это яркий бело-желтый свет.
Поэтому большинство предпочитает температуру 6000К яркий холодный белый свет. Яркость ниже незначительно зато красиво.

Температура выше 6000К уже мало пригодна для практического применения так как голубой(7000К) и синий(8000К) цвет по яркости не намного лучше обычных галогеновых ламп.

Соответствие температуры и цвета ксеноновых ламп:
3500К желтый подходит для противотуманок как основное освещение не пригоден
4300К бело-желтый самый яркий свет, именно эта температура ставится на заводские машины в оригинале
5000К белый
6000К холодный белый с легким голубым, этот свет выбирают 90% покупателей
7000К голубой, яркость значительно ниже ездить с таким светом тяжело
8000К синий легкий фиолетовый, яркость еще хуже.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector