Wabashpress.ru

Техника Гидропрессы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дефектоскопия труб

Дефектоскопия труб

Дефектоскопия труб — одна из подкатегорий неразрушающего ультразвукового контроля, наряду с дефектоскопией основного металла и швов. Данный метод дефектоскопии — один из самых востребованных услуг для контроля нефте- и газопроводов во многих отраслях промышленности: химической, нефтегазовой, топливной, электроэнергетической и др.

В процессе длительной эксплуатации, равно как и в производстве, трубопроводы подвергаются внутреннему и внешнему воздействию, в ходе которых могут накапливаться различные дефекты (коррозионные повреждения, усталостные трещины, нарушения целостности металла, неметаллические включения, закаты, плены, раковины и др.). Очень важным является своевременное обнаружение таких дефектов до выхода трубопровода из строя. Еще более важным является возможность проведения диагностики без остановки или вывода системы из эксплуатации. Именно поэтому для дефектоскопии труб используются методы неразрушающего контроля, среди них магнитные (магнитной анизотропии, магнитной памяти металла, магнитной проницаемости), акустические (импульсные ультразвуковые, волн Лэмба, фазовые, акустической эмиссии), электрические и оптические (визуальные — эндоскопические, лазерные, голографические).

Такие методы применяются для выявления различных дефектов: нарушения герметичности, контроля напряженного состояния, контроля качества и состояния сварных соединений, контроля протечек и других параметров, ответственных за эксплуатационную надежность трубопроводов.

Среди методик проведения дефектоскопии трубопроводов можно выделить толщинометрию тела трубы и ультразвуковое исследование тела и концов трубы для выявления дефектов продольной и поперечной ориентации.

Ультразвуковая диагностика (УЗД) — наиболее эффективный метод, который превосходит по достоверности полученных результатов рентгенодефектоскопию, гамма-дефектоскопию и радиодефектоскопию.

Ультразвуковая дефектоскопия труб

В дефектоскопах, используемых для ультразвуковой дефектоскопии труб, применяется метод, основанный на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа с перпендикулярным (толщиномер) и наклонным (детектор трещин) вводом луча в стенку трубопровода. Зачастую для контроля труб используют ультразвуковые сканирующие системы — они позволяют существенно уменьшить время контроля при сохранении достоверности и качества.

Физическая природа УЗД — свойство волн отражаться от несплошностей. Действие приборов ультразвукового контроля основано на отправке ультразвуковых импульсов и регистрации отраженных акустических эхо-сигналов или ослабленных сигналов (в случае нахождения приемника сигналов в акустической тени, созданной дефектом). Отправка ультразвуковых импульсов и прием ультразвуковых сигналов производится пьезоэлементами (пьезоэлектрическими преобразователями), преобразующими переменное электрическое поле в акустическое поле и наоборот.

Особенности контроля сварных швов труб разного диаметра

Трубы Ø от 28 до 100 мм.

Отличительной особенностью сварных швов труб Ø от 28 до 100 мм с Н от 3 до 7 мм является возникновение провисаний внутри трубы. Это становится причиной появления на экране дефектоскопа ложных эхо-сигналов от них во время контроля прямым лучом, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, найденных однократно отраженным лучом. В связи с тем, что эффективная ширина пучка сопоставима с толщиной стенки трубы, то отражатель крайне сложно идентифицировать по местонахождению искателя относительно валика усиления. В центре шва также имеется неконтролируемая зона по причине большой ширины валика шва. Все это является причиной низкой вероятности (10-12%) выявления недопустимых объемных дефектов, хотя недопустимые плоскостные дефекты обнаруживаются намного лучше (

85 %). Основные характеристики провисания — глубина, ширина и угол смыкания с поверхностью объекта — являются случайными величинами для этого типоразмера труб; средние значения равны соответственно 2,7 мм; 6,5 мм и 56°30′.

Трубы Ø от 108 до 920 мм.

Трубы Ø от 108 до 920 мм с Н от 4 до 25 мм также соединяют односторонней сваркой без обратной подварки. До недавнего времени контроль данных соединений выполняли с помощью совмещенных ПЭП по методике, составленной для труб Ø от 28 до 100 мм. Но для такой методики контроля требуется наличие довольно большой зоны совпадений (зоны неопределенности). Это значительно снижает точность оценки качества соединения. Помимо того, совмещенные ПЭП характеризуются высоким уровнем реверберационных шумов, которые затрудняют расшифровку сигналов, а также неравномерностью чувствительности, которую не всегда могут компенсировать доступные средства. Использование хордовых раздельно-совмещенных ПЭП с целью контроля этого типоразмера сварных соединений нецелесообразно, поскольку по причине ограниченности величин углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей существенно увеличиваются, становится большей и площадь акустического контакта.

Читайте так же:
Формула расчета потребляемой электроэнергии
Трубы Ø от 1020 до 1420 мм

Трубы Ø от 108 до 920 мм с Н от 4 до 25 мм также соединяют односторонней сваркой без обратной подварки. До недавнего времени контроль данных соединений выполняли с помощью совмещенных ПЭП по методике, составленной для труб Ø от 28 до 100 мм. Но для такой методики контроля требуется наличие довольно большой зоны совпадений (зоны неопределенности). Это значительно снижает точность оценки качества соединения. Помимо того, совмещенные ПЭП характеризуются высоким уровнем реверберационных шумов, которые затрудняют расшифровку сигналов, а также неравномерностью чувствительности, которую не всегда могут компенсировать доступные средства. Использование хордовых раздельно-совмещенных ПЭП с целью контроля этого типоразмера сварных соединений нецелесообразно, поскольку по причине ограниченности величин углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей существенно увеличиваются, становится большей и площадь акустического контакта.

Дефектоскопия бурильных труб

Самые уязвимые места бурильной колонны — места соединения труб с замками (сварными и резьбовыми). Контроль мест соединения труб с замками является приоритетным при дефектоскопии бурильных труб. Данные разрушения представляют собой трещины и образуются чаще всего вследствие возникновения усталости металла. Кроме этого, различные дефекты (раковины, закалочные трещины, плены, закаты, нарушения сплошности металла, неметаллические включения, усталостные трещины и т.д.) могут быть обнаружены и в теле труб.

В случаях дефектоскопии бурильных труб могут быть 2 сценария — когда контроль осуществляется сразу с восстановлением труб (осмотр, актирование дефектов, оценка возможности восстановления, собственно восстановление), так и просто контроль и дальнейшее принятие решения о возможности или невозможности дальнейшей эксплуатации по результатам контроля.

Ультразвуковой контроль (УЗК)

Проведение ультразвукового контроля (УЗК) металла и сварных соединений — от 400 рублей за п/м.
Выезд по всей России.

На сегодняшний день ультразвуковая дефектоскопия или УЗК — один из наиболее востребованных методов неразрушающего контроля. Такую популярность метод ультразвукового контроля обрел благодаря своей универсальности и точности. Его эффективность основывается на акустических свойствах ультразвуковых волн, которые способны проникать даже сквозь большую толщину металла. Эти волны, проходящие прямо через однородную среду неповрежденного изделия, имеют свойство, частично отражаясь, менять свою

Ультразвуковая толщинометрия - УЗТ

траекторию, если на их пути оказывается дефектный участок. Это позволяет найти точное местоположение и характер дефекта.

Лаборатория неразрушающего контроля «Филдинс» имеет все необходимые сертификаты и аттестации для проведения УЗ дефектоскопии различных изделий и конструкций, такой как:

  • ультразвуковой контроль сварных швов, соединений, стыков изделий;
  • ультразвуковой контроль промышленного оборудования;
  • ультразвуковой контроль трубопроводов, труб, газопроводов, нефтепроводов;
  • ультразвуковой контроль листового проката;
  • ультразвуковая дефектоскопия колесных пар;
  • ультразвуковая дефектоскопия поковки;
  • ультразвуковая дефектоскопия различных металлоконструкций;
  • ультразвуковая дефектоскопия сосудов и устройств, работающих под давлением

и многое другое…

Узнать больше о нас и объектах контроля в нашей лаборатории можно здесь

Ультразвуковой контроль — УЗК

Основные достоинства ультразвукового контроля

  • Универсальность. Ультразвуковой контроль применяется для исследования различных материалов (металла, бетона и т.д.), форм и конструкций. Посредством УЗК выявляют такие дефекты как трещины на внутренней поверхности, включения шлака, непровары, наличие пустот, появление коррозии и мн. др.
  • Высокая скорость и точность определения местоположения и типа дефекта;
  • Возможность проведения обследования даже в труднодоступных местах;
  • Безопасность для человека (например, в отличие от рентгеновского контроля)
  • Проведение УЗК не требует нарушения целостности изделия.

В Лаборатории неразрушающего контроля «Филдинс» вы можете заказать услуги ультразвуковой дефектоскопии с экономией до 30%, потому что

  • Цены на услуги неразрушающего контроля в нашей лаборатории ниже рыночных по Уральскому региону.
  • Мы работаем с НДС
  • Как молодая развивающаяся компания мы регулярно проводим акции для постоянных клиентов и делаем скидки на объемные заказы.

Возможен выезд в любой город России и Казахстан.

Стоимость услуг ультразвукового контроля

Цены на услуги ультразвукового контроля указаны приблизительные. Узнать точную стоимость УЗК вы можете запросив коммерческое предложение с помощью специальной формы в разделе контакты или позвонив по телефону. Также вы можете заказать обратный звонок, нажав на оранжевый кружок в правом нижнем углу экрана.

УЗК сварных швов трубопроводовДиаметр, мм, до 1141 стыкот 200 руб.
Диаметр, мм, до 2731 стыкот 400 руб.
Диаметр, мм, до 4651 стыкот 600 руб.
Диаметр, мм, до 5501 стыкот 1300 руб.
Диаметр, мм, до 7201 стыкот 1500 руб.
Диаметр, мм, до 9201 стыкот 1900 руб.
Диаметр, мм, до 11201 стыкот 2200 руб.
УЗК сварных швов металлоконструкций и оборудования1 п/мот 400 руб.
УЗК основного металлаТолщина металла до 14мм1 м2от 1400 руб.
Толщина металла до 30 мм1 м2от 1500 руб.
Толщина металла до 60 мм1 м2от 1800 руб.
Толщина металла от 61 мм1 м2договорная
Ультразвуковая толщинометрия сварных швов оборудования основного металла1 точкаот 15 руб.
Читайте так же:
Самодельный чпу станок из принтеров своими руками

Другие услуги дефектоскопии в нашей лаборатории:

Телефоны лаборатории:

Челябинск +7(351)700-90-07
Екатеринбург +7(343)288-70-68
Москва +7(495)120-08-81
Уфа +7(347)200-90-64

Также вы можете оставить заявку в специальной форме в разделе контакты.

Адрес главного офиса
454138, Чайковского 20Б — офис 23
Челябинск, Россия

Специалисты в Екатеринбурге, Москве и Уфе — удаленные.

Ручной ультразвуковой контроль (УЗК) сварных соединений сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов

Аннотация: Данная статья посвящена вопросу области применения ручного ультразвукового контроля (УЗК) сварных соединений сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов, кроме литых деталей.

Ключевые слова: ультразвуковой контроль, неразрушающий контроль, эхо-метод, электронное сканирование, линейное сканирование, секторное сканирование.

Ручной ультразвуковой контроль (УЗК) сварных соединений, рассмотренный в настоящей статье, может использоваться при диагностике сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов, кроме литых деталей.

УЗК контроль обеспечивает обнаружение и оценку допустимости несплошностей с эквивалентной площадью, предусмотренной нормами, регламентированными Ростехнадзором.

Описанная в данной статье методика контроля может быть применена при выполнении ультразвукового контроля оборудования основного металла и сварных соединений технических устройств, применяемых на опасном производственном объекте.

В сварных соединениях контролю и одинаковой оценке качества подлежит металл сварного шва и околошовной зоны. Ширина контролируемой околошовной зоны основного металла определяется в соответствии с требованиями Таблицы 1.

Таблица 1 – Размер околошовной зоны основного металла, оцениваемой по нормам для сварных соединений

Вид сваркиТип соединенияНоминальная толщина сваренных элементов Н, ммШирина контролируемой околошовной зоны В, не менее, мм
Дуговая и ЭЛССтыковоедо 5 вкл.5
св. 5 до 20 вкл.номинальная толщина
св.2020
ЭШССтыковоенезависимо50
НезависимоУгловоеосновной элемент3
притыкаемый элементкак для дуговой сварки, так и для ЭЛС

Ширина контролируемых участков околошовной зоны определяется от граничной поверхности его разделки, указанной в конструкторской документации.

В сварных соединениях деталей различной толщины ширина указанной зоны определяется отдельно для каждой из сваренных деталей.

Ультразвуковой контроль проводят после исправления дефектов, обнаруженных при визуальном и измерительном контроле, при температурах окружающего воздуха и поверхности изделия в месте проведения контроля от + 5 до + 40 °C. Поверхности сварных соединений, включая зоны термического влияния и зоны перемещения ПЭП, должны быть очищены от сварочного грата, пыли, грязи, окалины, ржавчины. С них должны быть удалены забоины, отслаивающаяся окалина по всей длине контролируемого участка. При подготовке поверхности сканирования, ее шероховатость должна быть не хуже Rz=40 мкм.

Ширина подготовленной под контроль зоны должна быть не менее:

Htgб + A + B — при контроле совмещенным ПЭП прямым лучом;

2Htgб + A + B — при контроле однажды отраженным лучом и по схеме "тандем";

Н + A + B — при контроле PC ПЭП хордового типа, где А — длина контактной поверхности ПЭП (ширина для PC ПЭП).

Проведение контроля предусматривает использование следующего оборудования, материалов и инструментов:

  • импульсные ультразвуковые дефектоскопы с комплектами преобразователей и соединительными высокочастотными кабелями;
  • СО, ОСО, СОП, вспомогательные устройства, включая средства определения шероховатости поверхности (образцы шероховатости, профилометры);
  • АРД и SKH-диаграммы, номограммы;
  • вспомогательные приспособления, материалы и инструменты.

При контроле используются дефектоскопы с диапазоном регулировки измерительного аттенюатора не менее 60 дБ и шагом ступени не более 2 дБ (динамический диапазон экрана дефектоскопа — не менее 20 дБ). Скорость распространения ультразвука в материалах должна составлять 2500-6500 м/с для продольных волн и 1200-3300 м/с для поперечных. Диапазон прозвучивания по стали при работе с прямым совмещённым ПЭП в эхо-импульсном режиме — не менее 3000 мм, а при работе наклонным ПЭП — не менее 200 мм (по лучу). Диапазон измерений глубин залегания дефектов по глубиномерному устройству в эхо-импульсном режиме не менее 1000 мм по стали при работе прямым ПЭП, и не менее 100 мм по обеим координатам при работе с наклонным ПЭП.

Читайте так же:
Подбор конденсатора по мощности двигателя

Выбор наклонных совмещенных преобразователей и прямых преобразователей проводится с учетом толщины контролируемого сварного соединения по Таблицам 2 и 3.

Таблица 2 – Выбор наклонных совмещенных преобразователей

Номинальная толщина сваренных элементов, ммЧастота, МГцУгол ввода, град, при контроле лучом
прямымотраженным
от 2 до 8 вкл.4,0 — 1070 — 7570 — 75
св. 8 до 12 вкл.2,5 — 5,065 — 7065 — 70
св. 12 до 20 вкл.2,5 — 5,065 — 7060 — 70
св. 20 до 40 вкл.1,8 — 4,060 — 6545 — 65
св. 40 до 70 вкл.1,25 — 2,550 — 6540 — 50
св. 70 до 125 вкл.1,25 — 2,045 — 65Контроль не проводится

Таблица 3 — Выбор прямых преобразователей

Номинальная толщина сваренных элементов, ммТип ПЭПЧастота, МГц
до 20 вкл.PC или совмещенный4 — 6
св. 20 до 40 вкл.PC или совмещенный2,5 — 5,0
св. 40 до 60 вкл.PC или совмещенный1,8 — 5,0
св.60совмещенный1,25 — 2,5

Процедура ультразвукового контроля включает следующие операции:

  • настройка скорости развертки и глубиномера дефектоскопа;
  • установка поискового, контрольного и браковочного уровня чувствительности, параметров ВРЧ (при необходимости);
  • сканирование;
  • при появлении эхо-сигнала от возможной несплошности: определение его максимума и идентификация несплошности (выделение полезного сигнала на фоне ложных сигналов);
  • определение предельных значений характеристик несплошностей и сравнение их с нормативными;
  • измерение и регистрация характеристик несплошности, если ее эквивалентная площадь равна или превышает контрольный уровень;
  • оформление документации по результатам контроля.

Результаты контроля оцениваются с точки зрения соответствия измеренных характеристик максимально допустимым значениям, установленным в нормативных документах. По тем же нормам оценивают качество околошовной зоны, размеры которой указаны в таблице 1.

Нормативы качества по результатам УЗК определяются по действующей на момент проведения контроля руководящей нормативно-технической документацией (РД, ПКД, ТУ, ПК). Если специальные нормативы для конкретного контролируемого сварного узла отсутствуют, допускается руководствоваться нормами, приведенными в Таблице 4.

Таблица 4 — Максимально допустимые значения характеристик несплошностей, выявляемых при контроле

Номинальная толщина сварного соединения, ммЭквивалентная площадь одиночных несплошностей, мм2Число фиксируемых одиночных несплошностей на любых 100 мм длины сварного соединенияПротяженность несплошностей
Суммарная в корне шваОдиночных в сечении шва
от 2 до 30,6620 % внутреннего периметра сварного соединенияУсловная протяженность компактной (точечной) несплошности
от 3 до 40,96
от 4 до 51,27
от 5 до 61,27
от 6 до 91,87
от 9 до 102,57
от 10 до 122,58
от 12 до 183,58
от 18 до 265,08
от 26 до 407,09
от 40 до 6010,010
от 60 до 8015,011
от 80 до 12020,011

Качество сварных соединений оценивается по двухбалльной системе:

  • балл 1 – неудовлетворительное качество: сварные соединения с несплошностями, измеренные характеристики или количество которых превышают максимально допустимые значения по действующим нормам;
  • балл 2 – удовлетворительное качество: сварные соединения с несплошностями, измеренные характеристики или количество которых не превышают установленных норм. При этом сварные соединения считают ограниченно годными (балл 2а), если в них обнаружены несплошности с Ак<А<Абр; ∆L <∆L; n< n, и абсолютно годными (балл 2б), если в них не обнаружены несплошности с А ≥ Ак, где А — измеренная амплитуда эхо-сигнала от несплошности; Ак и Абр — амплитуды контрольного и браковочного уровней чувствительности на глубине залегания несплошности; ∆L и ∆L — измеренная условная протяженность несплошности и ее предельно допустимое значение; n и n — измеренное количество несплошностей с Aк ≤ A ≤ Aбр и ДL ≤ ДL на единицу длины сварного соединения (удельное количество) и предельно допустимое количество.
Читайте так же:
Технологическая инструкция на сварку контейнера

Основными измеряемыми характеристиками выявленной несплошности являются:

  • соотношение амплитудной и/или временной характеристики принятого сигнала и соответствующей характеристики опорного сигнала;
  • эквивалентная площадь несплошности;
  • координаты несплошности в сварном соединении;
  • условные размеры несплошности;
  • условное расстояние между несплошностями;
  • количество несплошностей на определенной длине соединения.

Измеряемые характеристики, используемые для оценки качества конкретных соединений, должны быть регламентированы технологической документацией на контроль.

Несплошность считают поперечной (тип «Т» по ГОСТ Р 55724-2013, приложение Г), если амплитуда эхо-сигнала от нее при озвучивании наклонным совмещенным ПЭП вдоль шва (независимо от условной протяженности) Aпоп не менее, чем на 9 дБ больше, чем при озвучивании поперек шва Апрод. При этом рассматриваются только эхо-сигналы с амплитудой, равной или большей контрольного уровня чувствительности Ак для глубины залегания данной несплошности.

Если разница амплитуд эхо-сигналов в указанных направлениях озвучивания меньше 9 дБ, несплошность считают продольной.

При измерении ориентации несплошности усиление шва в месте измерений должно быть удалено и заглажено заподлицо с основным металлом.

Несплошность считают или объемной, или плоскостной в зависимости от измеренных значений идентификационных характеристик (признаков) по ГОСТ Р 55724-2013, раздел 10.

Идентификацию формы несплошности допускается проводить с помощью дефектоскопов с визуализацией дефектов.

При контроле сварных соединений с проточкой под подкладное кольцо оценку дефектов проводят для номинальной толщины сваренных элементов (в зоне проточки).

При экспертном или дублирующем контроле результаты контроля двумя дефектоскопистами следует считать сопоставимыми, если эквивалентные площади одной и той же несплошности отличаются не более, чем в 1,4 раза (3 дБ).

Отступления от норм оценки обнаруженных несплошностей допускаются в соответствии с порядком, предусмотренным Правилами Ростехнадзора, а также по специальным техническим решениям, согласованным в установленном порядке.

Список информационных источников:

  1. ГОСТ Р 55724-2013 «Контроль неразрушающий. Соединения сварные. Методы ультразвуковые».
  2. ГОСТ 12.1.001 «Ультразвук Общие требования безопасности».
  3. ГОСТ 12.3.019 «Испытания и измерения электрические. Общие требования безопасности».
  4. ГОСТ 26266-90 «Контроль неразрушающий. Преобразователи ультразвуковые. Общие технические требования».
  5. ПБ 03-440-02 «Правил аттестации специалистов неразрушающего контроля».
  6. РД 34.10.133-97 «Инструкция по настройке чувствительности ультразвукового дефектоскопа».
  7. СП 53-101-98 «Изготовление и контроль качества стальных конструкций».

С.А. Шевченко, Н.Л. Михайлова, А.А. Шестаков, С.Г. Царева, Э.В. Шишков

Ультразвуковой контроль сварных швов трубопроводов

Согласно пункту 12.3.6 ГОСТ 32569-2013, «Контроль сварных соединений методом РД (ГОСТ 7512) или УЗД (ГОСТ 14782) следует проводить после устранения дефектов, выявленных внешним осмотром и измерениями, а для трубопроводов I категории, а также для трубопроводов с группой сред А(а) или работающих при температуре ниже минус 70 °C — после контроля на выявление выходящих на поверхность дефектов методами магнитопорошковым (ГОСТ 21105) или капиллярным (ГОСТ 18442)».

Для трубопроводов I категории, а также для трубопроводов с группой сред А(а) контроль на выявление выходящих на поверхность дефектов (цветная дефектоскопия) проводится на всех сварных соединениях трубопровода в объеме 100% (до проведения РД (УЗД)) или же только на сварных соединениях, отремонтированных после выявления дефектов по результатам ВИК?

I. Объём капиллярного (или магнитопорошкового) контроля, применяемого дополнительно к основным методам контроля качества сварных стыков в целях определения поверхностных или подповерхностных дефектов, должен определяться разработчиком в проектной документации на устройство конкретного технологического трубопровода, о чём свидетельствуют, например, положения следующих нормативных документов:

  1. Пункт 28 Технического регламента Таможенного союза 032/2013 «О безопасности оборудования, работающего под избыточным давлением», распространяющегося и на технологические трубопроводы (см. пункты «е»-«и» раздела 1), гласит: «Входной контроль сварных соединений выполняется изготовителем оборудования. Методы проведения неразрушающего контроля и его объем определяются разработчиком проекта оборудования исходя из необходимости более точного и полного выявления недопустимых дефектов с учетом особенности свойств материалов и указываются впроектной документации оборудования».
  2. Пункт 160 Федеральных норм и правил в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» гласит: «Капиллярный и магнитопорошковый контроль сварных соединений является дополнительным методом контроля, устанавливаемым технологической документацией в целях определения поверхностных или подповерхностных дефектов. Класс и уровень чувствительности капиллярного и магнитопорошкового контроля должны быть установлены технологической документацией«.
  3. Пункт 1.17 РД 13-06-2006 «Методические рекомендации о порядке проведения капиллярного контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах» гласит: «Необходимость, объемы и чувствительность капиллярного контроля при изготовлении, строительстве, монтаже, ремонте, реконструкции, эксплуатации и техническом диагностировании (освидетельствовании) технических устройств и сооружений определяются соответствующей технической документацией на их изготовление, строительство, монтаж, ремонт и реконструкцию, эксплуатацию и техническое диагностирование (освидетельствование)».
  4. Пункт 338 Руководства по безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов» гласит: «Неразрушающему контролю рекомендуется подвергать наихудшие по результатам внешнего осмотра сварные швы по всему периметру трубы. Число контролируемых сварных швов определяется проектной документацией на объект, но во всех случаях рекомендуется принимать объем контроля сварных соединений ультразвуковым или радиографическим методом в процентах от общего числа сваренных каждым сварщиком соединений не ниже приведенного в приложении № 15 к настоящему Руководству».
  5. Пункт 7.8.3 ГОСТ 34347-2017 «Сосуды и аппараты стальные сварные. Общие технические условия» гласит: «Объем капиллярного контроля и класс чувствительности определяют в соответствии с требованиями ОСТ 26-5-99 «Контроль неразрушающий. Цветной метод контроля сварных соединений, наплавленного и основного металла» и требованиями проектной документации«.
Читайте так же:
Усилитель для сабвуфера в машину своими руками

II. При определении количества сварных стыков, подлежащих контролю капиллярным или магнитопорошковым методом, представляется необходимым руководствоваться положениями следующих нормативных документов:

1. Общие положения:

  • а) Пункт 7.8.1 ГОСТ 34347-2017 Сосуды и аппараты стальные сварные. Общие технические условия гласит: «Капиллярному или магнитопорошковому контролю необходимо подвергать сварные швы, недоступные для осуществления контроля радиографическим или ультразвуковым методом, а также сварные швы сталей, склонных к образованию трещин при сварке (см. приложение Р)«;
  • б) Пункт 9.5.2 РД 34-10.030-89 «Правила контроля качества сварных соединений трубопроводов атомных станций» гласит: «Контролю капиллярной или магнитопорошковой дефектоскопией подлежат:
    • все сварные соединения из сталей различных структурных классов независимо от толщины сваренных деталей;
    • все сварные соединения из хромомолибденовых сталей перлитного класса при номинальной толщине свариваемых деталей более 45 мм и из хромомолибденованадиевых сталей перлитного класса при номинальной толщине свариваемых деталей более 35 мм;
    • угловые сварные соединения элементов опор, подвесок упоров и др. с трубопроводами I и II категорий по «Правилам устройства и безопасной эксплуатации трубопроводов пара и горячей воды», а также I и II категорий по СН 527-80 в объеме не менее 20 % от общего числа однотипных сварных соединений, выполненных каждым сварщиком, и не менее 10 % для сварных соединений, опор, подвесок, упоров и др. с трубопроводами III и IV категорий по тем же правилам и нормам;
    • стыковые соединения и угловые соединения вварки штуцеров трубопроводов из малоуглеродистых перлитных и аустенитных сталей в местах, вызывающих сомнение по результатам визуального контроля (подозрения на трещины, несплавления, свищи, незаплавленные кратера).
    1. Обязательному контролю цветной или капиллярной дефектоскопии подлежат сварные соединения, подвергавшиеся на одном участке ремонту в количестве двух и более раз.
    2. Контролю магнитопорошковой дефектоскопией подвергаются только сварные соединения из сталей перлитного класса.
    3. Выбор способа контроля при отсутствии указаний в конструкторской документации и ПТД производится организацией, выполняющей работы по контролю качества сварных соединений.»

    2. Конкретный объём неразрушающего контроля сварных стыковых кольцевых швов, швов для штуцеров, угловых и плотных швов технологических трубопроводов (в том числе и капиллярным методом), назначаемый в зависимости от класса трубопровода и группы материалов, установлен таблицей 8.2-1 СТБ ЕН 13480-5-2005 «Трубопроводы промышленные металлические. Часть 5. Испытания и контроль» и аналогичной таблицей 8.2-1 СТ РК EN 13480-5-2016 «Трубопроводы металлические промышленные. Часть 5. Контроль и испытания» (оба стандарта включены в Перечень международных и региональных (межгосударственных) стандартов, а в случае их отсутствия — национальных (государственных) стандартов, в результате применения которых на добровольной основе обеспечивается соблюдение требований технического регламента Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013). Редакция 2).

    III. Одновременно обратите внимание, что в пунктах 12.3.6 и последнем абзаце пункта 12.3.11 ГОСТ 32569-2013 допущены опечатки, а именно правильный текст в этих пунктах должен быть таким:

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector