Wabashpress.ru

Техника Гидропрессы
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрохимзащита (ЭХЗ)

Электрохимзащита (ЭХЗ)

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного — 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты
Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

Читайте так же:
Типы токарных станков по дереву

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

Читайте так же:
Ножовка по металлу 150 мм

Электрические методы защиты

Стальные газопроводы и резервуары, уложенные в землю, подлежат электрической защите во всех анодных и знакопеременных зонах, независимо от коррозионной активности грунта. Электрические методы защиты могут быть разделены на две основные группы:

• отвод и нейтрализация блуждающих токов;

• защита вне зоны блуждающих токов.

С помощью электрических защитных установок на газопроводах устраняются анодные и знакопеременные зоны и создаются защитные (отрицательные) потенциалы. Катодную поляризацию металлических подземных сооружений необходимо осуществлять так, чтобы создаваемые на всей их поверхности поляризационные защитные потенциалы (по абсолютной величине) были не менее 0,55 В и не более 0,80 В по отношению к неполяризующемуся водородному электроду, а также не менее -0,85 В и не более -1,15 В — к медно-сульфатному в любой среде. Потенциал неполяризующегося медносульфатного электрода по отношению к стандартному электроду принят равным 0,3 В.

Измерение поляризационных потенциалов производится по методике, приведенной в ГОСТ 9.602-2005 (приложения Р). Катодная поляризация подземных газопроводов должна осуществляться так, чтобы исключить вредное влияние ее на соседние металлические сооружения:

• уменьшение (по абсолютной величине) минимального или увеличение максимального защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, более чем на 0,1 В;

• опасность возникновения электрической коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты.

Для защиты газопроводов от коррозии блуждающими токами могут быть применены дренажи, катодные станции, протекторы, изолирующие фланцы и вставки, а также перемычки на смежные металлические подземные сооружения. Выбор того или иного способа защиты зависит от конкретных условий и в большинстве случаев определяется путем экспериментального сравнения эффективности их действия. В тех случаях, когда одним из способов защиты не удается обеспечить защитные потенциалы на всех участках защищаемых газопроводов, применяют сочетание нескольких способов защиты.

Электрический дренаж — способ защиты, заключающийся в отводе блуждающих токов из анодной зоны защищаемого сооружения к их источнику. Дренаж — самая дешевая защита, создающая большую зону защиты (до 5 км). Для защиты металлических подземных сооружений применимы три типа дренажей: прямой, поляризованный и усиленный. По многим причинам чаще всего применяются два последних.

В практике автономного газоснабжения дренаж имеет весьма ограниченное применение, так как не обеспечивает должного уровня защиты. Кроме того, проще предусмотреть рациональную трассу газопровода, исключающую влияние блуждающих токов от рельсового электротранспорта, еще на этапе проектирования.

Катодная защита. Принцип этого вида защиты заключается в катодной поляризации защищаемой металлической поверхности и в придании ей отрицательного потенциала относительно окружающей среды при помощи источника постоянного тока.

Защищаемое сооружение играет роль анода. Отрицательный полюс источника тока присоединяется к газопроводу (резервуару), а положительный — к заземлению (аноду). При этом постепенно разрушается анодное заземление, защищая газопровод. Этот вид применим как для защиты от коррозии блуждающими токами, так и почвенной.

Эффективность катодной защиты зависит от состояния изоляционных покрытий. При хорошей изоляции сокращается расход электроэнергии и увеличивается протяженность защищенных участков металлических сооружений. Средний расход электрической энергии в год на одну станцию катодной защиты составляет около 500 кВт^ч.

Принципиальная схема катодной защиты показана на рис. 6.2: ток от положительного полюса источника через соединительный кабель и анодное заземление переходит в грунт. Из почвы через дефектные места в изоляции ток проникает в газопровод и по дренажному кабелю направляется к отрицательному полюсу источника, создавая замкнутую цепь, по которой ток идет от анода через землю к газопроводу и далее по нему к отрицательному полюсу источника.

При этом происходит постепенное разрушение анода, что обеспечивает защиту сооружения от коррозии под влиянием его катодной поляризации. В качестве соединительных проводов применяют изолированные кабели сечением 25-77 мм2 (в зависимости от мощности станции).

Читайте так же:
Припой для пайки пищевой меди

Таблица 6.5. Поляризационные защитные потенциалы металла сооружения
относительно насыщенного медно-сульфатного электрода сравнения

установка катодной защиты

3.23 установка катодной защиты: Комплекс устройств, состоящий из преобразователя катодной защиты (катодной станции), дренажной линии, анодного заземления и контрольно-измерительного пункта.

