Wabashpress.ru

Техника Гидропрессы
67 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический проводникРасчет параметров

Электрический проводник
Расчет параметров

Электрические свойства проводника в большой степени зависят от вещества из которого он сделан. Важнейшими являются:

  • Удельное сопротивление вещества проводника [ρ], измеряется в Ом·м в международной системе единиц (СИ). Это означает, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом.
    Также довольно часто применяется внесистемная единица Ом·мм²/м.
    1 Ом·мм²/м = 10 −6 Ом·м
  • Температурный коэффициент электрического сопротивления [α], характеризует зависимость электрического сопротивления от температуры и измеряется в Кельвин в минус первой степени K −1 . Это величина, равная относительному изменению удельного ⁄ электрического сопротивления вещества при изменении температуры на единицу. Расчет удельного сопротивления ρt при произвольной температуре t производится по классической формуле (1):

ρt — удельное сопротивление при температуре t
t — температура
ρ20 — удельное сопротивление при температуре 20°C
α — температурный коэффициент сопротивления
Формула применима в небольшом диапазоне температур: от 0 до 100 °C. Вне этого диапазона или для точных результатов применяют более сложные вычисления.

Ниже приведена таблица наиболее популярных металлов для изготовления проводников, с их удельными сопротивлениями и температурными коэффициентами электрического сопротивления. Данные таблицы взяты из различных источников. Следует обратить внимание на то, что и удельное сопротивление проводника, и его температурный коэффициент электрического сопротивления зависят от чистоты металла, а в случае сплавов (сталь) могут существенно отличаться от марки к марке.

Таблица 1
МеталлУдельное сопротив ление [ρ]
при t = 20 °C, Ом·мм²/м
Температурный коэффициент
электрического сопротивления
[α], K −1
Медь0.01750.0043
Алюминий0.02710.0039
Сталь0.1250.006
Серебро0.0160.0041
Золото0.0230.004
Платина0.1070.0039
Магний0.0440.0039
Цинк0.0590.0042
Олово0.120.0044
Вольфрам0.0550.005
Никель0.0870.0065
Никелин0.420.0001
Нихром1.10.0001
Фехраль1.250.0002
Хромаль1.40.0001

Программа КИП и А при вычислении свойств электрического проводника оперирует со следующими входными ⁄ выходными параметрами и их единицами измерения:

  • Вещество, из которого изготовлен проводник (Смотрите таблицу 1)
  • Длина проводника. мм, см, м, км, дюймы, футы, ярды
  • Температура проводника. °C, °F
  • Диаметр проводника. мм
  • Сечение проводника. мм², kcmil
    kcmil — тысяча круговых мил = 0.5067 мм²
  • Сопротивление проводника. Ом, кОм, МОм

Ниже, на рисунках представлены скриншоты модулей программы КИП и А по расчету параметров проводника.

Расчет сопротивления электрического проводника
Рисунок 1
Расчет длины электрического проводника
Рисунок 2
Расчет сечения электрического проводника
Рисунок 3

Расчет сопротивления электрического проводника

Сопротивление электрического проводника рассчитываем по формуле:

R = ρ * L / S

  • R — сопротивление электрического проводника
  • ρ — удельное сопротивление проводника
    вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)]
    • ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
    • t — температура проводника
    • α — температурный коэффициент электрического сопротивления (Таблица 1)

    Расчет длины электрического проводника

    Длину электрического проводника рассчитываем по формуле:

    L = R * S / ρ

    • L — длина электрического проводника
    • R — сопротивление электрического проводника
    • S — сечение электрического проводника
    • ρ — удельное сопротивление проводника
      вычисляется по формуле (1): ρ = ρ20[1 + α(t — 20)]
      • ρ20 — удельное сопротивление проводника при температуре t = 20°C (Таблица 1)
      • t — температура проводника
      • α — температурный коэффициент электрического сопротивления (Таблица 1)

      Расчет сечения электрического проводника

      Минимальное сечение электрического проводника при допустимых потерях напряжения рассчитываем по формуле:

      Удельное сопротивление меди

      Медный провод в мотках

      В электротехнике одними из главных элементов электрических цепей являются провода. Их задача состоит в том, чтобы с минимальными потерями пропустить электрический ток. Экспериментальным путем уже давно определено, что для минимизации потерь электроэнергии провода лучше всего изготавливать из серебра. Именно этот металл обеспечивает свойства проводника с минимальным сопротивлением в омах. Но поскольку этот благородный металл дорог, в промышленности его применение весьма ограничено.

      А главными металлами для проводов стали алюминий и медь. К сожалению, сопротивление железа как проводника электричества слишком велико для того, чтобы из него получился хороший провод. Несмотря на более низкую стоимость, оно применяется только как несущая основа проводов линий электропередачи.

      Такие разные сопротивления

      Сопротивление измеряется в омах. Но для проводов эта величина получается очень маленькой. Если попытаться провести замер тестером в режиме измерения сопротивления, получить правильный результат будет сложно. Причем, какой бы провод мы ни взяли, результат на табло прибора будет мало отличаться. Но это не значит, что на самом деле электросопротивление этих проводов будет одинаково влиять на потери электроэнергии. Чтобы в этом убедиться, надо проанализировать формулу, по которой делается расчет сопротивления:

      В этой формуле используются такие величины, как:

      Получается, что сопротивление определяет сопротивление. Существует сопротивление, вычисляемое по формуле с использованием другого сопротивления. Это удельное электрическое сопротивление ρ (греческая буква ро) как раз и обуславливает преимущество того или иного металла как электрического проводника:

      Поэтому, если применить медь, железо, серебро или какой-либо иной материал для изготовления одинаковых проводов или проводников специальной конструкции, главную роль в его электротехнических свойствах будет играть именно материал.

      Но на самом деле ситуация с сопротивлением сложнее, чем просто вычисления по формулам, приведенным выше. Эти формулы не учитывают температуру и форму поперечника проводника. А при увеличении температуры удельное сопротивление меди, как и любого другого металла, становится больше. Весьма наглядным примером этого может быть лампочка накаливания. Можно замерить тестером сопротивление ее спирали. Затем, измерив силу тока в цепи с этой лампой, по закону Ома вычислить ее сопротивление в состоянии свечения. Результат получится значительно больше, нежели при измерении сопротивления тестером.

      Так же и медь не даст ожидаемой эффективности при токе большой силы, если пренебречь формой поперечного сечения проводника. Скин-эффект, который проявляется прямо пропорционально увеличению силы тока, делает неэффективными проводники с круглым поперечным сечением, даже если используется серебро или медь. По этой причине сопротивление круглого медного провода при токе большой силы может оказаться более высоким, чем у плоского провода из алюминия.

      Причем, даже если их площади поперечников одинаковы. При переменном токе скин-эффект также проявляется, увеличиваясь по мере роста частоты тока. Скин-эффект означает стремление тока течь ближе к поверхности проводника. По этой причине в некоторых случаях выгоднее использовать покрытие проводов серебром. Даже незначительное уменьшение удельного сопротивления поверхности посеребренного медного проводника существенно уменьшает потери сигнала.

      Обобщение представления об удельном сопротивлении

      Как и в любом другом случае, который связан с отображением размерностей, удельное сопротивление выражается в разных системах единиц. В СИ (Международная система единиц) используется ом м, но допустимо использование также и Ом*кВ мм/м (это внесистемная единица измерения удельного сопротивления). Но в реальном проводнике величина удельного сопротивления непостоянна. Поскольку все материалы характеризуются определенной чистотой, которая может изменяться от точки к точке, необходимо было создать соответствующее представление о сопротивлении в реальном материале. Таким проявлением стал закон Ома в дифференциальной форме:

      Этот закон, скорее всего, не будет применяться для расчетов в быту. Но в ходе проектирования различных электронных компонентов, например, резисторов, кристаллических элементов он непременно используется. Поскольку позволяет выполнить расчеты, исходя из данной точки, для которой существует плотность тока и напряженность электрического поля. И соответствующее удельное сопротивление. Формула применяется для неоднородных изотропных, а также анизотропных веществ (кристаллов, разряда в газе и т.п.).

      Как получают чистую медь

      Для того чтобы максимально уменьшить потери в проводах и жилах кабелей из меди, она должна быть особо чистой. Это достигается специальными технологическими процессами:

      • на основе электронно-лучевой, а так же зонной плавки;
      • многократной электролизной очисткой.

      Электрохимическая очистка позволяет уменьшить содержание примесей до 0,005%. Примеси состоят в основном из мышьяка, свинца, серебра, олова, серы. Но даже такое, казалось бы, малое содержание примесей оказывается нежелательным. Особенно вредна сера. Поэтому путем электрохимического рафинирования удается уменьшить содержание примесей, в том числе и серы, до 0,001%.

      Зонная плавка менее эффективна по качеству очистки, поскольку достигается 0,003% примесей. Но их состав более благоприятен, чем при электрохимическом рафинировании. Каждый из этих методов используется в соответствии с определенными целями. Полученные слитки затем поступают на кабельные заводы. Там их расплавляют. Из расплава способом волочения делается проволока необходимого диаметра. Также проволоку изготавливается из медной катанки. Но технология изготовления медных проводов — это совсем другая история…

      Удельное сопротивление меди

      Удельное сопротивление меди это физическое понятие встречающее в электротехнике. Что же это, спросите Вы.

      Итак начнем с понятия — сопротивление проводника, которое означает процесс прохождения через него электричества. В данном случае проводником будет служить медь, а значит её свойства мы и будем рассматривать .

      У всех металлах есть конкретное строение в виде кристаллической решетки. На каждом из углов этой решетки есть атомы, которые периодически колеблются относительно узлов. Когда атомы отталкиваются или притягиваются друг к другу, это влияет на нахождение и расположение всех узлов, во всех металлах по разному. Окружение атомов занимают электроны, которые совершают вращение по своей oрбите, удерживаясь на ней благодаря равновeсию сил.

      Для любителей настоящего мороженного! Есть интересное предложение, на сайте http://oceanpower.ru/category/id001/. Зайдите и узнайте о настольные фризеры для мягкого мороженого и не только.

      Как же реагирует медь, когда к ней применимо электрическоe поле. Внутри данного проводника все оторванные электросилой электроны, от своей oрбиты, стремятся к полюсу со знаком плюс. Данное движение и называется электрическим током. Во время движения электроны сталкиваются с атомами и другими электронами, которые не были оторваны от своих oрбит. При этом столкнувшиеся электроны меняют направление и теряется их энергия. Это и есть основное определение сопротивления проводника. Другими словами это решетки атомы с электронами вращающиеся по своим орбитам которые и создают сопротивление сорванным с орбит движущимся электродам проводника.

      Однако сопротивление зависит так же от нескольких факторов, она индивидуальна для каждого из металлов. На нее влияет размер кристаллической решетки и температура. Когда температура проводника повышается , его атомы проделывают более учащенные колебания. А следовательно, и электроны движутся с наибольшей скоростью и сопротивлением, а орбиты будут большими по радиусу.

      Значение удельного сопротивление меди находиться в справочных таблицах по физике. Оно составляет 0,0175 Ом*мм2/м, при температуре 20 градусов. Ближайшим металлом по значению к меди, будет алюминий = 0,0271Ом*мм2/м. Проводимость меди уступает лишь серебру = 0,016Ом*мм2/м. о чем свидетельствует ее широкое применение , к примеру в силовых кабелях или в разнообразных проводниках. Однако без меди не создать силовые трансформаторы и двигатели маленьких энергосберегающих приборов.

      таблица сопротивления металов

      Нужно знать обозначения удельного сопротивления, так как без этого нельзя проводить вычисления общего сопротивления разных проводников, во время разработки или проектирования новых приборов. Для этого существует формула:

      R=p*I/S

      в которой: R — будет общим сопротивлением проводников, р — будет удельным сопротивлением металлов, I- будет длинной конкретного проводника, S — площадью сечения проводников.

      Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

      Сопротивление медного кабеля

      Несмотря на то, что медь – один из лучших проводников электричества, она обладает сопротивлением. Оно незначительно – поэтому, например, при прокладке трасс небольшой длины (например, в квартире) им можно пренебречь.

      Однако при прокладке трасс большой длины сопротивление медного кабеля имеет решающее значение – поскольку никому не хочется получить на «выходе» значительно меньшее напряжение, чем на «входе».

      Сопротивление жилы медного кабеля

      Существует три способа узнать сопротивление жилы медного кабеля – получить его из таблицы, рассчитать или же измерить специальным прибором (омметром). Первый вариант наиболее прост, но при этом не слишком точен. Таблицы, в которых указывается номинальное электросопротивление токоведущих жил медного кабеля в расчёт на 1 км длины, приведены в ГОСТ 22483-2012.

      Дело в том, что табличные величины сопротивления указываются для кабелей определённого сечения и с определённым составом проводника. На практике же выясняется, что состав медного сплава может отличаться от нормативов. Особенно если речь заходит о некачественных, бюджетных кабелях.

      Второй способ получения сопротивления медного кабеля – расчёт по формуле. Потребуется указать следующие значения:

      • Удельное сопротивление меди ρ, которое варьируется в зависимости от процентного содержания меди в сплаве от 0,01724 до 0,018 Ом×мм²/м;
      • Длину медного кабеля в метрах;
      • Сечение кабеля S в мм².

      Далее используется следующая формула:

      Полученное сопротивление R– это сопротивление всего проводника на произвольную длину. Так что этой формулой удобно пользоваться при расчётах как длинных, так и коротких линий.

      Якорь И третий вариант – это измерить сопротивление проводника самостоятельно. Он наиболее точен, поскольку показывает фактическое значение. Тем не менее, главный минус этого способа заключается в трудоёмкости.

      Измерение электросопротивления токоведущих жил производится одинарным, двойным или одинарно-двойным мостом с постоянным напряжением. Конкретная методика и принципиальные схемы описываются ГОСТ 7229-76.

      Сопротивление изоляции кабелей медных

      Измерение сопротивления изоляции кабелей с медными токоведущими жилами является частью испытаний кабельных линий. Эти процедуры проводятся при положительной температуре окружающего воздуха.

      Дело в том, что в изоляции кабеля могут находиться микрокапли влаги. При отрицательных температурах они замерзают. Кристаллы льда, в свою очередь, являются диэлектриками, то есть ток они не проводят. И, как следствие, измерения медных кабелей при отрицательной температуре не выявят наличия вкраплений влаги в изоляции.

      Для измерения сопротивления изоляции используется мегаомметр. Нормативы подразумевают, что его погрешность должна составлять не более 0,2%. Так, одним из допускаемых соответствующим госреестром устройств является SonelMIC-2500 – гигаомметр, предназначенный для измерения сопротивления изоляции, степени её увлажнённости и старения.

      В общем виде процедура измерения сопротивления изоляции медных кабелей проводится следующим образом:

      1. С кабеля снимается напряжение. Его отсутствие проверяется специальным устройством;
      2. Устанавливается испытательное заземление на стороне, где проводится измерение;
      3. Жилы с другой стороны разводятся на значительное расстояние друг от друга;
      4. На каждую жилу подаётся напряжение. На кабели с изоляцией из бумаги, ПВХ, полимеров и резины подаётся постоянное напряжение, а на кабели с изоляцией из сшитого полиэтилена – переменное;
      5. В течение одной минуты замеряется сопротивление изоляции.

      Измерение проходит следующим образом:

      • Предположим, измеряется сопротивление изоляции жилы «А»;
      • Тогда испытательное заземление подключается к жилам «В» и «С»;
      • Один конец мегаомметра подключается к жиле «А», второй – к заземляющему устройству («земле»).

      Стоит отметить, что конкретная методика измерения зависит от типа кабеля – низковольтный силовой, высоковольтный силовой, контрольный. Вышеприведённый алгоритм имеет общий характер.

      голоса
      Рейтинг статьи
      Читайте так же:
      Шлифовальные камни к мшм
Ссылка на основную публикацию
Adblock
detector