3.33 Установка катодной защиты : комплекс устройств, состоящий из катодной станции, дренажной линии и анодного заземления, обеспечивающий смещение потенциалов на трубопроводе в отрицательную сторону.

3.49 установка катодной защиты; УКЗ: Комплекс устройств, состоящий из источника электроснабжения, преобразователя катодной защиты, дренажной линии, анодного заземления и контрольно-измерительного пункта.

3.16 установка катодной защиты; УКЗ: Комплекс устройств, состоящий из источника электроснабжения, преобразователя катодной защиты, дренажной линии, анодного заземления и контрольно-измерительного пункта.

3.1.17 установка катодной защиты; УКЗ: Комплекс устройств, состоящий из станции катодной зашиты, дренажной линии, анодного заземления, защитного заземления и контрольно-измерительного пункта.

3.1.29 установка катодной защиты; УКЗ: Комплекс устройств, состоящий из источника электроснабжения, станции катодной защиты, дренажной линии, анодного заземления и контрольно-измерительного пункта.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Полезное

Смотреть что такое «установка катодной защиты» в других словарях:

установка катодной защиты — УКЗ Электроустановка, предназначенная для защиты подземных сооружений от почвенной коррозии и коррозии, вызываемой блуждающими токами, состоящая из катодной станции, анодного заземления, заземляющего устройства и соединительных кабелей. [РД… … Справочник технического переводчика

установка катодной защиты (трубопровода) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN cathodic protection installationcathodic protection unit … Справочник технического переводчика

опытная установка катодной защиты — 3.37 опытная установка катодной защиты: УКЗ, предназначенная для временной защиты объекта с целью определения необходимого тока поляризации и интегральной оценки сопротивления изоляционного покрытия. Источник: СТО Газпром 2 2.3 310 2009:… … Словарь-справочник терминов нормативно-технической документации

установка протекторной защиты нефтепровода — Установка для катодной поляризации нефтепровода путем создания гальванической пары: металл нефтепровода протектор, состоящая из протектора или группы протекторов, соединительных проводов, а также контрольно измерительных пунктов и, при… … Справочник технического переводчика

установка (станция) катодной защиты — 3.60 установка (станция) катодной защиты: Совокупность устройств, требуемых для электрохимической защиты от коррозии подземных трубопроводов методом катодной поляризации с питанием от постороннего источника постоянного тока (преобразователь для… … Словарь-справочник терминов нормативно-технической документации

СТАНЦИЯ КАТОДНОЙ ЗАЩИТЫ — установка с источником постоянного тока, положительный полюс которого подсоединён к анодному заземлителю, а отрицательный полюс к защищаемому от коррозии блуждающими токами сооружению (Болгарский язык; Български) станция за катодна защита… … Строительный словарь

установка — 4.3 установка: Совокупность взаимосвязанных образцов ТС или систем, смонтированных для выполнения конкретной задачи в установленном месте. Источник … Словарь-справочник терминов нормативно-технической документации

СТО Газпром 2-3.5-047-2006: Инструкция по расчету и проектированию электрохимической защиты от коррозии магистральных газопроводов — Терминология СТО Газпром 2 3.5 047 2006: Инструкция по расчету и проектированию электрохимической защиты от коррозии магистральных газопроводов: 3.1 анодное заземление: Устройство в системе катодной защиты, электрически подключаемое к… … Словарь-справочник терминов нормативно-технической документации

СТО Газпром 9.2-002-2009: Защита от коррозии. Проектирование электрохимической защиты подземных сооружений — Терминология СТО Газпром 9.2 002 2009: Защита от коррозии. Проектирование электрохимической защиты подземных сооружений: 3.1.1 анодное заземление; AЗ: Элемент системы катодной защиты, осуществляющий контакт положительного полюса преобразователя… … Словарь-справочник терминов нормативно-технической документации

РД 91.020.00-КТН-149-06: Нормы проектирования электрохимической защиты магистральных трубопроводов и сооружений НПС — Терминология РД 91.020.00 КТН 149 06: Нормы проектирования электрохимической защиты магистральных трубопроводов и сооружений НПС: 3.1 Анодное заземление : устройство, обеспечивающее стекание защитного тока в землю. Определения термина из разных… … Словарь-справочник терминов нормативно-технической документации

IX Международная студенческая научная конференция Студенческий научный форум — 2017

ЗАЩИТА СТАЛЬНЫХ ПОДЗЕМНЫХ ГАЗОПРОВОДОВ ОТ ПОЧВЕННОЙ КОРРОЗИИ

При подземной прокладке стальные газопроводы подвергаются почвенной коррозии. В грунтах почти всегда содержатся соли, кислоты, щелочи и органические вещества, которые вредно действуют на стенки стальных труб. В некоторых случаях такая коррозия может вызвать очень быстрое появление сквозных свищей в металле трубы и этим вывести газопровод из строя, такие разрушения происходят особенно часто в газопроводах, уложенных без достаточной защиты от коррозии. Почвенной коррозии подвержены трубопроводы, кабели, подземные сооружения. В этом случае металлы соприкасаются с влагой почвы, содержащей растворенный кислород. Во влажной почве с повышенной кислотностью газопроводы разрушаются в течение полугода после их укладки (конечно, если не принять меры по их защите). Процессы коррозии газопроводов в почве имеют электрохимическую природу; их развитие рассматривается как результат работы микро- и макрогальванических элементов, возникающих в результате соприкосновения поверхности металла с грунтом, содержащим в себе электролит.

Почвенная коррозия обусловлена наличием в грунте влаги, солей, кислот, щелочей,кислорода, а также неоднородностью металла, создающих условия для возникновения на поверхности газопровода гальванических элементов, вызывающих коррозию металла на анодных участках. При наличии на поверхности металла газопровода царапины участок ее поляризуется анодно, а соседний неповрежденный участок поляризуется катодно. В образовавшейся гальванической паре по металлу трубы, как по внешней цепи, ток потечет от катода к аноду,ав электролите грунта он потечет от анода к катоду, вызывая анодное растворение стали, т. е. в точке А металл будет разрушаться (рис.1). При физико-химической и микроструктурной неоднородности металла на его поверхности образуются микрокоррозионные пары.

Читайте так же:
Сталь для пилы по дереву

Внутренняя полость трубы

Неоднородность физико-химических свойств грунта на отдельных участках трассы газопровода вызывает образование на нем макрокоррозионных пар длиной в десятки и сотни метров. Коррозионные разрушения плохо изолированных участков стальных газопроводов при почвенной коррозии носят иногда довольно равномерный характер, но нередко образуются каверны и глубокие раковины [1].

Методы защиты стальных подземных газопроводов от почвенной коррозии. Методы защиты от почвенной коррозии делятся на два вида: активная и пассивная защита. Пассивная защитапредставляет собой изоляцию поверхности трубопровода от землиразличными материалами (разнообразные пропитки, грунтовки, покрытия и т.д.). Активная защита имеет цель устранения обстоятельств, вызывающих коррозию трубопроводов. Для этого стараются перенести процесс коррозии с трубопровода на заземляющие устройства.

Пассивная защита. Для изоляции газопроводов в трассовых условиях в настоящее время наиболее широко применяют три типа защитных покрытий:

полимерные ленточные покрытия;

комбинированные мастично-ленточные покрытия (покрытия типа «пластобит»).

В соответствии с требованиями [2] конструкция битумно-мастичного покрытия состоит из слоя битумной или битумно-полимерной грунтовки (раствор битума в бензине), двух или трех слоев битумной мастики, между которыми находится армирующий материал (стеклохолст или стеклосетка) и наружного слоя из защитной обертки. В качестве защитной обертки ранее использовались оберточные материалы на битумно-каучуковой основе типа

«бризол», «гидроизол» и др. или крафт-бумага. В настоящее время применяют преимущественно полимерные защитные покрытия толщиной не менее 0,5 мм, грунтовку битумную или битумно-полимерную, слой мастики битумной или битумно-полимерной, слой армирующего материала, второй слой изоляционной мастики, второй слой армирующего материала, наружный слой защитной полимерной обертки. Общая толщина битумно-мастичного покрытия усиленного типа составляет не менее 6,0 мм, а для покрытия трассового нанесения нормального типа не менее 4,0 мм.

К преимуществам битумно-мастичных покрытий следует отнести их дешевизну, большой опыт применения, достаточно простую технологию нанесения в заводских и трассовых условиях. Битумные покрытия проницаемы для токов электрозащиты, хорошо работают совместно со средствами электрохимической защиты [1].

Основными недостатками битумно-мастичных покрытий являются узкий температурный диапазон применения (от −10℃ до +40℃), недостаточно высокая ударная прочность и стойкость к продавливанию, повышенная влагонасыщаемость и низкая биостойкость. Срок службы битумных покрытий ограничен и, как правило, не превышает 10÷15 лет.

Конструкция полимерного ленточного покрытия трассового нанесения в соответствии с [2] состоит из слоя адгезионной грунтовки, слоя полимерной изоляционной ленты толщиной не менее 0,6 мм и слоя защитной полимерной обертки толщиной не менее 0,6 мм. Общая толщина покрытия не менее 1,2 мм.

К преимуществам ленточных покрытий следует отнести высокую технологичность их нанесения на трубы в заводских и трассовых условиях, хорошие диэлектрические характеристики, низкую влагопроницаемость и кислородопроницаемость и достаточно широкий температурный диапазон применения.

Основными недостатками полимерных ленточных покрытий являются низкая устойчивость к сдвигу под воздействием осадки грунта, недостаточно высокая ударная прочность покрытий, низкая биостойкость адгезионного слоя покрытия [3].

При нанесении на трубы комбинированного ленточно-полиэтиленового покрытия предварительно осуществляется щеточная очистка наружной поверхности труб. Технологический нагрев труб не производится. На очищенные трубы первоначально наносится битумно-полимерная грунтовка, а затем, после сушки грунтовки, осуществляется нанесение на праймированные трубы дублированной изоляционной ленты и наружного защитного слоя из экструдированного полиэтилена. Полиэтиленовый слой прикатывается к поверхности труб эластичным роликом, после чего изолированные трубы охлаждаются в камере водяного охлаждения.

Активная защита. Долговечность и безаварийность работы газопроводов напрямую зависит от эффективности их противокоррозионной защиты. Для сведения к минимуму риска коррозионных повреждений трубопроводы защищают антикоррозионными покрытиями и дополнительно средствами электрохимзащиты (ЭХЗ). При этом изоляционные покрытия обеспечивают первичную («пассивную») защиту трубопроводов от коррозии, выполняя функцию «диффузионного барьера», через который затрудняется доступ к металлу коррозионно-активных агентов (воды, кислорода, воздуха). При появлении в покрытии дефектов предусматривается система катодной защиты трубопроводов — «активная» защита от коррозии.

В качестве электрохимзащиты на подземных газопроводах применяются: электрический дренаж (рис.2), катодная защита (рис.3), протекторная защита (рис.4). Рассмотрим основные схемы этих защит и принцип их работы.

Электрический дренаж – способ защиты, заключающийся в отводе блуждающих токов из анодной зоны защищаемого сооружения к их источнику. Дренажные установки, размещаемые в небольших металлических шкафах, являются удобным и эффективным методом защиты городских газопроводов от коррозии. Одна дренажная установка способна защитить до 5–6 км газопровода. На рис.2 представлена схема поляризованного дренажа ДП-63, в которой имеются контактор и диод. Когда потенциал газопровода незначительно превышает потенциал рельса, дренажный ток протекает по следующей цепи 1 – 3 – 5 – 6. При увеличении разности потенциалов через обмотку контактора замыкает нормально открытый контакт, и дренаж тока увеличивается. С уменьшением разности потенциалов контактор размыкает нормально открытый контакт. Если потенциал рельса будет выше потенциала газопровода, ток в дренажной цепи протекать не будет из-за односторонней проводимости диода.

Поляризованный электродренаж обычно подключают к рельсам электрифицированного транспорта, но его можно подключать и к отсасывающим пунктам.

Читайте так же:
Принцип работы антимагнитной пломбы счетчика воды

Катодной защитой – способ защиты газопроводов от подземной коррозии за счет их катодной поляризации с помощью тока от внешнего источника. Установка катодной защиты состоит из источника постоянного тока (катодной станции), анодного заземления и соединительных электрокабелей.

а – простой; б – поляризованный; в – усиленный поляризованный.

1 – газопровод; 2 – отсасывающий фидер; 3 – предохранитель на малую силу тока; 4, 5 – обмотки контактора; 6 – рельс

Рис.2. Схемы электрических дренажей

Принцип действия катодной защиты показан на схеме с анодными заземлениями, равномерно установленными вдоль газопровода (рис.3). Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Катодную поляризацию металлических подземных сооружений необходимо осуществлять так, чтобы создаваемые на всей их поверхности поляризационные защитные потенциалы были не менее 0,55В и не более 0,80В по отношению к неполяризующемуся водородному электроду, а также не менее 0,85В и не более 1,15В к медно-сульфатному в любой среде [3].

Потенциал неполяризующегося медно-сульфатного электрода по отношению к стандартному электроду принят равным 0,3В.

Протекторная защита – разновидность катодной защиты, нашедшая широкое применение. Необходимый защитный ток вырабатывается гальваническим элементом, роль катода выполняет металл защищаемого сооружения, анода – металл с более отрицательными, чем у защищаемого металла, потенциалами, а электролита – почва, окружающая газопровод и протектор.

1 – газопровод; 2 – источник постоянного тока; 3 – графитовый анодный заземлитель

Рис.3. Схема катодной защиты

Протекторная защита заключается в том, что катодная поляризация защищаемого газопровода достигается подключением к нему анодных заземлителей из металла, обладающего в данной грунтовой среде более отрицательным электрохимическим потенциалом, чем металл газопровода. Металлы, расположенные в ряду левее железа, имеют наиболее отрицательные электрохимические потенциалы и могут быть использованы в качестве анодных заземлителей для защиты от коррозии стальных газопроводов. Протектор представляет собой сплошной цилиндр из сплава алюминия, магния, цинка и марганца, в центре которого размещен стальной сердечник с выступающим концом для подключения провода. Активатор (заполнитель) состоит из смеси сернистых солей магния, натрия или кальция с глиной и создает вокруг протектора оболочку, растворяющую продукты коррозии протектора и снижающую переходное электрическое сопротивление от протектора к грунту. Контрольный пункт, устанавливаемый на отдельных протекторных установках, позволяет периодически контролировать действие установки. На рис.4 показано, что протекторная установка представляет собой гальваническую пару, в которой газопровод является катодом, а протектор – анодом. В результате за счет постепенной коррозии протектора сохраняется газопровод.

1 – газопровод; 2 – контрольный пункт; 3 – соединительный кабель;4 – активатор;

5 – протектор; 6 – стальной сердечник

Рис. 4. Схема протекторной защиты

Создание искусственной атмосферы. Этот метод применяют достаточно редко, в основном для трубопроводов большой протяженности. Это связано с большими транспортными затратами, трудностью его реализации (необходимо большое количество работников, техники, достаточно много времени). Протяженные подземные сооружения имеют возможность проходить через разные виды почв, что интенсифицирует коррозионный процесс. Суть метода заключается в том, чтоб создать однородный грунт по всей протяженности конструкции (засыпая, например, весь трубопровод песчаным грунтом) либо уменьшить агрессивность почвы на определенных участках. Для этого кислые грунты могут известковать [3].

Специальные методы укладки. Очень часто при прокладке трубопровода, а также других сооружений для защиты их от воздействия грунтовых вод, самого грунта используют специальные способы укладки.Трубопровод может быть помещен в специальный коллектор (при этом кабель укладывают на неметаллическую подкладку), защитный кожух (часто из железобетонных плит или металла).

Нержавеющие металлы. Введение в металл компонентов, повышающих его коррозионную стойкость в данных условиях, или удаление вредных примесей, ускоряющих коррозию. Он применяется на стадии изготовления металла, а также при термической и механической обработке металлических деталей. Во многих случаях легирование металла, мало склонного к пассивации, металлом, легко пассивируемым в данной среде, приводит к образованию сплава, обладающего той же (или почти той же) пассивируемостью, что и легирующий металл. Таким путем получены многочисленные коррозионностойкие сплавы, например нержавеющие стали, легированные хромом и никелем. Однако широкое внедрение этого способа сдерживается высокой стоимостью нержавеющих металлов.

Список использованных источников

Колпакова Н. В.  Колпаков А. С. Газоснабжение : учеб. пособие / Колпакова Н. В.  и др. / под ред. Н. П. Ширяева ; Урал. федер. ун-т. – Екатеринбург : УрФУ, 2014. – 200 с. : ил.

ГОСТ Р 51164-98 Трубопроводы стальные магистральные. Общие требования к защите от коррозии. – Введ. Постановлением Госстандарта России от 23.04.1998 г. №144 — М. : ИПК издательство стандартов, 1998. — 46 с. : ил.

Скафтымов Н. А. Основы газоснабжения / Н.А. Скафтымов / Репринтное воспроизведение издания 1975 г.- М.:ЭКОЛИТ, 2012. — 344 с. : ил.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector